#include "ir.h" #include "ir_private.h" /* GCM - Global Code Motion * * C. Click. "Global code motion, global value numbering" Submitted to PLDI ‘95. */ static void ir_gcm_schedule_early(ir_ctx *ctx, uint32_t *_blocks, ir_ref ref) { ir_ref j, n, *p; ir_insn *insn; uint32_t flags; if (_blocks[ref] > 0) { return; } _blocks[ref] = 1; insn = &ctx->ir_base[ref]; flags = ir_op_flags[insn->op]; if (IR_OPND_KIND(flags, 1) == IR_OPND_CONTROL_DEP) { IR_ASSERT(_blocks[insn->op1] > 0); _blocks[ref] = _blocks[insn->op1]; } n = ir_input_edges_count(ctx, insn); for (j = 1, p = insn->ops + 1; j <= n; j++, p++) { ir_ref input = *p; if (input > 0) { if (_blocks[input] == 0) { ir_gcm_schedule_early(ctx, _blocks, input); } if (IR_OPND_KIND(flags, 1) != IR_OPND_CONTROL_DEP && ctx->cfg_blocks[_blocks[ref]].dom_depth < ctx->cfg_blocks[_blocks[input]].dom_depth) { _blocks[ref] = _blocks[input]; } } } } /* Last Common Ancestor */ static uint32_t ir_gcm_find_lca(ir_ctx *ctx, uint32_t b1, uint32_t b2) { while (ctx->cfg_blocks[b1].dom_depth > ctx->cfg_blocks[b2].dom_depth) { b1 = ctx->cfg_blocks[b1].dom_parent; } while (ctx->cfg_blocks[b2].dom_depth > ctx->cfg_blocks[b1].dom_depth) { b2 = ctx->cfg_blocks[b2].dom_parent; } while (b1 != b2) { b1 = ctx->cfg_blocks[b1].dom_parent; b2 = ctx->cfg_blocks[b2].dom_parent; } return b2; } static void ir_gcm_schedule_late(ir_ctx *ctx, uint32_t *_blocks, ir_bitset visited, ir_ref ref) { ir_ref i, n, *p, use; ir_insn *insn; uint32_t flags; ir_bitset_incl(visited, ref); n = ctx->use_lists[ref].count; if (n) { uint32_t lca, b; for (i = 0, p = &ctx->use_edges[ctx->use_lists[ref].refs]; i < n; i++, p++) { use = *p; if (!ir_bitset_in(visited, use) && _blocks[use]) { ir_gcm_schedule_late(ctx, _blocks, visited, use); } } insn = &ctx->ir_base[ref]; flags = ir_op_flags[insn->op]; if (IR_OPND_KIND(flags, 1) == IR_OPND_CONTROL_DEP) { return; } lca = 0; for (i = 0, p -= n; i < n; i++, p++) { use = *p; b = _blocks[use]; if (!b) { continue; } insn = &ctx->ir_base[use]; if (insn->op == IR_PHI) { if (insn->op2 == ref) { b = _blocks[ctx->ir_base[insn->op1].op1]; } else if (insn->op3 == ref) { b = _blocks[ctx->ir_base[insn->op1].op2]; } else { IR_ASSERT(0); } } lca = !lca ? b : ir_gcm_find_lca(ctx, lca, b); } b = lca; while (ctx->cfg_blocks[b].loop_depth && lca != ctx->cfg_blocks[_blocks[ref]].dom_parent) { if (ctx->cfg_blocks[lca].loop_depth < ctx->cfg_blocks[b].loop_depth) { b = lca; } lca = ctx->cfg_blocks[lca].dom_parent; } _blocks[ref] = b; } } int ir_gcm(ir_ctx *ctx) { ir_ref i, j, k, n, *p, ref; ir_bitset visited; ir_block *bb; ir_list queue; uint32_t *_blocks; ir_insn *insn; uint32_t flags; _blocks = ir_mem_calloc(ctx->insns_count, sizeof(uint32_t)); ir_list_init(&queue, ctx->insns_count); /* pin control instructions and collect their direct inputs */ for (i = 1, bb = ctx->cfg_blocks + 1; i <= ctx->cfg_blocks_count; i++, bb++) { if (bb->flags & IR_BB_UNREACHABLE) { continue; } j = bb->end; while (1) { insn = &ctx->ir_base[j]; _blocks[j] = i; /* pin to block */ flags = ir_op_flags[insn->op]; n = ir_input_edges_count(ctx, insn); for (k = 1, p = insn->ops + 1; k <= n; k++, p++) { ref = *p; if (ref > 0) { if (IR_OPND_KIND(flags, k) == IR_OPND_DATA || IR_OPND_KIND(flags, k) == IR_OPND_VAR) { ir_list_push(&queue, ref); } } } if (j == bb->start) { break; } j = insn->op1; /* control predecessor */ } } n = ir_list_len(&queue); for (i = 0; i < n; i++) { ref = ir_list_at(&queue, i); if (_blocks[ref] == 0) { ir_gcm_schedule_early(ctx, _blocks, ref); } } #ifdef IR_DEBUG if (ctx->flags & IR_DEBUG_GCM) { fprintf(stderr, "GCM Schedule Early\n"); for (i = 1; i < ctx->insns_count; i++) { fprintf(stderr, "%d -> %d\n", i, _blocks[i]); } } #endif /* collect uses of control instructions */ visited = ir_bitset_malloc(ctx->insns_count); ir_list_clear(&queue); for (i = 1, bb = ctx->cfg_blocks + 1; i <= ctx->cfg_blocks_count; i++, bb++) { if (bb->flags & IR_BB_UNREACHABLE) { continue; } j = bb->end; while (1) { ir_bitset_incl(visited, j); insn = &ctx->ir_base[j]; n = ctx->use_lists[j].count; if (n > 0) { for (k = 0, p = &ctx->use_edges[ctx->use_lists[j].refs]; k < n; k++, p++) { ref = *p; if (ctx->ir_base[ref].op == IR_PARAM || ctx->ir_base[ref].op == IR_VAR) { _blocks[ref] = _blocks[j]; } else if (ir_op_flags[ctx->ir_base[ref].op] & IR_OP_FLAG_DATA) { ir_list_push(&queue, ref); } } } if (j == bb->start) { break; } j = insn->op1; /* control predecessor */ } } n = ir_list_len(&queue); for (i = 0; i < n; i++) { ref = ir_list_at(&queue, i); if (!ir_bitset_in(visited, ref)) { ir_gcm_schedule_late(ctx, _blocks, visited, ref); } } ir_mem_free(visited); ir_list_free(&queue); #ifdef IR_DEBUG if (ctx->flags & IR_DEBUG_GCM) { fprintf(stderr, "GCM Schedule Late\n"); for (i = 1; i < ctx->insns_count; i++) { fprintf(stderr, "%d -> %d\n", i, _blocks[i]); } } #endif ctx->cfg_map = _blocks; return 1; } static int ir_copy(ir_ctx *new_ctx, ir_ctx *ctx, ir_ref *_next, bool preserve_constants_order) { ir_ref i, j, k, n, *p, ref, new_ref; ir_ref *_xlat; ir_insn *insn; uint32_t flags; if (preserve_constants_order) { ir_bitset used = ir_bitset_malloc(ctx->consts_count + 1); _xlat = ir_mem_calloc(ctx->consts_count + ctx->insns_count, sizeof(ir_ref)); _xlat += ctx->consts_count; for (j = 1, i = 1; i != 0; i = _next[i]) { _xlat[i] = j; insn = &ctx->ir_base[i]; flags = ir_op_flags[insn->op]; n = ir_operands_count(ctx, insn); for (k = 1, p = insn->ops + 1; k <= n; k++, p++) { ref = *p; if (IR_OPND_KIND(flags, k) == IR_OPND_DATA && IR_IS_CONST_REF(ref)) { ir_bitset_incl(used, -ref); } } n = 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI j += n; } IR_BITSET_FOREACH(used, ir_bitset_len(ctx->consts_count + 1), ref) { if (ctx->ir_base[-ref].op == IR_FUNC) { _xlat[-ref] = ir_const_func(new_ctx, ir_str(new_ctx, ir_get_str(ctx, ctx->ir_base[-ref].val.addr)), ctx->ir_base[-ref].const_flags); } else if (ctx->ir_base[-ref].op == IR_FUNC_ADDR) { _xlat[-ref] = ir_const_func_addr(new_ctx, ctx->ir_base[-ref].val.addr, ctx->ir_base[-ref].const_flags); } else if (ctx->ir_base[-ref].op == IR_STR) { _xlat[-ref] = ir_const_str(new_ctx, ir_str(new_ctx, ir_get_str(ctx, ctx->ir_base[-ref].val.addr))); } else { _xlat[-ref] = ir_const(new_ctx, ctx->ir_base[-ref].val, ctx->ir_base[-ref].type); } } IR_BITSET_FOREACH_END(); ir_mem_free(used); } else { _xlat = ir_mem_calloc(ctx->insns_count, sizeof(ir_ref)); for (j = 1, i = 1; i != 0; i = _next[i]) { _xlat[i] = j; insn = &ctx->ir_base[i]; n = ir_operands_count(ctx, insn); n = 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI j += n; } } for (i = 1; i != 0; i = _next[i]) { insn = &ctx->ir_base[i]; flags = ir_op_flags[insn->op]; n = ir_operands_count(ctx, insn); if ((insn->op == IR_MERGE || insn->op == IR_LOOP_BEGIN || insn->op == IR_CALL || insn->op == IR_TAILCALL) && n != 2) { new_ref = ir_emit_N(new_ctx, insn->opt, n); } else if (n <= 3) { new_ref = ir_emit0(new_ctx, insn->opt); } else { new_ref = ir_emit_N(new_ctx, insn->opt, n); } for (k = 1, p = insn->ops + 1; k <= n; k++, p++) { ref = *p; switch (IR_OPND_KIND(flags, k)) { case IR_OPND_DATA: case IR_OPND_VAR: if (IR_IS_CONST_REF(ref) && !preserve_constants_order) { if (ctx->ir_base[-ref].op == IR_FUNC) { ref = ir_const_func(new_ctx, ir_str(new_ctx, ir_get_str(ctx, ctx->ir_base[ref].val.addr)), ctx->ir_base[-ref].const_flags); } else if (ctx->ir_base[-ref].op == IR_FUNC_ADDR) { ref = ir_const_func_addr(new_ctx, ctx->ir_base[ref].val.addr, ctx->ir_base[-ref].const_flags); } else if (ctx->ir_base[-ref].op == IR_STR) { ref = ir_const_str(new_ctx, ir_str(new_ctx, ir_get_str(ctx, ctx->ir_base[ref].val.addr))); } else { ref = ir_const(new_ctx, ctx->ir_base[ref].val, ctx->ir_base[ref].type); } break; } case IR_OPND_CONTROL: case IR_OPND_CONTROL_DEP: case IR_OPND_CONTROL_REF: ref = _xlat[ref]; break; case IR_OPND_STR: ref = ir_str(new_ctx, ir_get_str(ctx, ref)); break; case IR_OPND_NUM: case IR_OPND_PROB: break; default: IR_ASSERT(0); break; } ir_set_op(new_ctx, new_ref, k, ref); } } if (ctx->cfg_blocks) { uint32_t b; ir_block *bb; new_ctx->cfg_blocks_count = ctx->cfg_blocks_count; if (ctx->cfg_edges_count) { new_ctx->cfg_edges_count = ctx->cfg_edges_count; new_ctx->cfg_edges = ir_mem_malloc(ctx->cfg_edges_count * sizeof(uint32_t)); memcpy(new_ctx->cfg_edges, ctx->cfg_edges, ctx->cfg_edges_count * sizeof(uint32_t)); } new_ctx->cfg_blocks = ir_mem_malloc((ctx->cfg_blocks_count + 1) * sizeof(ir_block)); memcpy(new_ctx->cfg_blocks, ctx->cfg_blocks, (ctx->cfg_blocks_count + 1) * sizeof(ir_block)); for (b = 1, bb = new_ctx->cfg_blocks + 1; b <= new_ctx->cfg_blocks_count; b++, bb++) { bb->start = _xlat[bb->start]; bb->end = _xlat[bb->end]; } } if (preserve_constants_order) { _xlat -= ctx->consts_count; } ir_mem_free(_xlat); return 1; } int ir_schedule(ir_ctx *ctx) { ir_ctx new_ctx; ir_ref i, j, k; ir_ref b; uint32_t *_blocks = ctx->cfg_map; ir_ref *_next = ir_mem_calloc(ctx->insns_count, sizeof(ir_ref)); ir_ref *_prev = ir_mem_calloc(ctx->insns_count, sizeof(ir_ref)); ir_ref _rest = 0; ir_block *bb; ir_insn *insn; /* Create double-linked list of nodes ordered by BB, respecting BB->start and BB->end */ IR_ASSERT(_blocks[1]); _prev[1] = 0; for (i = 2, j = 1; i < ctx->insns_count; i++) { b = _blocks[i]; if (b) { bb = &ctx->cfg_blocks[b]; if (_blocks[j] == b || i == bb->start) { /* add to the end of list */ _next[j] = i; _prev[i] = j; j = i; } else if (_prev[bb->end]) { /* move up, insert before the end of alredy scheduled BB */ k = bb->end; _prev[i] = _prev[k]; _next[i] = k; _next[_prev[k]] = i; _prev[k] = i; } else { /* move down late */ _next[i] = _rest; _rest = i; } } } _next[j] = 0; while (_rest) { i = _rest; _rest = _next[i]; b = _blocks[i]; bb = &ctx->cfg_blocks[b]; if (i == bb->end) { // TODO: When removing MERGE, SCCP may move END of the block below other blocks ??? /* insert at the end of the block */ k = _next[bb->start]; while (_blocks[k] == b) { k = _next[k]; } } else { /* insert after start of the block and all PARAM, VAR, PI, PHI */ k = _next[bb->start]; insn = &ctx->ir_base[k]; while (insn->op == IR_PARAM || insn->op == IR_VAR || insn->op == IR_PI || insn->op == IR_PHI) { k = _next[k]; insn = &ctx->ir_base[k]; } } /* insert before "k" */ _prev[i] = _prev[k]; _next[i] = k; _next[_prev[k]] = i; _prev[k] = i; } #ifdef IR_DEBUG if (ctx->flags & IR_DEBUG_SCHEDULE) { fprintf(stderr, "Before Schedule\n"); for (b = 1, bb = ctx->cfg_blocks + 1; b <= ctx->cfg_blocks_count; b++, bb++) { for (i = bb->start; i <= bb->end && i > 0; i = _next[i]) { fprintf(stderr, "%d -> %d\n", i, b); } } } #endif /* Topological sort according dependencies inside each basic block */ ir_bitset scheduled = ir_bitset_malloc(ctx->insns_count); for (b = 1, bb = ctx->cfg_blocks + 1; b <= ctx->cfg_blocks_count; b++, bb++) { if (bb->flags & IR_BB_UNREACHABLE) { continue; } i = bb->start; ir_bitset_incl(scheduled, i); i = _next[i]; insn = &ctx->ir_base[i]; while (insn->op == IR_PARAM || insn->op == IR_VAR || insn->op == IR_PI || insn->op == IR_PHI) { ir_bitset_incl(scheduled, i); i = _next[i]; insn = &ctx->ir_base[i]; } for (; i != bb->end; i = _next[i]) { ir_ref n, j, *p, def; restart: insn = &ctx->ir_base[i]; n = ir_input_edges_count(ctx, insn); for (j = 1, p = insn->ops + 1; j <= n; j++, p++) { def = *p; if (def > 0 && _blocks[def] == b && !ir_bitset_in(scheduled, def) && insn->op != IR_PHI && insn->op != IR_PI) { /* "def" should be before "i" to satisfy dependency */ #ifdef IR_DEBUG if (ctx->flags & IR_DEBUG_SCHEDULE) { fprintf(stderr, "Wrong dependency %d:%d -> %d\n", b, def, i); } #endif /* remove "def" */ _prev[_next[def]] = _prev[def]; _next[_prev[def]] = _next[def]; /* insert before "i" */ _prev[def] = _prev[i]; _next[def] = i; _next[_prev[i]] = def; _prev[i] = def; /* restart from "def" */ i = def; goto restart; } } ir_bitset_incl(scheduled, i); } } ir_mem_free(scheduled); #ifdef IR_DEBUG if (ctx->flags & IR_DEBUG_SCHEDULE) { fprintf(stderr, "After Schedule\n"); for (b = 1, bb = ctx->cfg_blocks + 1; b <= ctx->cfg_blocks_count; b++, bb++) { for (i = bb->start; i <= bb->end && i > 0; i = _next[i]) { fprintf(stderr, "%d -> %d\n", i, b); } } } #endif ir_mem_free(_prev); /* Linearization */ ir_init(&new_ctx, ctx->consts_count, ctx->insns_count); new_ctx.flags = ctx->flags; new_ctx.fixed_regset = ctx->fixed_regset; new_ctx.fixed_save_regset = ctx->fixed_save_regset; /* TODO: linearize without reallocation and reconstruction ??? */ if (!ir_copy(&new_ctx, ctx, _next, 1)) { ir_free(&new_ctx); return 0; } ir_free(ctx); ir_build_def_use_lists(&new_ctx); ir_truncate(&new_ctx); memcpy(ctx, &new_ctx, sizeof(ir_ctx)); ctx->flags |= IR_LINEAR; ir_mem_free(_next); return 1; }