2021-11-28 17:43:02 +01:00
|
|
|
Valinor • PHP object mapper with strong type support
|
|
|
|
====================================================
|
|
|
|
|
|
|
|
[![Total Downloads](http://poser.pugx.org/cuyz/valinor/downloads)][link-packagist]
|
|
|
|
[![Latest Stable Version](http://poser.pugx.org/cuyz/valinor/v)][link-packagist]
|
|
|
|
[![PHP Version Require](http://poser.pugx.org/cuyz/valinor/require/php)][link-packagist]
|
|
|
|
|
|
|
|
[![Mutation testing badge](https://img.shields.io/endpoint?style=flat&url=https%3A%2F%2Fbadge-api.stryker-mutator.io%2Fgithub.com%2FCuyZ%2FValinor%2Fmaster)](https://dashboard.stryker-mutator.io/reports/github.com/CuyZ/Valinor/master)
|
|
|
|
|
|
|
|
Valinor is a PHP library that helps to map any input into a strongly-typed value
|
|
|
|
object structure.
|
|
|
|
|
|
|
|
The conversion can handle native PHP types as well as other well-known advanced
|
|
|
|
type annotations like array shapes, generics and more.
|
|
|
|
|
|
|
|
## Why?
|
|
|
|
|
|
|
|
There are many benefits of using value objects instead of plain arrays and
|
|
|
|
scalar values in a modern codebase, among which:
|
|
|
|
|
|
|
|
1. **Data and behaviour encapsulation** — locks an object's behaviour inside its
|
|
|
|
class, preventing it from being scattered across the codebase.
|
|
|
|
2. **Data validation** — guarantees the valid state of an object.
|
|
|
|
3. **Immutability** — ensures the state of an object cannot be changed during
|
|
|
|
runtime.
|
|
|
|
|
|
|
|
When mapping any source to an object structure, this library will ensure that
|
|
|
|
all input values are properly converted to match the types of the nodes — class
|
|
|
|
properties or method parameters. Any value that cannot be converted to the
|
|
|
|
correct type will trigger an error and prevent the mapping from completing.
|
|
|
|
|
|
|
|
These checks guarantee that if the mapping succeeds, the object structure is
|
|
|
|
perfectly valid, hence there is no need for further validation nor type
|
|
|
|
conversion: the objects are ready to be used.
|
|
|
|
|
|
|
|
### Static analysis
|
|
|
|
|
|
|
|
A strongly-typed codebase allows the usage of static analysis tools like
|
|
|
|
[PHPStan] and [Psalm] that can identify issues in a codebase without running it.
|
|
|
|
|
|
|
|
Moreover, static analysis can help during a refactoring of a codebase with tools
|
|
|
|
like an IDE or [Rector].
|
|
|
|
|
|
|
|
## Usage
|
|
|
|
|
|
|
|
### Installation
|
|
|
|
|
|
|
|
```bash
|
|
|
|
composer require cuyz/valinor
|
|
|
|
```
|
|
|
|
|
|
|
|
### Example
|
|
|
|
|
|
|
|
An application must handle the data coming from an external API; the response
|
|
|
|
has a JSON format and describes a thread and its answers. The validity of this
|
|
|
|
input is unsure, besides manipulating a raw JSON string is laborious and
|
|
|
|
inefficient.
|
|
|
|
|
|
|
|
```json
|
|
|
|
{
|
|
|
|
"id": 1337,
|
|
|
|
"content": "Do you like potatoes?",
|
|
|
|
"date": "1957-07-23 13:37:42",
|
|
|
|
"answers": [
|
|
|
|
{
|
|
|
|
"user": "Ella F.",
|
|
|
|
"message": "I like potatoes",
|
|
|
|
"date": "1957-07-31 15:28:12"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"user": "Louis A.",
|
|
|
|
"message": "And I like tomatoes",
|
|
|
|
"date": "1957-08-13 09:05:24"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
The application must be certain that it can handle this data correctly; wrapping
|
|
|
|
the input in a value object will help.
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
A schema representing the needed structure must be provided, using classes.
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class Thread
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
public readonly int $id,
|
|
|
|
public readonly string $content,
|
|
|
|
public readonly DateTimeInterface $date,
|
|
|
|
/** @var Answer[] */
|
|
|
|
public readonly array $answers,
|
|
|
|
) {}
|
|
|
|
}
|
|
|
|
|
|
|
|
final class Answer
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
public readonly string $user,
|
|
|
|
public readonly string $message,
|
|
|
|
public readonly DateTimeInterface $date,
|
|
|
|
) {}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
Then a mapper is used to hydrate a source into these objects.
|
|
|
|
|
|
|
|
```php
|
|
|
|
public function getThread(int $id): Thread
|
|
|
|
{
|
|
|
|
$rawJson = $this->client->request("https://example.com/thread/$id");
|
|
|
|
|
|
|
|
try {
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
return (new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(
|
|
|
|
Thread::class,
|
|
|
|
new \CuyZ\Valinor\Mapper\Source\JsonSource($rawJson)
|
|
|
|
);
|
|
|
|
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
|
|
|
|
// Do something…
|
|
|
|
}
|
2021-11-28 17:43:02 +01:00
|
|
|
}
|
|
|
|
```
|
|
|
|
|
2021-12-29 00:09:34 +01:00
|
|
|
### Mapping advanced types
|
|
|
|
|
|
|
|
Although it is recommended to map an input to a value object, in some cases
|
|
|
|
mapping to another type can be easier/more flexible.
|
|
|
|
|
|
|
|
It is for instance possible to map to an array of objects:
|
|
|
|
|
|
|
|
```php
|
|
|
|
try {
|
|
|
|
$objects = (new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(
|
|
|
|
'array<' . SomeClass::class . '>',
|
|
|
|
[/* … */]
|
|
|
|
);
|
|
|
|
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
|
|
|
|
// Do something…
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
For simple use-cases, an array shape can be used:
|
|
|
|
|
|
|
|
```php
|
|
|
|
try {
|
|
|
|
$array = (new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(
|
|
|
|
'array{foo: string, bar: int}',
|
|
|
|
[/* … */]
|
|
|
|
);
|
|
|
|
|
|
|
|
echo $array['foo'];
|
|
|
|
echo $array['bar'] * 2;
|
|
|
|
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
|
|
|
|
// Do something…
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
2021-11-28 17:43:02 +01:00
|
|
|
### Validation
|
|
|
|
|
|
|
|
The source given to a mapper can never be trusted, this is actually the very
|
|
|
|
goal of this library: transforming an unstructured input to a well-defined
|
|
|
|
object structure. If the mapper cannot guess how to cast a certain value, it
|
|
|
|
means that it is not able to guarantee the validity of the desired object thus
|
|
|
|
it will fail.
|
|
|
|
|
|
|
|
Any issue encountered during the mapping will add an error to an upstream
|
|
|
|
exception of type `\CuyZ\Valinor\Mapper\MappingError`. It is therefore always
|
|
|
|
recommended wrapping the mapping function call with a try/catch statement and
|
|
|
|
handle the error properly.
|
|
|
|
|
|
|
|
More specific validation should be done in the constructor of the value object,
|
|
|
|
by throwing an exception if something is wrong with the given data. A good
|
|
|
|
practice would be to use lightweight validation tools like [Webmozart Assert].
|
|
|
|
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
When the mapping fails, the exception gives access to the root node. This
|
|
|
|
recursive object allows retrieving all needed information through the whole
|
|
|
|
mapping tree: path, values, types and messages, including the issues that caused
|
|
|
|
the exception.
|
|
|
|
|
2021-11-28 17:43:02 +01:00
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
public function __construct(private string $someValue)
|
2021-11-28 17:43:02 +01:00
|
|
|
{
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
Assert::startsWith($someValue, 'foo_');
|
2021-11-28 17:43:02 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
try {
|
|
|
|
(new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(
|
|
|
|
SomeClass::class,
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
['someValue' => 'bar_baz']
|
2021-11-28 17:43:02 +01:00
|
|
|
);
|
|
|
|
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
|
2022-01-02 00:36:57 +01:00
|
|
|
$node = $error->node();
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
|
|
|
|
// The name of a node can be accessed
|
|
|
|
$name = $node->name();
|
|
|
|
|
|
|
|
// The logical path of a node contains dot separated names of its parents
|
|
|
|
$path = $node->path();
|
|
|
|
|
|
|
|
// The type of the node can be cast to string to enhance suggestion messages
|
|
|
|
$type = (string)$node->type();
|
|
|
|
|
2022-01-02 00:36:57 +01:00
|
|
|
// If the node is a branch, its children can be recursively accessed
|
|
|
|
foreach ($node->children() as $child) {
|
|
|
|
// Do something…
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
}
|
2022-01-02 00:36:57 +01:00
|
|
|
|
|
|
|
// Get flatten list of all messages through the whole nodes tree
|
|
|
|
$messages = new \CuyZ\Valinor\Mapper\Tree\Message\MessagesFlattener($node);
|
|
|
|
|
|
|
|
// If only errors are wanted, they can be filtered
|
|
|
|
$errorMessages = $messages->errors();
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
|
2022-01-02 00:36:57 +01:00
|
|
|
// Should print something similar to:
|
|
|
|
// > Expected a value to start with "foo_". Got: "bar_baz"
|
|
|
|
foreach ($errorsMessages as $message) {
|
|
|
|
echo $message;
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
}
|
2022-01-02 00:36:57 +01:00
|
|
|
}
|
|
|
|
```
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
|
2022-01-02 00:36:57 +01:00
|
|
|
### Message customization / translation
|
|
|
|
|
|
|
|
When working with messages, it can sometimes be useful to customize the content
|
|
|
|
of a message — for instance to translate it.
|
|
|
|
|
|
|
|
The helper class `\CuyZ\Valinor\Mapper\Tree\Message\MessageMapFormatter` can be
|
|
|
|
used to provide a list of new formats. It can be instantiated with an array
|
|
|
|
where each key represents either:
|
|
|
|
|
|
|
|
- The code of the message to be replaced
|
|
|
|
- The content of the message to be replaced
|
|
|
|
- The class name of the message to be replaced
|
|
|
|
|
|
|
|
If none of those is found, the content of the message will stay unchanged unless
|
|
|
|
a default one is given to the class.
|
|
|
|
|
|
|
|
If one of these keys is found, the array entry will be used to replace the
|
|
|
|
content of the message. This entry can be either a plain text or a callable that
|
|
|
|
takes the message as a parameter and returns a string; it is for instance
|
|
|
|
advised to use a callable in cases where a translation service is used — to
|
|
|
|
avoid useless greedy operations.
|
|
|
|
|
|
|
|
In any case, the content can contain placeholders that will automatically be
|
|
|
|
replaced by, in order:
|
|
|
|
|
|
|
|
1. The original code of the message
|
|
|
|
2. The original content of the message
|
|
|
|
3. A string representation of the node type
|
|
|
|
4. The name of the node
|
|
|
|
5. The path of the node
|
|
|
|
|
|
|
|
```php
|
|
|
|
try {
|
|
|
|
(new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(SomeClass::class, [/* … */]);
|
|
|
|
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
|
|
|
|
$node = $error->node();
|
|
|
|
$messages = new \CuyZ\Valinor\Mapper\Tree\Message\MessagesFlattener($node);
|
|
|
|
|
|
|
|
$formatter = (new \CuyZ\Valinor\Mapper\Tree\Message\Formatter\MessageMapFormatter([
|
|
|
|
// Will match if the given message has this exact code
|
|
|
|
'some_code' => 'new content / previous code was: %1$s',
|
|
|
|
|
|
|
|
// Will match if the given message has this exact content
|
|
|
|
'Some message content' => 'new content / previous message: %2$s',
|
|
|
|
|
|
|
|
// Will match if the given message is an instance of `SomeError`
|
|
|
|
SomeError::class => '
|
|
|
|
- Original code of the message: %1$s
|
|
|
|
- Original content of the message: %2$s
|
|
|
|
- Node type: %3$s
|
|
|
|
- Node name: %4$s
|
|
|
|
- Node path: %5$s
|
|
|
|
',
|
|
|
|
|
|
|
|
// A callback can be used to get access to the message instance
|
|
|
|
OtherError::class => function (NodeMessage $message): string {
|
|
|
|
if ((string)$message->type() === 'string|int') {
|
|
|
|
// …
|
|
|
|
}
|
|
|
|
|
|
|
|
return 'Some message content';
|
|
|
|
},
|
|
|
|
|
|
|
|
// For greedy operation, it is advised to use a lazy-callback
|
|
|
|
'foo' => fn () => $this->translator->translate('foo.bar'),
|
|
|
|
]))
|
|
|
|
->defaultsTo('some default message')
|
|
|
|
// …or…
|
|
|
|
->defaultsTo(fn () => $this->translator->translate('default_message'));
|
|
|
|
|
|
|
|
foreach ($messages as $message) {
|
|
|
|
echo $formatter->format($message);
|
feat!: add access to root node when error occurs during mapping
When an error occurs during mapping, the root instance of `Node` can now
be accessed from the exception. This recursive object allows retrieving
all needed information through the whole mapping tree: path, values,
types and messages, including the issues that caused the exception.
It can be used like the following:
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
// Do something with `$error->node()`
// See README for more information
}
```
This change removes the method `MappingError::describe()` which provided
a flattened view of messages of all the errors that were encountered
during the mapping. The same behaviour can still be retrieved, see the
example below:
```php
use CuyZ\Valinor\Mapper\Tree\Message\Message;
use CuyZ\Valinor\Mapper\Tree\Node;
/**
* @implements \IteratorAggregate<string, array<\Throwable&Message>>
*/
final class MappingErrorList implements \IteratorAggregate
{
private Node $node;
public function __construct(Node $node)
{
$this->node = $node;
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
public function getIterator(): \Traversable
{
yield from $this->errors($this->node);
}
/**
* @return \Traversable<string, array<\Throwable&Message>>
*/
private function errors(Node $node): \Traversable
{
$errors = array_filter(
$node->messages(),
static fn (Message $m) => $m instanceof \Throwable
);
if (! empty($errors)) {
yield $node->path() => array_values($errors);
}
foreach ($node->children() as $child) {
yield from $this->errors($child);
}
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* ... */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$errors = iterator_to_array(new MappingErrorList($error->node()));
}
```
The class `CannotMapObject` is deleted, as it does not provide any
value; this means that `MappingError` which was previously an interface
becomes a class.
2021-12-16 00:00:45 +01:00
|
|
|
}
|
2021-11-28 17:43:02 +01:00
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
### Source
|
|
|
|
|
2022-03-24 14:23:03 +01:00
|
|
|
Any source can be given to the mapper, be it an array, some json, yaml or even a file:
|
2021-11-28 17:43:02 +01:00
|
|
|
|
|
|
|
```php
|
|
|
|
function map($source) {
|
|
|
|
return (new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(SomeClass::class, $source);
|
|
|
|
}
|
|
|
|
|
2022-03-24 14:23:03 +01:00
|
|
|
map(\CuyZ\Valinor\Mapper\Source\Source::array($someData));
|
2021-11-28 17:43:02 +01:00
|
|
|
|
2022-03-24 14:23:03 +01:00
|
|
|
map(\CuyZ\Valinor\Mapper\Source\Source::json($jsonString));
|
|
|
|
|
|
|
|
map(\CuyZ\Valinor\Mapper\Source\Source::yaml($yamlString));
|
2021-11-28 17:43:02 +01:00
|
|
|
|
|
|
|
// File containing valid Json or Yaml content and with valid extension
|
2022-03-24 14:23:03 +01:00
|
|
|
map(new \CuyZ\Valinor\Mapper\Source\Source::file(
|
2021-11-28 17:43:02 +01:00
|
|
|
new SplFileObject('path/to/my/file.json')
|
|
|
|
));
|
|
|
|
```
|
|
|
|
|
feat: introduce a path-mapping source modifier
This modifier can be used to change paths in the source data using a dot
notation.
The mapping is done using an associative array of path mappings. This
array must have the source path as key and the target path as value.
The source path uses the dot notation (eg `A.B.C`) and can contain one
`*` for array paths (eg `A.B.*.C`).
```php
final class Country
{
/** @var City[] */
public readonly array $cities;
}
final class City
{
public readonly string $name;
}
$source = new \CuyZ\Valinor\Mapper\Source\Modifier\PathMapping([
'towns' => [
['label' => 'Ankh Morpork'],
['label' => 'Minas Tirith'],
],
], [
'towns' => 'cities',
'towns.*.label' => 'name',
]);
// After modification this is what the source will look like:
[
'cities' => [
['name' => 'Ankh Morpork'],
['name' => 'Minas Tirith'],
],
];
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(Country::class, $source);
```
2022-02-26 11:33:50 +01:00
|
|
|
#### Modifiers
|
|
|
|
|
|
|
|
Sometimes the source is not in the same format and/or organised in the same
|
|
|
|
way as a value object. Modifiers can be used to change a source before the
|
|
|
|
mapping occurs.
|
|
|
|
|
|
|
|
##### Camel case keys
|
|
|
|
|
|
|
|
This modifier recursively forces all keys to be in camelCase format.
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public readonly string $someValue;
|
|
|
|
}
|
|
|
|
|
2022-03-24 14:23:03 +01:00
|
|
|
$source = \CuyZ\Valinor\Mapper\Source\Source::array([
|
|
|
|
'some_value' => 'foo',
|
|
|
|
// …or…
|
|
|
|
'some-value' => 'foo',
|
|
|
|
// …or…
|
|
|
|
'some value' => 'foo',
|
|
|
|
// …will be replaced by `['someValue' => 'foo']`
|
|
|
|
])
|
|
|
|
->camelCaseKeys();
|
feat: introduce a path-mapping source modifier
This modifier can be used to change paths in the source data using a dot
notation.
The mapping is done using an associative array of path mappings. This
array must have the source path as key and the target path as value.
The source path uses the dot notation (eg `A.B.C`) and can contain one
`*` for array paths (eg `A.B.*.C`).
```php
final class Country
{
/** @var City[] */
public readonly array $cities;
}
final class City
{
public readonly string $name;
}
$source = new \CuyZ\Valinor\Mapper\Source\Modifier\PathMapping([
'towns' => [
['label' => 'Ankh Morpork'],
['label' => 'Minas Tirith'],
],
], [
'towns' => 'cities',
'towns.*.label' => 'name',
]);
// After modification this is what the source will look like:
[
'cities' => [
['name' => 'Ankh Morpork'],
['name' => 'Minas Tirith'],
],
];
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(Country::class, $source);
```
2022-02-26 11:33:50 +01:00
|
|
|
|
|
|
|
(new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(SomeClass::class, $source);
|
|
|
|
```
|
|
|
|
|
|
|
|
##### Path mapping
|
|
|
|
|
|
|
|
This modifier can be used to change paths in the source data using a dot
|
|
|
|
notation.
|
|
|
|
|
|
|
|
The mapping is done using an associative array of path mappings. This array must
|
|
|
|
have the source path as key and the target path as value.
|
|
|
|
|
|
|
|
The source path uses the dot notation (eg `A.B.C`) and can contain one `*` for
|
|
|
|
array paths (eg `A.B.*.C`).
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class Country
|
|
|
|
{
|
|
|
|
/** @var City[] */
|
|
|
|
public readonly array $cities;
|
|
|
|
}
|
|
|
|
|
|
|
|
final class City
|
|
|
|
{
|
|
|
|
public readonly string $name;
|
|
|
|
}
|
|
|
|
|
2022-03-24 14:23:03 +01:00
|
|
|
$source = \CuyZ\Valinor\Mapper\Source\Source::array([
|
|
|
|
'towns' => [
|
|
|
|
['label' => 'Ankh Morpork'],
|
|
|
|
['label' => 'Minas Tirith'],
|
|
|
|
],
|
|
|
|
])
|
|
|
|
->map([
|
|
|
|
'towns' => 'cities',
|
|
|
|
'towns.*.label' => 'name',
|
|
|
|
]);
|
feat: introduce a path-mapping source modifier
This modifier can be used to change paths in the source data using a dot
notation.
The mapping is done using an associative array of path mappings. This
array must have the source path as key and the target path as value.
The source path uses the dot notation (eg `A.B.C`) and can contain one
`*` for array paths (eg `A.B.*.C`).
```php
final class Country
{
/** @var City[] */
public readonly array $cities;
}
final class City
{
public readonly string $name;
}
$source = new \CuyZ\Valinor\Mapper\Source\Modifier\PathMapping([
'towns' => [
['label' => 'Ankh Morpork'],
['label' => 'Minas Tirith'],
],
], [
'towns' => 'cities',
'towns.*.label' => 'name',
]);
// After modification this is what the source will look like:
[
'cities' => [
['name' => 'Ankh Morpork'],
['name' => 'Minas Tirith'],
],
];
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(Country::class, $source);
```
2022-02-26 11:33:50 +01:00
|
|
|
|
|
|
|
// After modification this is what the source will look like:
|
|
|
|
[
|
|
|
|
'cities' => [
|
|
|
|
['name' => 'Ankh Morpork'],
|
|
|
|
['name' => 'Minas Tirith'],
|
|
|
|
],
|
|
|
|
];
|
|
|
|
|
|
|
|
(new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(Country::class, $source);
|
|
|
|
```
|
|
|
|
|
2022-03-24 14:23:03 +01:00
|
|
|
#### Custom source
|
|
|
|
|
|
|
|
The source is just an iterable, so it's easy to create a custom one.
|
|
|
|
It can even be combined with the provided builder.
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class AcmeSource implements IteratorAggregate
|
|
|
|
{
|
|
|
|
private iterable $source;
|
|
|
|
|
|
|
|
public function __construct(iterable $source)
|
|
|
|
{
|
|
|
|
$this->source = $this->doSomething($source);
|
|
|
|
}
|
|
|
|
|
|
|
|
private function doSomething(iterable $source): iterable
|
|
|
|
{
|
|
|
|
// Do something with $source
|
|
|
|
|
|
|
|
return $source;
|
|
|
|
}
|
|
|
|
|
|
|
|
public function getIterator()
|
|
|
|
{
|
|
|
|
yield from $this->source;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
$source = \CuyZ\Valinor\Mapper\Source\Source::iterable(new AcmeSource(['value' => 'foo']))
|
|
|
|
->camelCaseKeys();
|
|
|
|
|
|
|
|
(new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(SomeClass::class, $source);
|
|
|
|
```
|
|
|
|
|
2021-11-28 17:43:02 +01:00
|
|
|
### Construction strategy
|
|
|
|
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
During the mapping, instances of objects are recursively created and hydrated
|
|
|
|
with transformed values. Construction strategies will determine what values are
|
|
|
|
needed and how an object is built.
|
2021-11-28 17:43:02 +01:00
|
|
|
|
2022-03-11 12:25:47 +01:00
|
|
|
#### Native constructor
|
2021-11-28 17:43:02 +01:00
|
|
|
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
If a constructor exists and is public, its arguments will determine which values
|
|
|
|
are needed from the input.
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
public readonly string $foo,
|
|
|
|
public readonly int $bar,
|
|
|
|
) {}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
2022-03-11 12:25:47 +01:00
|
|
|
#### Custom constructor
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
|
2022-03-11 12:25:47 +01:00
|
|
|
An object may have custom ways of being created, in such cases these
|
|
|
|
constructors need to be registered to the mapper to be used. A constructor is a
|
|
|
|
callable that can be either:
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
|
2022-03-11 12:25:47 +01:00
|
|
|
1. A named constructor, also known as a static factory method
|
|
|
|
2. The method of a service — for instance a repository
|
|
|
|
3. A "callable object" — a class that declares an `__invoke` method
|
|
|
|
4. Any other callable — including anonymous functions
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
|
2022-03-11 12:25:47 +01:00
|
|
|
In any case, the return type of the callable will be resolved by the mapper to
|
|
|
|
know when to use it. Any argument can be provided and will automatically be
|
|
|
|
mapped using the given source. These arguments can then be used to instantiate
|
|
|
|
the object in the desired way.
|
|
|
|
|
|
|
|
Registering any constructor will disable the native constructor — the
|
|
|
|
`__construct` method — of the targeted class. If for some reason it still needs
|
|
|
|
to be handled as well, the name of the class must be given to the
|
|
|
|
registration method.
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
|
|
|
|
```php
|
2022-03-11 12:25:47 +01:00
|
|
|
(new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->registerConstructor(
|
|
|
|
// Allow the native constructor to be used
|
|
|
|
Color::class,
|
|
|
|
|
|
|
|
// Register a named constructor
|
|
|
|
Color::fromHex(...),
|
|
|
|
// …or for PHP < 8.1:
|
|
|
|
[Color::class, 'fromHex'],
|
|
|
|
|
|
|
|
/**
|
|
|
|
* An anonymous function can also be used, for instance when the desired
|
|
|
|
* object is an external dependency that cannot be modified.
|
|
|
|
*
|
|
|
|
* @param 'red'|'green'|'blue' $color
|
|
|
|
* @param 'dark'|'light' $darkness
|
|
|
|
*/
|
|
|
|
function (string $color, string $darkness): stdClass {
|
|
|
|
$main = $darkness === 'dark' ? 128 : 255;
|
|
|
|
$other = $darkness === 'dark' ? 0 : 128;
|
|
|
|
|
|
|
|
return new Color(
|
|
|
|
$color === 'red' ? $main : $other,
|
|
|
|
$color === 'green' ? $main : $other,
|
|
|
|
$color === 'blue' ? $main : $other,
|
|
|
|
);
|
|
|
|
}
|
|
|
|
)
|
|
|
|
->mapper()
|
|
|
|
->map(Color::class, [/* … */]);
|
|
|
|
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
final class Color
|
|
|
|
{
|
|
|
|
/**
|
|
|
|
* @param int<0, 255> $red
|
|
|
|
* @param int<0, 255> $green
|
|
|
|
* @param int<0, 255> $blue
|
|
|
|
*/
|
2022-03-11 12:25:47 +01:00
|
|
|
public function __construct(
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
public readonly int $red,
|
|
|
|
public readonly int $green,
|
|
|
|
public readonly int $blue
|
|
|
|
) {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @param non-empty-string $hex
|
|
|
|
*/
|
|
|
|
public static function fromHex(string $hex): self
|
|
|
|
{
|
|
|
|
if (strlen($hex) !== 6) {
|
|
|
|
throw new DomainException('Must be 6 characters long');
|
|
|
|
}
|
|
|
|
|
|
|
|
/** @var int<0, 255> $red */
|
|
|
|
$red = hexdec(substr($hex, 0, 2));
|
|
|
|
/** @var int<0, 255> $green */
|
|
|
|
$green = hexdec(substr($hex, 2, 2));
|
|
|
|
/** @var int<0, 255> $blue */
|
|
|
|
$blue = hexdec(substr($hex, 4, 2));
|
|
|
|
|
|
|
|
return new self($red, $green, $blue);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
#### Properties
|
|
|
|
|
2022-03-11 12:25:47 +01:00
|
|
|
If no constructor is registered, properties will determine which values are
|
|
|
|
needed from the input.
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public readonly string $foo;
|
|
|
|
|
|
|
|
public readonly int $bar;
|
|
|
|
}
|
|
|
|
```
|
2021-11-28 17:43:02 +01:00
|
|
|
|
feat!: improve interface inferring API
The method `MapperBuilder::infer()` can be used to infer an
implementation for a given interface.
The callback given to this method must return the name of a class that
implements the interface. Any arguments can be required by the callback;
they will be mapped properly using the given source.
```php
$mapper = (new \CuyZ\Valinor\MapperBuilder())
->infer(UuidInterface::class, fn () => MyUuid::class)
->infer(SomeInterface::class, fn (string $type) => match($type) {
'first' => FirstImplementation::class,
'second' => SecondImplementation::class,
default => throw new DomainException("Unhandled type `$type`.")
})->mapper();
// Will return an instance of `FirstImplementation`
$mapper->map(SomeInterface::class, [
'type' => 'first',
'uuid' => 'a6868d61-acba-406d-bcff-30ecd8c0ceb6',
'someString' => 'foo',
]);
// Will return an instance of `SecondImplementation`
$mapper->map(SomeInterface::class, [
'type' => 'second',
'uuid' => 'a6868d61-acba-406d-bcff-30ecd8c0ceb6',
'someInt' => 42,
]);
interface SomeInterface {}
final class FirstImplementation implements SomeInterface
{
public readonly UuidInterface $uuid;
public readonly string $someString;
}
final class SecondImplementation implements SomeInterface
{
public readonly UuidInterface $uuid;
public readonly int $someInt;
}
```
2022-02-19 21:52:26 +01:00
|
|
|
### Inferring interfaces
|
|
|
|
|
|
|
|
When the mapper meets an interface, it needs to understand which implementation
|
|
|
|
(a class that implements this interface) will be used — this information must be
|
|
|
|
provided in the mapper builder, using the method `infer()`.
|
|
|
|
|
|
|
|
The callback given to this method must return the name of a class that
|
|
|
|
implements the interface. Any arguments can be required by the callback; they
|
|
|
|
will be mapped properly using the given source.
|
|
|
|
|
|
|
|
```php
|
|
|
|
$mapper = (new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->infer(UuidInterface::class, fn () => MyUuid::class)
|
|
|
|
->infer(SomeInterface::class, fn (string $type) => match($type) {
|
|
|
|
'first' => FirstImplementation::class,
|
|
|
|
'second' => SecondImplementation::class,
|
|
|
|
default => throw new DomainException("Unhandled type `$type`.")
|
|
|
|
})->mapper();
|
|
|
|
|
|
|
|
// Will return an instance of `FirstImplementation`
|
|
|
|
$mapper->map(SomeInterface::class, [
|
|
|
|
'type' => 'first',
|
|
|
|
'uuid' => 'a6868d61-acba-406d-bcff-30ecd8c0ceb6',
|
|
|
|
'someString' => 'foo',
|
|
|
|
]);
|
|
|
|
|
|
|
|
// Will return an instance of `SecondImplementation`
|
|
|
|
$mapper->map(SomeInterface::class, [
|
|
|
|
'type' => 'second',
|
|
|
|
'uuid' => 'a6868d61-acba-406d-bcff-30ecd8c0ceb6',
|
|
|
|
'someInt' => 42,
|
|
|
|
]);
|
|
|
|
|
|
|
|
interface SomeInterface {}
|
|
|
|
|
|
|
|
final class FirstImplementation implements SomeInterface
|
|
|
|
{
|
|
|
|
public readonly UuidInterface $uuid;
|
|
|
|
|
|
|
|
public readonly string $someString;
|
|
|
|
}
|
|
|
|
|
|
|
|
final class SecondImplementation implements SomeInterface
|
|
|
|
{
|
|
|
|
public readonly UuidInterface $uuid;
|
|
|
|
|
|
|
|
public readonly int $someInt;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
2022-02-19 19:47:04 +01:00
|
|
|
### Modifiers
|
|
|
|
|
|
|
|
Sometimes the source is not in the same format and/or organised in the same
|
|
|
|
way as a value object. Modifiers can be used to change a source before the
|
|
|
|
mapping occurs.
|
|
|
|
|
|
|
|
#### Camel case keys
|
|
|
|
|
|
|
|
This modifier recursively forces all keys to be in camelCase format.
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public readonly string $someValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
$source = new \CuyZ\Valinor\Mapper\Source\Modifier\CamelCaseKeys([
|
|
|
|
'some_value' => 'foo',
|
|
|
|
// …or…
|
|
|
|
'some-value' => 'foo',
|
|
|
|
// …or…
|
|
|
|
'some value' => 'foo',
|
|
|
|
// …will be replaced by `['someValue' => 'foo']`
|
|
|
|
]);
|
|
|
|
|
|
|
|
(new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(SomeClass::class, $source);
|
|
|
|
```
|
|
|
|
|
2021-11-28 17:43:02 +01:00
|
|
|
## Handled types
|
|
|
|
|
|
|
|
To prevent conflicts or duplication of the type annotations, this library tries
|
|
|
|
to handle most of the type annotations that are accepted by [PHPStan] and
|
|
|
|
[Psalm].
|
|
|
|
|
|
|
|
### Scalar
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
private bool $boolean,
|
|
|
|
|
|
|
|
private float $float,
|
|
|
|
|
|
|
|
private int $integer,
|
|
|
|
|
|
|
|
/** @var positive-int */
|
|
|
|
private int $positiveInteger,
|
|
|
|
|
|
|
|
/** @var negative-int */
|
|
|
|
private int $negativeInteger,
|
|
|
|
|
2021-12-06 13:14:54 +01:00
|
|
|
/** @var int<-42, 1337> */
|
|
|
|
private int $integerRange,
|
|
|
|
|
|
|
|
/** @var int<min, 0> */
|
|
|
|
private int $integerRangeWithMinRange,
|
|
|
|
|
|
|
|
/** @var int<0, max> */
|
|
|
|
private int $integerRangeWithMaxRange,
|
|
|
|
|
2021-11-28 17:43:02 +01:00
|
|
|
private string $string,
|
|
|
|
|
|
|
|
/** @var non-empty-string */
|
|
|
|
private string $nonEmptyString,
|
|
|
|
|
|
|
|
/** @var class-string */
|
|
|
|
private string $classString,
|
|
|
|
|
|
|
|
/** @var class-string<SomeInterface> */
|
|
|
|
private string $classStringOfAnInterface,
|
|
|
|
) {}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
### Object
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
private SomeClass $class,
|
|
|
|
|
|
|
|
private DateTimeInterface $interface,
|
|
|
|
|
|
|
|
/** @var SomeInterface&AnotherInterface */
|
|
|
|
private object $intersection,
|
|
|
|
|
|
|
|
/** @var SomeCollection<SomeClass> */
|
|
|
|
private SomeCollection $classWithGeneric,
|
|
|
|
) {}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @template T of object
|
|
|
|
*/
|
|
|
|
final class SomeCollection
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
/** @var array<T> */
|
|
|
|
private array $objects,
|
|
|
|
) {}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
### Array & lists
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
/** @var string[] */
|
|
|
|
private array $simpleArray,
|
|
|
|
|
|
|
|
/** @var array<string> */
|
|
|
|
private array $arrayOfStrings,
|
|
|
|
|
|
|
|
/** @var array<string, SomeClass> */
|
|
|
|
private array $arrayOfClassWithStringKeys,
|
|
|
|
|
|
|
|
/** @var array<int, SomeClass> */
|
|
|
|
private array $arrayOfClassWithIntegerKeys,
|
|
|
|
|
|
|
|
/** @var non-empty-array<string> */
|
|
|
|
private array $nonEmptyArrayOfStrings,
|
|
|
|
|
|
|
|
/** @var non-empty-array<string, SomeClass> */
|
|
|
|
private array $nonEmptyArrayWithStringKeys,
|
|
|
|
|
|
|
|
/** @var list<string> */
|
|
|
|
private array $listOfStrings,
|
|
|
|
|
|
|
|
/** @var non-empty-list<string> */
|
|
|
|
private array $nonEmptyListOfStrings,
|
|
|
|
|
|
|
|
/** @var array{foo: string, bar: int} */
|
|
|
|
private array $shapedArray,
|
|
|
|
|
|
|
|
/** @var array{foo: string, bar?: int} */
|
|
|
|
private array $shapedArrayWithOptionalElement,
|
|
|
|
|
|
|
|
/** @var array{string, bar: int} */
|
|
|
|
private array $shapedArrayWithUndefinedKey,
|
|
|
|
) {}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
### Union
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
private int|string $simpleUnion,
|
|
|
|
|
2022-04-04 13:01:39 +02:00
|
|
|
/** @var class-string<SomeInterface|AnotherInterface> */
|
2021-11-28 17:43:02 +01:00
|
|
|
private string $unionOfClassString,
|
|
|
|
|
|
|
|
/** @var array<SomeInterface|AnotherInterface> */
|
|
|
|
private array $unionInsideArray,
|
2022-05-09 18:29:07 +02:00
|
|
|
|
2022-05-09 21:14:46 +02:00
|
|
|
/** @var int|true */
|
|
|
|
private int|bool $unionWithLiteralTrueType;
|
|
|
|
|
|
|
|
/** @var int|false */
|
|
|
|
private int|bool $unionWithLiteralFalseType;
|
|
|
|
|
2022-05-09 19:12:13 +02:00
|
|
|
/** @var 404.42|1337.42 */
|
2022-05-09 21:14:46 +02:00
|
|
|
private float $unionOfFloatValues,
|
2022-05-09 19:12:13 +02:00
|
|
|
|
2022-05-09 18:29:07 +02:00
|
|
|
/** @var 42|1337 */
|
2022-05-09 21:14:46 +02:00
|
|
|
private int $unionOfIntegerValues,
|
2022-05-09 18:29:07 +02:00
|
|
|
|
|
|
|
/** @var 'foo'|'bar' */
|
|
|
|
private string $unionOfStringValues,
|
2021-11-28 17:43:02 +01:00
|
|
|
) {}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
2021-12-29 00:09:34 +01:00
|
|
|
## Static analysis
|
|
|
|
|
|
|
|
To help static analysis of a codebase using this library, an extension for
|
|
|
|
[PHPStan] and a plugin for [Psalm] are provided. They enable these tools to
|
|
|
|
better understand the behaviour of the mapper.
|
|
|
|
|
|
|
|
Considering at least one of those tools are installed on a project, below are
|
|
|
|
examples of the kind of errors that would be reported.
|
|
|
|
|
|
|
|
**Mapping to an array of classes**
|
|
|
|
|
|
|
|
```php
|
|
|
|
final class SomeClass
|
|
|
|
{
|
|
|
|
public function __construct(
|
|
|
|
public readonly string $foo,
|
|
|
|
public readonly int $bar,
|
|
|
|
) {}
|
|
|
|
}
|
|
|
|
|
|
|
|
$objects = (new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(
|
|
|
|
'array<' . SomeClass::class . '>',
|
|
|
|
[/* … */]
|
|
|
|
);
|
|
|
|
|
|
|
|
foreach ($objects as $object) {
|
|
|
|
// ✅
|
|
|
|
echo $object->foo;
|
|
|
|
|
|
|
|
// ✅
|
|
|
|
echo $object->bar * 2;
|
|
|
|
|
|
|
|
// ❌ Cannot perform operation between `string` and `int`
|
|
|
|
echo $object->foo * $object->bar;
|
|
|
|
|
|
|
|
// ❌ Property `SomeClass::$fiz` is not defined
|
|
|
|
echo $object->fiz;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
**Mapping to a shaped array**
|
|
|
|
|
|
|
|
```php
|
|
|
|
$array = (new \CuyZ\Valinor\MapperBuilder())
|
|
|
|
->mapper()
|
|
|
|
->map(
|
|
|
|
'array{foo: string, bar: int}',
|
|
|
|
[/* … */]
|
|
|
|
);
|
|
|
|
|
|
|
|
// ✅
|
|
|
|
echo $array['foo'];
|
|
|
|
|
|
|
|
// ❌ Expected `string` but got `int`
|
|
|
|
echo strtolower($array['bar']);
|
|
|
|
|
|
|
|
// ❌ Cannot perform operation between `string` and `int`
|
|
|
|
echo $array['foo'] * $array['bar'];
|
|
|
|
|
|
|
|
// ❌ Offset `fiz` does not exist on array
|
|
|
|
echo $array['fiz'];
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
To activate this feature, the configuration must be updated for the installed
|
|
|
|
tool(s):
|
|
|
|
|
|
|
|
**PHPStan**
|
|
|
|
|
|
|
|
```yaml
|
|
|
|
includes:
|
|
|
|
- vendor/cuyz/valinor/qa/PHPStan/valinor-phpstan-configuration.php
|
|
|
|
```
|
|
|
|
|
|
|
|
**Psalm**
|
|
|
|
|
|
|
|
```xml
|
feat: introduce automatic named constructor resolution
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
2022-01-21 19:14:00 +01:00
|
|
|
|
2021-12-29 00:09:34 +01:00
|
|
|
<plugins>
|
|
|
|
<plugin filename="vendor/cuyz/valinor/qa/Psalm/Plugin/TreeMapperPsalmPlugin.php"/>
|
|
|
|
</plugins>
|
|
|
|
```
|
|
|
|
|
2021-11-28 17:43:02 +01:00
|
|
|
[PHPStan]: https://phpstan.org/
|
|
|
|
|
|
|
|
[Psalm]: https://psalm.dev/
|
|
|
|
|
|
|
|
[Rector]: https://github.com/rectorphp/rector
|
|
|
|
|
|
|
|
[Webmozart Assert]: https://github.com/webmozarts/assert
|
|
|
|
|
|
|
|
[link-packagist]: https://packagist.org/packages/cuyz/valinor
|