ir/ir_gdb.c

638 lines
16 KiB
C
Raw Permalink Normal View History

2022-04-05 23:19:23 +02:00
/*
2022-11-08 09:32:46 +01:00
* IR - Lightweight JIT Compilation Framework
* (GDB interface)
* Copyright (C) 2022 Zend by Perforce.
* Authors: Dmitry Stogov <dmitry@php.net>
*
* Based on Mike Pall's implementation of GDB interface for LuaJIT.
2022-04-05 23:19:23 +02:00
*/
#include <stddef.h>
2022-04-05 23:19:23 +02:00
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include "ir.h"
2022-05-27 12:18:04 +02:00
#include "ir_private.h"
2022-04-05 23:19:23 +02:00
#include "ir_elf.h"
/* DWARF definitions. */
#define DW_CIE_VERSION 1
/* CFA (Canonical frame address) */
enum {
DW_CFA_nop = 0x0,
DW_CFA_offset_extended = 0x5,
DW_CFA_def_cfa = 0xc,
DW_CFA_def_cfa_offset = 0xe,
DW_CFA_offset_extended_sf = 0x11,
DW_CFA_advance_loc = 0x40,
DW_CFA_offset = 0x80
};
enum {
DW_EH_PE_udata4 = 0x03,
DW_EH_PE_textrel = 0x20
};
enum {
DW_TAG_compile_unit = 0x11
};
enum {
DW_children_no = 0,
DW_children_yes = 1
};
enum {
DW_AT_name = 0x03,
DW_AT_stmt_list = 0x10,
DW_AT_low_pc = 0x11,
DW_AT_high_pc = 0x12
};
enum {
DW_FORM_addr = 0x01,
DW_FORM_data4 = 0x06,
DW_FORM_string = 0x08
};
enum {
DW_LNS_extended_op = 0,
DW_LNS_copy = 1,
DW_LNS_advance_pc = 2,
DW_LNS_advance_line = 3
};
enum {
DW_LNE_end_sequence = 1,
DW_LNE_set_address = 2
};
enum {
#if defined(IR_TARGET_X86)
2022-04-05 23:19:23 +02:00
DW_REG_AX, DW_REG_CX, DW_REG_DX, DW_REG_BX,
DW_REG_SP, DW_REG_BP, DW_REG_SI, DW_REG_DI,
DW_REG_RA,
#elif defined(IR_TARGET_X64)
2022-04-05 23:19:23 +02:00
/* Yes, the order is strange, but correct. */
DW_REG_AX, DW_REG_DX, DW_REG_CX, DW_REG_BX,
DW_REG_SI, DW_REG_DI, DW_REG_BP, DW_REG_SP,
DW_REG_8, DW_REG_9, DW_REG_10, DW_REG_11,
DW_REG_12, DW_REG_13, DW_REG_14, DW_REG_15,
DW_REG_RA,
#elif defined(IR_TARGET_AARCH64)
2022-04-05 23:19:23 +02:00
DW_REG_SP = 31,
DW_REG_RA = 30,
DW_REG_X29 = 29,
#else
#error "Unsupported target architecture"
#endif
};
enum {
GDBJIT_SECT_NULL,
GDBJIT_SECT_text,
GDBJIT_SECT_eh_frame,
GDBJIT_SECT_shstrtab,
GDBJIT_SECT_strtab,
GDBJIT_SECT_symtab,
GDBJIT_SECT_debug_info,
GDBJIT_SECT_debug_abbrev,
GDBJIT_SECT_debug_line,
GDBJIT_SECT__MAX
};
enum {
GDBJIT_SYM_UNDEF,
GDBJIT_SYM_FILE,
GDBJIT_SYM_FUNC,
GDBJIT_SYM__MAX
};
typedef struct _ir_gdbjit_obj {
ir_elf_header hdr;
ir_elf_sectheader sect[GDBJIT_SECT__MAX];
ir_elf_symbol sym[GDBJIT_SYM__MAX];
uint8_t space[4096];
} ir_gdbjit_obj;
static const ir_elf_header ir_elfhdr_template = {
.emagic = { 0x7f, 'E', 'L', 'F' },
#ifdef ELF64
.eclass = 2,
#else
.eclass = 1,
#endif
#ifdef WORDS_BIGENDIAN
.eendian = 2,
#else
.eendian = 1,
#endif
.eversion = 1,
#if defined(Linux)
.eosabi = 0, /* TODO: Nope, it's not 3. ??? */
#elif defined(__FreeBSD__)
.eosabi = 9,
#elif defined(__OpenBSD__)
.eosabi = 12,
#elif defined(__NetBSD__)
.eosabi = 2,
#elif defined(__DragonFly__)
.eosabi = 0,
#elif (defined(__sun__) && defined(__svr4__))
.eosabi = 6,
#else
.eosabi = 0,
#endif
.eabiversion = 0,
.epad = { 0, 0, 0, 0, 0, 0, 0 },
.type = 1,
#if defined(IR_TARGET_X86)
2022-04-05 23:19:23 +02:00
.machine = 3,
#elif defined(IR_TARGET_X64)
2022-04-05 23:19:23 +02:00
.machine = 62,
#elif defined(IR_TARGET_AARCH64)
2022-04-05 23:19:23 +02:00
.machine = 183,
2023-06-01 22:03:15 +02:00
#elif defined(IR_TARGET_RISCV64)
.machine = 243,
2022-04-05 23:19:23 +02:00
#else
# error "Unsupported target architecture"
#endif
.version = 1,
.entry = 0,
.phofs = 0,
.shofs = offsetof(ir_gdbjit_obj, sect),
.flags = 0,
.ehsize = sizeof(ir_elf_header),
.phentsize = 0,
.phnum = 0,
.shentsize = sizeof(ir_elf_sectheader),
.shnum = GDBJIT_SECT__MAX,
.shstridx = GDBJIT_SECT_shstrtab
};
/* Context for generating the ELF object for the GDB JIT API. */
typedef struct _ir_gdbjit_ctx {
uint8_t *p; /* Pointer to next address in obj.space. */
uint8_t *startp; /* Pointer to start address in obj.space. */
uintptr_t mcaddr; /* Machine code address. */
uint32_t szmcode; /* Size of machine code. */
int32_t lineno; /* Starting line number. */
const char *name; /* JIT function name */
const char *filename; /* Starting file name. */
size_t objsize; /* Final size of ELF object. */
ir_gdbjit_obj obj; /* In-memory ELF object. */
} ir_gdbjit_ctx;
/* Add a zero-terminated string */
static uint32_t ir_gdbjit_strz(ir_gdbjit_ctx *ctx, const char *str)
{
uint8_t *p = ctx->p;
uint32_t ofs = (uint32_t)(p - ctx->startp);
do {
*p++ = (uint8_t)*str;
} while (*str++);
ctx->p = p;
return ofs;
}
/* Add a ULEB128 value */
static void ir_gdbjit_uleb128(ir_gdbjit_ctx *ctx, uint32_t v)
{
uint8_t *p = ctx->p;
for (; v >= 0x80; v >>= 7)
*p++ = (uint8_t)((v & 0x7f) | 0x80);
*p++ = (uint8_t)v;
ctx->p = p;
}
/* Add a SLEB128 value */
static void ir_gdbjit_sleb128(ir_gdbjit_ctx *ctx, int32_t v)
{
uint8_t *p = ctx->p;
for (; (uint32_t)(v+0x40) >= 0x80; v >>= 7)
*p++ = (uint8_t)((v & 0x7f) | 0x80);
*p++ = (uint8_t)(v & 0x7f);
ctx->p = p;
}
static void ir_gdbjit_secthdr(ir_gdbjit_ctx *ctx)
{
ir_elf_sectheader *sect;
*ctx->p++ = '\0';
#define SECTDEF(id, tp, al) \
sect = &ctx->obj.sect[GDBJIT_SECT_##id]; \
sect->name = ir_gdbjit_strz(ctx, "." #id); \
sect->type = ELFSECT_TYPE_##tp; \
sect->align = (al)
SECTDEF(text, NOBITS, 16);
sect->flags = ELFSECT_FLAGS_ALLOC|ELFSECT_FLAGS_EXEC;
sect->addr = ctx->mcaddr;
sect->ofs = 0;
sect->size = ctx->szmcode;
SECTDEF(eh_frame, PROGBITS, sizeof(uintptr_t));
sect->flags = ELFSECT_FLAGS_ALLOC;
SECTDEF(shstrtab, STRTAB, 1);
SECTDEF(strtab, STRTAB, 1);
SECTDEF(symtab, SYMTAB, sizeof(uintptr_t));
sect->ofs = offsetof(ir_gdbjit_obj, sym);
sect->size = sizeof(ctx->obj.sym);
sect->link = GDBJIT_SECT_strtab;
sect->entsize = sizeof(ir_elf_symbol);
sect->info = GDBJIT_SYM_FUNC;
SECTDEF(debug_info, PROGBITS, 1);
SECTDEF(debug_abbrev, PROGBITS, 1);
SECTDEF(debug_line, PROGBITS, 1);
#undef SECTDEF
}
static void ir_gdbjit_symtab(ir_gdbjit_ctx *ctx)
{
ir_elf_symbol *sym;
*ctx->p++ = '\0';
sym = &ctx->obj.sym[GDBJIT_SYM_FILE];
sym->name = ir_gdbjit_strz(ctx, "JIT code");
sym->sectidx = ELFSECT_IDX_ABS;
sym->info = ELFSYM_INFO(ELFSYM_BIND_LOCAL, ELFSYM_TYPE_FILE);
sym = &ctx->obj.sym[GDBJIT_SYM_FUNC];
sym->name = ir_gdbjit_strz(ctx, ctx->name);
sym->sectidx = GDBJIT_SECT_text;
sym->value = 0;
sym->size = ctx->szmcode;
sym->info = ELFSYM_INFO(ELFSYM_BIND_GLOBAL, ELFSYM_TYPE_FUNC);
}
typedef IR_SET_ALIGNED(1, uint16_t unaligned_uint16_t);
typedef IR_SET_ALIGNED(1, uint32_t unaligned_uint32_t);
typedef IR_SET_ALIGNED(1, uintptr_t unaligned_uintptr_t);
#define SECTALIGN(p, a) \
((p) = (uint8_t *)(((uintptr_t)(p) + ((a)-1)) & ~(uintptr_t)((a)-1)))
/* Shortcuts to generate DWARF structures. */
#define DB(x) (*p++ = (x))
#define DI8(x) (*(int8_t *)p = (x), p++)
#define DU16(x) (*(unaligned_uint16_t *)p = (x), p += 2)
#define DU32(x) (*(unaligned_uint32_t *)p = (x), p += 4)
#define DADDR(x) (*(unaligned_uintptr_t *)p = (x), p += sizeof(uintptr_t))
#define DUV(x) (ctx->p = p, ir_gdbjit_uleb128(ctx, (x)), p = ctx->p)
#define DSV(x) (ctx->p = p, ir_gdbjit_sleb128(ctx, (x)), p = ctx->p)
#define DSTR(str) (ctx->p = p, ir_gdbjit_strz(ctx, (str)), p = ctx->p)
#define DALIGNNOP(s) while ((uintptr_t)p & ((s)-1)) *p++ = DW_CFA_nop
#define DSECT(name, stmt) \
{ unaligned_uint32_t *szp_##name = (uint32_t *)p; p += 4; stmt \
*szp_##name = (uint32_t)((p-(uint8_t *)szp_##name)-4); }
static void ir_gdbjit_ehframe(ir_gdbjit_ctx *ctx, uint32_t sp_offset, uint32_t sp_adjustment)
{
uint8_t *p = ctx->p;
uint8_t *framep = p;
/* DWARF EH CIE (Common Information Entry) */
DSECT(CIE,
DU32(0); /* CIE ID. */
DB(DW_CIE_VERSION); /* Version */
DSTR("zR"); /* Augmentation String. */
DUV(1); /* Code alignment factor. */
DSV(-(int32_t)sizeof(uintptr_t)); /* Data alignment factor. */
DB(DW_REG_RA); /* Return address register. */
DB(1); DB(DW_EH_PE_textrel|DW_EH_PE_udata4); /* Augmentation data. */
#if defined(IR_TARGET_X86) || defined(IR_TARGET_X64)
2022-04-05 23:19:23 +02:00
DB(DW_CFA_def_cfa); DUV(DW_REG_SP); DUV(sizeof(uintptr_t));
DB(DW_CFA_offset|DW_REG_RA); DUV(1);
#elif defined(IR_TARGET_AARCH64)
2022-04-05 23:19:23 +02:00
DB(DW_CFA_def_cfa); DUV(DW_REG_SP); DUV(0);
#endif
DALIGNNOP(sizeof(uintptr_t));
)
/* DWARF EH FDE (Frame Description Entry). */
DSECT(FDE,
DU32((uint32_t)(p-framep)); /* Offset to CIE Pointer. */
DU32(0); /* Machine code offset relative to .text. */
DU32(ctx->szmcode); /* Machine code length. */
DB(0); /* Augmentation data. */
DB(DW_CFA_def_cfa_offset); DUV(sp_offset);
#if defined(IR_TARGET_AARCH64)
2022-04-05 23:19:23 +02:00
if (sp_offset) {
if (sp_adjustment && sp_adjustment < sp_offset) {
DB(DW_CFA_offset|DW_REG_X29); DUV(sp_adjustment / sizeof(uintptr_t));
DB(DW_CFA_offset|DW_REG_RA); DUV((sp_adjustment / sizeof(uintptr_t)) - 1);
} else {
DB(DW_CFA_offset|DW_REG_X29); DUV(sp_offset / sizeof(uintptr_t));
DB(DW_CFA_offset|DW_REG_RA); DUV((sp_offset / sizeof(uintptr_t)) - 1);
}
}
#endif
if (sp_adjustment && sp_adjustment > sp_offset) {
DB(DW_CFA_advance_loc|1); DB(DW_CFA_def_cfa_offset); DUV(sp_adjustment);
#if defined(IR_TARGET_AARCH64)
2022-04-05 23:19:23 +02:00
if (!sp_offset) {
DB(DW_CFA_offset|DW_REG_X29); DUV(sp_adjustment / sizeof(uintptr_t));
DB(DW_CFA_offset|DW_REG_RA); DUV((sp_adjustment / sizeof(uintptr_t)) - 1);
}
#endif
}
DALIGNNOP(sizeof(uintptr_t));
)
ctx->p = p;
}
static void ir_gdbjit_debuginfo(ir_gdbjit_ctx *ctx)
{
uint8_t *p = ctx->p;
DSECT(info,
DU16(2); /* DWARF version. */
DU32(0); /* Abbrev offset. */
DB(sizeof(uintptr_t)); /* Pointer size. */
DUV(1); /* Abbrev #1: DW_TAG_compile_unit. */
DSTR(ctx->filename); /* DW_AT_name. */
DADDR(ctx->mcaddr); /* DW_AT_low_pc. */
DADDR(ctx->mcaddr + ctx->szmcode); /* DW_AT_high_pc. */
DU32(0); /* DW_AT_stmt_list. */
);
ctx->p = p;
}
static void ir_gdbjit_debugabbrev(ir_gdbjit_ctx *ctx)
{
uint8_t *p = ctx->p;
/* Abbrev #1: DW_TAG_compile_unit. */
DUV(1);
DUV(DW_TAG_compile_unit);
DB(DW_children_no);
DUV(DW_AT_name);
DUV(DW_FORM_string);
DUV(DW_AT_low_pc);
DUV(DW_FORM_addr);
DUV(DW_AT_high_pc);
DUV(DW_FORM_addr);
DUV(DW_AT_stmt_list);
DUV(DW_FORM_data4);
DB(0);
DB(0);
ctx->p = p;
}
#define DLNE(op, s) (DB(DW_LNS_extended_op), DUV(1+(s)), DB((op)))
static void ir_gdbjit_debugline(ir_gdbjit_ctx *ctx)
{
uint8_t *p = ctx->p;
DSECT(line,
DU16(2); /* DWARF version. */
DSECT(header,
DB(1); /* Minimum instruction length. */
DB(1); /* is_stmt. */
DI8(0); /* Line base for special opcodes. */
DB(2); /* Line range for special opcodes. */
DB(3+1); /* Opcode base at DW_LNS_advance_line+1. */
DB(0); DB(1); DB(1); /* Standard opcode lengths. */
/* Directory table. */
DB(0);
/* File name table. */
DSTR(ctx->filename); DUV(0); DUV(0); DUV(0);
DB(0);
);
DLNE(DW_LNE_set_address, sizeof(uintptr_t));
DADDR(ctx->mcaddr);
if (ctx->lineno) (DB(DW_LNS_advance_line), DSV(ctx->lineno-1));
DB(DW_LNS_copy);
DB(DW_LNS_advance_pc); DUV(ctx->szmcode);
DLNE(DW_LNE_end_sequence, 0);
);
ctx->p = p;
}
#undef DLNE
/* Undef shortcuts. */
#undef DB
#undef DI8
#undef DU16
#undef DU32
#undef DADDR
#undef DUV
#undef DSV
#undef DSTR
#undef DALIGNNOP
#undef DSECT
typedef void (*ir_gdbjit_initf) (ir_gdbjit_ctx *ctx);
static void ir_gdbjit_initsect(ir_gdbjit_ctx *ctx, int sect)
{
ctx->startp = ctx->p;
ctx->obj.sect[sect].ofs = (uintptr_t)((char *)ctx->p - (char *)&ctx->obj);
}
static void ir_gdbjit_initsect_done(ir_gdbjit_ctx *ctx, int sect)
{
ctx->obj.sect[sect].size = (uintptr_t)(ctx->p - ctx->startp);
}
static void ir_gdbjit_buildobj(ir_gdbjit_ctx *ctx, uint32_t sp_offset, uint32_t sp_adjustment)
{
ir_gdbjit_obj *obj = &ctx->obj;
/* Fill in ELF header and clear structures. */
memcpy(&obj->hdr, &ir_elfhdr_template, sizeof(ir_elf_header));
memset(&obj->sect, 0, sizeof(ir_elf_sectheader) * GDBJIT_SECT__MAX);
memset(&obj->sym, 0, sizeof(ir_elf_symbol) * GDBJIT_SYM__MAX);
/* Initialize sections. */
ctx->p = obj->space;
ir_gdbjit_initsect(ctx, GDBJIT_SECT_shstrtab); ir_gdbjit_secthdr(ctx); ir_gdbjit_initsect_done(ctx, GDBJIT_SECT_shstrtab);
ir_gdbjit_initsect(ctx, GDBJIT_SECT_strtab); ir_gdbjit_symtab(ctx); ir_gdbjit_initsect_done(ctx, GDBJIT_SECT_strtab);
ir_gdbjit_initsect(ctx, GDBJIT_SECT_debug_info); ir_gdbjit_debuginfo(ctx); ir_gdbjit_initsect_done(ctx, GDBJIT_SECT_debug_info);
ir_gdbjit_initsect(ctx, GDBJIT_SECT_debug_abbrev); ir_gdbjit_debugabbrev(ctx); ir_gdbjit_initsect_done(ctx, GDBJIT_SECT_debug_abbrev);
ir_gdbjit_initsect(ctx, GDBJIT_SECT_debug_line); ir_gdbjit_debugline(ctx); ir_gdbjit_initsect_done(ctx, GDBJIT_SECT_debug_line);
SECTALIGN(ctx->p, sizeof(uintptr_t));
ir_gdbjit_initsect(ctx, GDBJIT_SECT_eh_frame); ir_gdbjit_ehframe(ctx, sp_offset, sp_adjustment); ir_gdbjit_initsect_done(ctx, GDBJIT_SECT_eh_frame);
ctx->objsize = (size_t)((char *)ctx->p - (char *)obj);
IR_ASSERT(ctx->objsize < sizeof(ir_gdbjit_obj));
}
enum {
IR_GDBJIT_NOACTION,
IR_GDBJIT_REGISTER,
IR_GDBJIT_UNREGISTER
};
typedef struct _ir_gdbjit_code_entry {
struct _ir_gdbjit_code_entry *next_entry;
struct _ir_gdbjit_code_entry *prev_entry;
const char *symfile_addr;
uint64_t symfile_size;
} ir_gdbjit_code_entry;
typedef struct _ir_gdbjit_descriptor {
uint32_t version;
uint32_t action_flag;
struct _ir_gdbjit_code_entry *relevant_entry;
struct _ir_gdbjit_code_entry *first_entry;
} ir_gdbjit_descriptor;
ir_gdbjit_descriptor __jit_debug_descriptor = {
1, IR_GDBJIT_NOACTION, NULL, NULL
};
#ifdef IR_EXTERNAL_GDB_ENTRY
void __jit_debug_register_code(void);
2022-09-29 00:25:42 +02:00
#else
2022-04-05 23:19:23 +02:00
IR_NEVER_INLINE void __jit_debug_register_code(void)
{
__asm__ __volatile__("");
}
2022-09-29 00:25:42 +02:00
#endif
2022-04-05 23:19:23 +02:00
static bool ir_gdb_register_code(const void *object, size_t size)
{
ir_gdbjit_code_entry *entry;
entry = malloc(sizeof(ir_gdbjit_code_entry) + size);
if (entry == NULL) {
return 0;
}
entry->symfile_addr = ((char*)entry) + sizeof(ir_gdbjit_code_entry);
entry->symfile_size = size;
memcpy((char *)entry->symfile_addr, object, size);
entry->prev_entry = NULL;
entry->next_entry = __jit_debug_descriptor.first_entry;
if (entry->next_entry) {
entry->next_entry->prev_entry = entry;
}
__jit_debug_descriptor.first_entry = entry;
/* Notify GDB */
__jit_debug_descriptor.relevant_entry = entry;
__jit_debug_descriptor.action_flag = IR_GDBJIT_REGISTER;
__jit_debug_register_code();
return 1;
}
void ir_gdb_unregister_all(void)
{
ir_gdbjit_code_entry *entry;
__jit_debug_descriptor.action_flag = IR_GDBJIT_UNREGISTER;
while ((entry = __jit_debug_descriptor.first_entry)) {
__jit_debug_descriptor.first_entry = entry->next_entry;
if (entry->next_entry) {
entry->next_entry->prev_entry = NULL;
}
/* Notify GDB */
__jit_debug_descriptor.relevant_entry = entry;
__jit_debug_register_code();
free(entry);
}
}
bool ir_gdb_present(void)
{
bool ret = 0;
#if defined(__linux__) /* netbsd while having this procfs part, does not hold the tracer pid */
int fd = open("/proc/self/status", O_RDONLY);
if (fd > 0) {
char buf[1024];
ssize_t n = read(fd, buf, sizeof(buf) - 1);
char *s;
pid_t pid;
if (n > 0) {
buf[n] = 0;
s = strstr(buf, "TracerPid:");
if (s) {
s += sizeof("TracerPid:") - 1;
while (*s == ' ' || *s == '\t') {
s++;
}
pid = atoi(s);
if (pid) {
char out[1024];
sprintf(buf, "/proc/%d/exe", (int)pid);
if (readlink(buf, out, sizeof(out) - 1) > 0) {
if (strstr(out, "gdb")) {
ret = 1;
}
}
}
}
}
close(fd);
}
#elif defined(__FreeBSD__)
struct kinfo_proc *proc = kinfo_getproc(getpid());
if (proc) {
if ((proc->ki_flag & P_TRACED) != 0) {
struct kinfo_proc *dbg = kinfo_getproc(proc->ki_tracer);
ret = (dbg && strstr(dbg->ki_comm, "gdb"));
}
}
#endif
return ret;
}
int ir_gdb_register(const char *name,
const void *start,
size_t size,
uint32_t sp_offset,
uint32_t sp_adjustment)
{
ir_gdbjit_ctx ctx;
ctx.mcaddr = (uintptr_t)start;
ctx.szmcode = (uint32_t)size;
ctx.name = name;
ctx.filename = "unknown";
ctx.lineno = 0;
ir_gdbjit_buildobj(&ctx, sp_offset, sp_adjustment);
return ir_gdb_register_code(&ctx.obj, ctx.objsize);
}
void ir_gdb_init(void)
{
/* This might enable registration of all JIT-ed code, but unfortunately,
* in case of many functions, this takes enormous time. */
if (ir_gdb_present()) {
#if 0
_debug |= IR_DEBUG_GDB;
#endif
}
}