The class `\CuyZ\Valinor\Mapper\Tree\Node` has been refactored to remove
access to unwanted methods that were not supposed to be part of the
public API. Below are a list of all changes:
- New methods `$node->sourceFilled()` and `$node->sourceValue()` allow
accessing the source value.
- The method `$node->value()` has been renamed to `$node->mappedValue()`
and will throw an exception if the node is not value.
- The method `$node->type()` now returns a string.
- The methods `$message->name()`, `$message->path()`, `$message->type()`
and `$message->value()` have been deprecated in favor of the new
method `$message->node()`.
- The message parameter `{original_value}` has been deprecated in favor
of `{source_value}`.
/!\ This change fixes a security issue.
Userland exception thrown in a constructor will not be automatically
caught by the mapper anymore. This prevents messages with sensible
information from reaching the final user — for instance an SQL exception
showing a part of a query.
To allow exceptions to be considered as safe, the new method
`MapperBuilder::filterExceptions()` must be used, with caution.
```php
final class SomeClass
{
public function __construct(private string $value)
{
\Webmozart\Assert\Assert::startsWith($value, 'foo_');
}
}
try {
(new \CuyZ\Valinor\MapperBuilder())
->filterExceptions(function (Throwable $exception) {
if ($exception instanceof \Webmozart\Assert\InvalidArgumentException) {
return \CuyZ\Valinor\Mapper\Tree\Message\ThrowableMessage::from($exception);
}
// If the exception should not be caught by this library, it
// must be thrown again.
throw $exception;
})
->mapper()
->map(SomeClass::class, 'bar_baz');
} catch (\CuyZ\Valinor\Mapper\MappingError $exception) {
// Should print something similar to:
// > Expected a value to start with "foo_". Got: "bar_baz"
echo $exception->node()->messages()[0];
}
```
The Warmup will now recursively handle interface and their class
implementations. It is also done in a more clever way: instead of
warming up all properties and constructors, it takes only what is
needed.
The mapper is now more type-sensitive and will fail in the following
situations:
- When a value does not match exactly the awaited scalar type, for
instance a string `"42"` given to a node that awaits an integer.
- When unnecessary array keys are present, for instance mapping an array
`['foo' => …, 'bar' => …, 'baz' => …]` to an object that needs only
`foo` and `bar`.
- When permissive types like `mixed` or `object` are encountered.
These limitations can be bypassed by enabling the flexible mode:
```php
(new \CuyZ\Valinor\MapperBuilder())
->flexible()
->mapper();
->map('array{foo: int, bar: bool}', [
'foo' => '42', // Will be cast from `string` to `int`
'bar' => 'true', // Will be cast from `string` to `bool`
'baz' => '…', // Will be ignored
]);
```
When using this library for a provider application — for instance an API
endpoint that can be called with a JSON payload — it is recommended to
use the strict mode. This ensures that the consumers of the API provide
the exact awaited data structure, and prevents unknown values to be
passed.
When using this library as a consumer of an external source, it can make
sense to enable the flexible mode. This allows for instance to convert
string numeric values to integers or to ignore data that is present in
the source but not needed in the application.
---
All these changes led to a new check that runs on all registered object
constructors. If a collision is found between several constructors that
have the same signature (the same parameter names), an exception will be
thrown.
```php
final class SomeClass
{
public static function constructorA(string $foo, string $bar): self
{
// …
}
public static function constructorB(string $foo, string $bar): self
{
// …
}
}
(new \CuyZ\Valinor\MapperBuilder())
->registerConstructor(
SomeClass::constructorA(...),
SomeClass::constructorB(...),
)
->mapper();
->map(SomeClass::class, [
'foo' => 'foo',
'bar' => 'bar',
]);
// Exception: A collision was detected […]
```
When the application runs in a development environment, the cache
implementation should be decorated with `FileWatchingCache` to prevent
invalid cache entries states, which can result in the library not
behaving as expected (missing property value, callable with outdated
signature, …).
```php
$cache = new \CuyZ\Valinor\Cache\FileSystemCache('path/to/cache-dir');
if ($isApplicationInDevelopmentEnvironment) {
$cache = new \CuyZ\Valinor\Cache\FileWatchingCache($cache);
}
(new \CuyZ\Valinor\MapperBuilder())
->withCache($cache)
->mapper()
->map(SomeClass::class, [/* … */]);
```
This behavior now forces to explicitly inject `FileWatchingCache`, when
it was done automatically before; but because it shouldn't be used in
a production environment, it will increase overall performance.
The cache implementation that was previously injected in the mapper
builder must now be manually injected. This gives better control on when
the cache should be enabled, especially depending on which environment
the application is running.
The library provides a cache implementation out of the box, which saves
cache entries into the file system.
It is also possible to use any PSR-16 compliant implementation, as long
as it is capable of caching the entries handled by the library.
```php
$cache = new \CuyZ\Valinor\Cache\FileSystemCache('path/to/cache-dir');
(new \CuyZ\Valinor\MapperBuilder())
->withCache($cache)
->mapper()
->map(SomeClass::class, [/* … */]);
```
The way messages can be customized has been totally revisited, requiring
several breaking changes. All existing error messages have been
rewritten to better fit the actual meaning of the error.
The content of a message can be changed to fit custom use cases; it can
contain placeholders that will be replaced with useful information.
The placeholders below are always available; even more may be used
depending on the original message.
- `{message_code}` — the code of the message
- `{node_name}` — name of the node to which the message is bound
- `{node_path}` — path of the node to which the message is bound
- `{node_type}` — type of the node to which the message is bound
- `{original_value}` — the source value that was given to the node
- `{original_message}` — the original message before being customized
```php
try {
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, [/* … */]);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$messages = new MessagesFlattener($error->node());
foreach ($messages as $message) {
if ($message->code() === 'some_code') {
$message = $message->withBody('new / {original_message}');
}
echo $message;
}
}
```
The messages are formatted using the ICU library, enabling the
placeholders to use advanced syntax to perform proper translations, for
instance currency support.
```php
try {
(new MapperBuilder())->mapper()->map('int<0, 100>', 1337);
} catch (\CuyZ\Valinor\Mapper\MappingError $error) {
$message = $error->node()->messages()[0];
if (is_numeric($message->value())) {
$message = $message->withBody(
'Invalid amount {original_value, number, currency}'
);
}
// Invalid amount: $1,337.00
echo $message->withLocale('en_US');
// Invalid amount: £1,337.00
echo $message->withLocale('en_GB');
// Invalid amount: 1 337,00 €
echo $message->withLocale('fr_FR');
}
```
If the `intl` extension is not installed, a shim will be available to
replace the placeholders, but it won't handle advanced syntax as
described above.
---
The new formatter `TranslationMessageFormatter` can be used to translate
the content of messages.
The library provides a list of all messages that can be returned; this
list can be filled or modified with custom translations.
```php
TranslationMessageFormatter::default()
// Create/override a single entry…
->withTranslation(
'fr',
'some custom message',
'un message personnalisé'
)
// …or several entries.
->withTranslations([
'some custom message' => [
'en' => 'Some custom message',
'fr' => 'Un message personnalisé',
'es' => 'Un mensaje personalizado',
],
'some other message' => [
// …
],
])
->format($message);
```
It is possible to join several formatters into one formatter by using
the `AggregateMessageFormatter`. This instance can then easily be
injected in a service that will handle messages.
The formatters will be called in the same order they are given to the
aggregate.
```php
(new AggregateMessageFormatter(
new LocaleMessageFormatter('fr'),
new MessageMapFormatter([
// …
],
TranslationMessageFormatter::default(),
))->format($message)
```
BREAKING CHANGE: The method `NodeMessage::format` has been removed,
message formatters should be used instead. If needed, the old behaviour
can be retrieved with the formatter `PlaceHolderMessageFormatter`,
although it is strongly advised to use the new placeholders feature.
BREAKING CHANGE: The signature of the method `MessageFormatter::format`
has changed.
Enhances most of the messages for the end users.
Two major changes can be noticed:
1. In most cases no class name will be written in the message; it
prevents users that potentially have no access to the codebase to
get a useless/unclear information.
2. The input values are now properly formatted; for instance a string
value will now be written directly instead of the type `string`;
arrays are also handled with the array shape format, for instance:
`array{foo: 'some string'}`.
The following annotations are now properly handled: `@psalm-param`,
`@phpstan-param`, `@psalm-return` and `@phpstan-return`.
If one of those found along with a basic `@param` or `@return`
annotation, it will override the basic value.
It is now mandatory to explicitly register custom constructors —
including named constructors — that can be used by the mapper. The
former automatic registration of named constructor feature doesn't
work anymore.
BREAKING CHANGE: existing code must list all named constructors that
were previously automatically used by the mapper, and registerer them
using the method `MapperBuilder::registerConstructor()`.
The method `MapperBuilder::bind()` has been deprecated, the method above
should be used instead.
```php
final class SomeClass
{
public static function namedConstructor(string $foo): self
{
// …
}
}
(new \CuyZ\Valinor\MapperBuilder())
->registerConstructor(
SomeClass::namedConstructor(...),
// …or for PHP < 8.1:
[SomeClass::class, 'namedConstructor'],
)
->mapper()
->map(SomeClass::class, [
// …
]);
```
This modifier can be used to change paths in the source data using a dot
notation.
The mapping is done using an associative array of path mappings. This
array must have the source path as key and the target path as value.
The source path uses the dot notation (eg `A.B.C`) and can contain one
`*` for array paths (eg `A.B.*.C`).
```php
final class Country
{
/** @var City[] */
public readonly array $cities;
}
final class City
{
public readonly string $name;
}
$source = new \CuyZ\Valinor\Mapper\Source\Modifier\PathMapping([
'towns' => [
['label' => 'Ankh Morpork'],
['label' => 'Minas Tirith'],
],
], [
'towns' => 'cities',
'towns.*.label' => 'name',
]);
// After modification this is what the source will look like:
[
'cities' => [
['name' => 'Ankh Morpork'],
['name' => 'Minas Tirith'],
],
];
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(Country::class, $source);
```
The method `MapperBuilder::infer()` can be used to infer an
implementation for a given interface.
The callback given to this method must return the name of a class that
implements the interface. Any arguments can be required by the callback;
they will be mapped properly using the given source.
```php
$mapper = (new \CuyZ\Valinor\MapperBuilder())
->infer(UuidInterface::class, fn () => MyUuid::class)
->infer(SomeInterface::class, fn (string $type) => match($type) {
'first' => FirstImplementation::class,
'second' => SecondImplementation::class,
default => throw new DomainException("Unhandled type `$type`.")
})->mapper();
// Will return an instance of `FirstImplementation`
$mapper->map(SomeInterface::class, [
'type' => 'first',
'uuid' => 'a6868d61-acba-406d-bcff-30ecd8c0ceb6',
'someString' => 'foo',
]);
// Will return an instance of `SecondImplementation`
$mapper->map(SomeInterface::class, [
'type' => 'second',
'uuid' => 'a6868d61-acba-406d-bcff-30ecd8c0ceb6',
'someInt' => 42,
]);
interface SomeInterface {}
final class FirstImplementation implements SomeInterface
{
public readonly UuidInterface $uuid;
public readonly string $someString;
}
final class SecondImplementation implements SomeInterface
{
public readonly UuidInterface $uuid;
public readonly int $someInt;
}
```
Using variadic parameters is now handled properly by the library,
meaning the following example will run:
```php
final class SomeClass
{
/** @var string[] */
private array $values;
public function __construct(string ...$values)
{
$this->values = $values;
}
}
(new \CuyZ\Valinor\MapperBuilder())
->mapper()
->map(SomeClass::class, ['foo', 'bar', 'baz']);
```
The method `MapperBuilder::bind()` can be used to define a custom way to
build an object during the mapping.
The return type of the callback will be resolved by the mapping to know
when to use it.
The callback can take any arguments, that will automatically be mapped
using the given source. These arguments can then be used to instantiate
the object in the desired way.
Example:
```php
(new \CuyZ\Valinor\MapperBuilder())
->bind(function(string $string, OtherClass $otherClass): SomeClass {
$someClass = new SomeClass($string);
$someClass->addOtherClass($otherClass);
return $someClass;
})
->mapper()
->map(SomeClass::class, [
// …
]);
```
Inferring object unions and named constructor are now done using the
same algorithm — in class `ObjectBuilderFilterer` — which is called from
a unique entry point in `ClassNodeBuilder`.
An object may have several ways of being created — in such cases it is
common to use so-called named constructors, also known as static factory
methods. If one or more are found, they can be called during the mapping
to create an instance of the object.
What defines a named constructor is a method that:
1. is public
2. is static
3. returns an instance of the object
4. has one or more arguments
```php
final class Color
{
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
private function __construct(
public readonly int $red,
public readonly int $green,
public readonly int $blue
) {}
/**
* @param int<0, 255> $red
* @param int<0, 255> $green
* @param int<0, 255> $blue
*/
public static function fromRgb(
int $red,
int $green,
int $blue,
): self {
return new self($red, $green, $blue);
}
/**
* @param non-empty-string $hex
*/
public static function fromHex(string $hex): self
{
if (strlen($hex) !== 6) {
throw new DomainException('Must be 6 characters long');
}
/** @var int<0, 255> $red */
$red = hexdec(substr($hex, 0, 2));
/** @var int<0, 255> $green */
$green = hexdec(substr($hex, 2, 2));
/** @var int<0, 255> $blue */
$blue = hexdec(substr($hex, 4, 2));
return new self($red, $green, $blue);
}
}
```
This abstraction layer was not useful, so it is removed to simplify the
API around `ClassDefinition`.
A new method `ClassDefinition::type()` is also added, giving access to
the `ClassType` instance when working with a class definition.
Will recursively flatten messages of a node and all its children.
This helper can for instance be used when errors occurred during a
mapping to flatten all caught errors into a basic array of string that
can then easily be used to inform the user of what is wrong.
```
try {
// …
} catch(MappingError $error) {
$messages = (new MessagesFlattener($error->node()))->errors();
foreach ($messages as $message) {
echo $message;
}
}
```
Can be used to customize the content of messages added during a mapping.
An implementation is provided by the library — `MessageMapFormatter`:
The constructor parameter is an array where each key represents either:
- The code of the message to be replaced
- The content of the message to be replaced
- The class name of the message to be replaced
If none of those is found, the content of the message will stay
unchanged unless a default one is given to this class.
If one of these keys is found, the array entry will be used to replace
the content of the message. This entry can be either a plain text or a
callable that takes the message as a parameter and returns a string; it
is for instance advised to use a callable in cases where a translation
service is used — to avoid useless greedy operations.
In any case, the content can contain placeholders that can be used the
same way as `\CuyZ\Valinor\Mapper\Tree\Message\NodeMessage::format()`.
See usage examples below:
```
$formatter = (new MessageMapFormatter([
// Will match if the given message has this exact code
'some_code' => 'new content / previous code was: %1$s',
// Will match if the given message has this exact content
'Some message content' => 'new content / previous message: %2$s',
// Will match if the given message is an instance of this class
SomeError::class => '
- Original code of the message: %1$s
- Original content of the message: %2$s
- Node type: %3$s
- Node name: %4$s
- Node path: %5$s
',
// A callback can be used to get access to the message instance
OtherError::class => function (NodeMessage $message): string {
if ((string)$message->type() === 'string|int') {
// …
}
return 'Some message content';
},
// For greedy operation, it is advised to use a lazy-callback
'bar' => fn () => $this->translator->translate('foo.bar'),
]))
->defaultsTo('some default message')
// …or…
->defaultsTo(fn () => $this->translator->translate('default'));
$content = $formatter->format($message);
```