/* * IR - Lightweight JIT Compilation Framework * (CFG - Control Flow Graph) * Copyright (C) 2022 Zend by Perforce. * Authors: Dmitry Stogov */ #include "ir.h" #include "ir_private.h" static ir_ref _ir_merge_blocks(ir_ctx *ctx, ir_ref end, ir_ref begin) { ir_ref prev, next; ir_use_list *use_list; ir_ref n, *p; IR_ASSERT(ctx->ir_base[begin].op == IR_BEGIN); IR_ASSERT(ctx->ir_base[end].op == IR_END); IR_ASSERT(ctx->ir_base[begin].op1 == end); IR_ASSERT(ctx->use_lists[end].count == 1); prev = ctx->ir_base[end].op1; use_list = &ctx->use_lists[begin]; IR_ASSERT(use_list->count == 1); next = ctx->use_edges[use_list->refs]; /* remove BEGIN and END */ ctx->ir_base[begin].op = IR_NOP; ctx->ir_base[begin].op1 = IR_UNUSED; ctx->use_lists[begin].count = 0; ctx->ir_base[end].op = IR_NOP; ctx->ir_base[end].op1 = IR_UNUSED; ctx->use_lists[end].count = 0; /* connect their predecessor and successor */ ctx->ir_base[next].op1 = prev; use_list = &ctx->use_lists[prev]; n = use_list->count; for (p = &ctx->use_edges[use_list->refs]; n > 0; p++, n--) { if (*p == end) { *p = next; } } return next; } IR_ALWAYS_INLINE void _ir_add_successors(const ir_ctx *ctx, ir_ref ref, ir_worklist *worklist) { ir_use_list *use_list = &ctx->use_lists[ref]; ir_ref *p, use, n = use_list->count; if (n < 2) { if (n == 1) { use = ctx->use_edges[use_list->refs]; IR_ASSERT(ir_op_flags[ctx->ir_base[use].op] & IR_OP_FLAG_CONTROL); ir_worklist_push(worklist, use); } } else { p = &ctx->use_edges[use_list->refs]; if (n == 2) { use = *p; IR_ASSERT(ir_op_flags[ctx->ir_base[use].op] & IR_OP_FLAG_CONTROL); ir_worklist_push(worklist, use); use = *(p + 1); IR_ASSERT(ir_op_flags[ctx->ir_base[use].op] & IR_OP_FLAG_CONTROL); ir_worklist_push(worklist, use); } else { for (; n > 0; p++, n--) { use = *p; IR_ASSERT(ir_op_flags[ctx->ir_base[use].op] & IR_OP_FLAG_CONTROL); ir_worklist_push(worklist, use); } } } } IR_ALWAYS_INLINE void _ir_add_predecessors(const ir_insn *insn, ir_worklist *worklist) { ir_ref n, ref; const ir_ref *p; if (insn->op == IR_MERGE || insn->op == IR_LOOP_BEGIN) { n = ir_variable_inputs_count(insn); for (p = insn->ops + 1; n > 0; p++, n--) { ref = *p; IR_ASSERT(ref); ir_worklist_push(worklist, ref); } } else if (insn->op != IR_START) { if (EXPECTED(insn->op1)) { ir_worklist_push(worklist, insn->op1); } } } int ir_build_cfg(ir_ctx *ctx) { ir_ref n, *p, ref, start, end, next; uint32_t b; ir_insn *insn; ir_worklist worklist; uint32_t count, bb_count = 0; uint32_t edges_count = 0; ir_block *blocks, *bb; uint32_t *_blocks, *edges; ir_use_list *use_list; uint32_t len = ir_bitset_len(ctx->insns_count); ir_bitset bb_starts = ir_mem_calloc(len * 2, IR_BITSET_BITS / 8); ir_bitset bb_leaks = bb_starts + len; _blocks = ir_mem_calloc(ctx->insns_count, sizeof(uint32_t)); ir_worklist_init(&worklist, ctx->insns_count); /* First try to perform backward DFS search starting from "stop" nodes */ /* Add all "stop" nodes */ ref = ctx->ir_base[1].op1; while (ref) { ir_worklist_push(&worklist, ref); ref = ctx->ir_base[ref].op3; } while (ir_worklist_len(&worklist)) { ref = ir_worklist_pop(&worklist); insn = &ctx->ir_base[ref]; IR_ASSERT(IR_IS_BB_END(insn->op)); /* Remember BB end */ end = ref; /* Some successors of IF and SWITCH nodes may be inaccessible by backward DFS */ use_list = &ctx->use_lists[end]; n = use_list->count; if (n > 1) { for (p = &ctx->use_edges[use_list->refs]; n > 0; p++, n--) { /* Remember possible inaccessible succcessors */ ir_bitset_incl(bb_leaks, *p); } } /* Skip control nodes untill BB start */ ref = insn->op1; while (1) { insn = &ctx->ir_base[ref]; if (IR_IS_BB_START(insn->op)) { if (insn->op == IR_BEGIN && (ctx->flags & IR_OPT_CFG) && ctx->ir_base[insn->op1].op == IR_END && ctx->use_lists[ref].count == 1) { ref = _ir_merge_blocks(ctx, insn->op1, ref); ref = ctx->ir_base[ref].op1; continue; } break; } ref = insn->op1; // follow connected control blocks untill BB start } /* Mark BB Start */ bb_count++; _blocks[ref] = end; ir_bitset_incl(bb_starts, ref); /* Add predecessors */ _ir_add_predecessors(insn, &worklist); } /* Backward DFS way miss some branches ending by infinite loops. */ /* Try forward DFS. (in most cases all nodes are already proceed. */ /* START node my be inaccessible from "stop" nodes */ ir_bitset_incl(bb_leaks, 1); /* Add not processed START and succcessor of IF and SWITCH */ IR_BITSET_FOREACH_DIFFERENCE(bb_leaks, bb_starts, len, start) { ir_worklist_push(&worklist, start); } IR_BITSET_FOREACH_END(); if (ir_worklist_len(&worklist)) { ir_bitset_union(worklist.visited, bb_starts, len); do { ref = ir_worklist_pop(&worklist); insn = &ctx->ir_base[ref]; IR_ASSERT(IR_IS_BB_START(insn->op)); /* Remember BB start */ start = ref; /* Skip control nodes untill BB end */ while (1) { use_list = &ctx->use_lists[ref]; n = use_list->count; next = IR_UNUSED; for (p = &ctx->use_edges[use_list->refs]; n > 0; p++, n--) { next = *p; insn = &ctx->ir_base[next]; if ((ir_op_flags[insn->op] & IR_OP_FLAG_CONTROL) && insn->op1 == ref) { break; } } IR_ASSERT(next != IR_UNUSED); ref = next; next_successor: if (IR_IS_BB_END(insn->op)) { if (insn->op == IR_END && (ctx->flags & IR_OPT_CFG)) { use_list = &ctx->use_lists[ref]; IR_ASSERT(use_list->count == 1); next = ctx->use_edges[use_list->refs]; if (ctx->ir_base[next].op == IR_BEGIN && ctx->use_lists[next].count == 1) { ref = _ir_merge_blocks(ctx, ref, next); insn = &ctx->ir_base[ref]; goto next_successor; } } break; } } /* Mark BB Start */ bb_count++; _blocks[start] = ref; ir_bitset_incl(bb_starts, start); /* Add successors */ _ir_add_successors(ctx, ref, &worklist); } while (ir_worklist_len(&worklist)); } ir_worklist_clear(&worklist); IR_ASSERT(bb_count > 0); /* Create array of basic blocks and count succcessor/predecessors edges for each BB */ blocks = ir_mem_malloc((bb_count + 1) * sizeof(ir_block)); b = 1; bb = blocks + 1; count = 0; IR_BITSET_FOREACH(bb_starts, len, start) { end = _blocks[start]; _blocks[start] = b; _blocks[end] = b; insn = &ctx->ir_base[start]; IR_ASSERT(IR_IS_BB_START(insn->op)); IR_ASSERT(end > start); bb->start = start; bb->end = end; bb->successors = count; count += ctx->use_lists[end].count; bb->successors_count = 0; bb->predecessors = count; bb->dom_parent = 0; bb->dom_depth = 0; bb->dom_child = 0; bb->dom_next_child = 0; bb->loop_header = 0; bb->loop_depth = 0; if (insn->op == IR_START) { bb->flags = IR_BB_START; bb->predecessors_count = 0; ir_worklist_push(&worklist, b); } else { bb->flags = IR_BB_UNREACHABLE; /* all blocks are marked as UNREACHABLE first */ if (insn->op == IR_MERGE || insn->op == IR_LOOP_BEGIN) { n = ir_variable_inputs_count(insn); bb->predecessors_count = n; edges_count += n; count += n; } else if (EXPECTED(insn->op1)) { if (insn->op == IR_ENTRY) { bb->flags |= IR_BB_ENTRY; ctx->entries_count++; } bb->predecessors_count = 1; edges_count++; count++; } else { IR_ASSERT(insn->op == IR_BEGIN); /* start of unreachable block */ bb->predecessors_count = 0; } } b++; bb++; } IR_BITSET_FOREACH_END(); IR_ASSERT(count == edges_count * 2); ir_mem_free(bb_starts); /* Create an array of successor/predecessors control edges */ edges = ir_mem_malloc(edges_count * 2 * sizeof(uint32_t)); bb = blocks + 1; for (b = 1; b <= bb_count; b++, bb++) { insn = &ctx->ir_base[bb->start]; if (bb->predecessors_count > 1) { uint32_t *q = edges + bb->predecessors; n = ir_variable_inputs_count(insn); for (p = insn->ops + 1; n > 0; p++, q++, n--) { ref = *p; IR_ASSERT(ref); ir_ref pred_b = _blocks[ref]; ir_block *pred_bb = &blocks[pred_b]; *q = pred_b; edges[pred_bb->successors + pred_bb->successors_count++] = b; } } else if (bb->predecessors_count == 1) { ref = insn->op1; IR_ASSERT(ref); IR_ASSERT(IR_OPND_KIND(ir_op_flags[insn->op], 1) == IR_OPND_CONTROL); ir_ref pred_b = _blocks[ref]; ir_block *pred_bb = &blocks[pred_b]; edges[bb->predecessors] = pred_b; edges[pred_bb->successors + pred_bb->successors_count++] = b; } } ctx->cfg_blocks_count = bb_count; ctx->cfg_edges_count = edges_count * 2; ctx->cfg_blocks = blocks; ctx->cfg_edges = edges; ctx->cfg_map = _blocks; /* Mark reachable blocks */ while (ir_worklist_len(&worklist) != 0) { uint32_t *p; b = ir_worklist_pop(&worklist); bb = &blocks[b]; bb->flags &= ~IR_BB_UNREACHABLE; n = bb->successors_count; if (n > 1) { for (p = edges + bb->successors; n > 0; p++, n--) { ir_worklist_push(&worklist, *p); } } else if (n == 1) { ir_worklist_push(&worklist, edges[bb->successors]); } } ir_worklist_free(&worklist); return 1; } static void ir_remove_predecessor(ir_ctx *ctx, ir_block *bb, uint32_t from) { uint32_t i, *p, *q, n = 0; p = q = &ctx->cfg_edges[bb->predecessors]; for (i = 0; i < bb->predecessors_count; i++, p++) { if (*p != from) { if (p != q) { *q = *p; } q++; n++; } } IR_ASSERT(n != bb->predecessors_count); bb->predecessors_count = n; } static void ir_remove_from_use_list(ir_ctx *ctx, ir_ref from, ir_ref ref) { ir_ref j, n, *p, *q, use; ir_use_list *use_list = &ctx->use_lists[from]; ir_ref skip = 0; n = use_list->count; for (j = 0, p = q = &ctx->use_edges[use_list->refs]; j < n; j++, p++) { use = *p; if (use == ref) { skip++; } else { if (p != q) { *q = use; } q++; } } use_list->count -= skip; } static void ir_remove_merge_input(ir_ctx *ctx, ir_ref merge, ir_ref from) { ir_ref i, j, n, k, *p, use; ir_insn *use_insn; ir_use_list *use_list; ir_bitset life_inputs; ir_insn *insn = &ctx->ir_base[merge]; IR_ASSERT(insn->op == IR_MERGE || insn->op == IR_LOOP_BEGIN); n = insn->inputs_count; if (n == 0) { n = 3; } i = 1; life_inputs = ir_bitset_malloc(n + 1); for (j = 1; j <= n; j++) { ir_ref input = ir_insn_op(insn, j); if (input != from) { if (i != j) { ir_insn_set_op(insn, i, input); } ir_bitset_incl(life_inputs, j); i++; } } i--; if (i == 1) { insn->op = IR_BEGIN; insn->inputs_count = 0; use_list = &ctx->use_lists[merge]; for (k = 0, p = &ctx->use_edges[use_list->refs]; k < use_list->count; k++, p++) { use = *p; use_insn = &ctx->ir_base[use]; if (use_insn->op == IR_PHI) { /* Convert PHI to COPY */ i = 2; for (j = 2; j <= n; j++) { ir_ref input = ir_insn_op(use_insn, j); if (ir_bitset_in(life_inputs, j - 1)) { use_insn->op1 = ir_insn_op(use_insn, j); } else if (input > 0) { ir_remove_from_use_list(ctx, input, use); } } use_insn->op = IR_COPY; use_insn->op2 = IR_UNUSED; use_insn->op3 = IR_UNUSED; ir_remove_from_use_list(ctx, merge, use); } } } else { if (i == 2) { i = 0; } insn->inputs_count = i; n++; use_list = &ctx->use_lists[merge]; for (k = 0, p = &ctx->use_edges[use_list->refs]; k < use_list->count; k++, p++) { use = *p; use_insn = &ctx->ir_base[use]; if (use_insn->op == IR_PHI) { i = 2; for (j = 2; j <= n; j++) { ir_ref input = ir_insn_op(use_insn, j); if (ir_bitset_in(life_inputs, j - 1)) { IR_ASSERT(input); if (i != j) { ir_insn_set_op(use_insn, i, input); } i++; } else if (input > 0) { ir_remove_from_use_list(ctx, input, use); } } } } } ir_mem_free(life_inputs); ir_remove_from_use_list(ctx, from, merge); } /* CFG constructed after SCCP pass doesn't have unreachable BBs, otherwise they should be removed */ int ir_remove_unreachable_blocks(ir_ctx *ctx) { uint32_t b, *p, i; uint32_t unreachable_count = 0; uint32_t bb_count = ctx->cfg_blocks_count; ir_block *bb = ctx->cfg_blocks + 1; for (b = 1; b <= bb_count; b++, bb++) { if (bb->flags & IR_BB_UNREACHABLE) { #if 0 do {if (!unreachable_count) ir_dump_cfg(ctx, stderr);} while(0); #endif if (bb->successors_count) { for (i = 0, p = &ctx->cfg_edges[bb->successors]; i < bb->successors_count; i++, p++) { ir_block *succ_bb = &ctx->cfg_blocks[*p]; if (!(succ_bb->flags & IR_BB_UNREACHABLE)) { ir_remove_predecessor(ctx, succ_bb, b); ir_remove_merge_input(ctx, succ_bb->start, bb->end); } } } else { ir_ref prev, ref = bb->end; ir_insn *insn = &ctx->ir_base[ref]; IR_ASSERT(ir_op_flags[insn->op] & IR_OP_FLAG_TERMINATOR); /* remove from terminators list */ prev = ctx->ir_base[1].op1; if (prev == ref) { ctx->ir_base[1].op1 = insn->op3; } else { while (prev) { if (ctx->ir_base[prev].op3 == ref) { ctx->ir_base[prev].op3 = insn->op3; break; } prev = ctx->ir_base[prev].op3; } } } ctx->cfg_map[bb->start] = 0; ctx->cfg_map[bb->end] = 0; unreachable_count++; } } if (unreachable_count) { ir_block *dst_bb; uint32_t n = 1; uint32_t *edges; dst_bb = bb = ctx->cfg_blocks + 1; for (b = 1; b <= bb_count; b++, bb++) { if (!(bb->flags & IR_BB_UNREACHABLE)) { if (dst_bb != bb) { memcpy(dst_bb, bb, sizeof(ir_block)); ctx->cfg_map[dst_bb->start] = n; ctx->cfg_map[dst_bb->end] = n; } dst_bb->successors_count = 0; dst_bb++; n++; } } ctx->cfg_blocks_count = bb_count = n - 1; /* Rebuild successor/predecessors control edges */ edges = ctx->cfg_edges; bb = ctx->cfg_blocks + 1; for (b = 1; b <= bb_count; b++, bb++) { ir_insn *insn = &ctx->ir_base[bb->start]; ir_ref *p, ref; if (bb->predecessors_count > 1) { uint32_t *q = edges + bb->predecessors; n = ir_variable_inputs_count(insn); for (p = insn->ops + 1; n > 0; p++, q++, n--) { ref = *p; IR_ASSERT(ref); ir_ref pred_b = ctx->cfg_map[ref]; ir_block *pred_bb = &ctx->cfg_blocks[pred_b]; *q = pred_b; edges[pred_bb->successors + pred_bb->successors_count++] = b; } } else if (bb->predecessors_count == 1) { ref = insn->op1; IR_ASSERT(ref); IR_ASSERT(IR_OPND_KIND(ir_op_flags[insn->op], 1) == IR_OPND_CONTROL); ir_ref pred_b = ctx->cfg_map[ref]; ir_block *pred_bb = &ctx->cfg_blocks[pred_b]; edges[bb->predecessors] = pred_b; edges[pred_bb->successors + pred_bb->successors_count++] = b; } } } return 1; } static void compute_postnum(const ir_ctx *ctx, uint32_t *cur, uint32_t b) { uint32_t i, *p; ir_block *bb = &ctx->cfg_blocks[b]; if (bb->postnum != 0) { return; } if (bb->successors_count) { bb->postnum = -1; /* Marker for "currently visiting" */ p = ctx->cfg_edges + bb->successors; i = bb->successors_count; do { compute_postnum(ctx, cur, *p); p++; } while (--i); } bb->postnum = (*cur)++; } /* Computes dominator tree using algorithm from "A Simple, Fast Dominance Algorithm" by * Cooper, Harvey and Kennedy. */ int ir_build_dominators_tree(ir_ctx *ctx) { uint32_t blocks_count, b, postnum; ir_block *blocks, *bb; uint32_t *edges; bool changed; postnum = 1; compute_postnum(ctx, &postnum, 1); /* Find immediate dominators */ blocks = ctx->cfg_blocks; edges = ctx->cfg_edges; blocks_count = ctx->cfg_blocks_count; blocks[1].idom = 1; do { changed = 0; /* Iterating in Reverse Post Oorder */ for (b = 2, bb = &blocks[2]; b <= blocks_count; b++, bb++) { IR_ASSERT(!(bb->flags & IR_BB_UNREACHABLE)); if (bb->predecessors_count == 1) { uint32_t idom = 0; uint32_t pred_b = edges[bb->predecessors]; ir_block *pred_bb = &blocks[pred_b]; if (pred_bb->idom > 0) { idom = pred_b; } if (idom > 0 && bb->idom != idom) { bb->idom = idom; changed = 1; } } else if (bb->predecessors_count) { uint32_t idom = 0; uint32_t k = bb->predecessors_count; uint32_t *p = edges + bb->predecessors; do { uint32_t pred_b = *p; ir_block *pred_bb = &blocks[pred_b]; if (pred_bb->idom > 0) { if (idom == 0) { idom = pred_b; } else if (idom != pred_b) { ir_block *idom_bb = &blocks[idom]; do { while (pred_bb->postnum < idom_bb->postnum) { pred_b = pred_bb->idom; pred_bb = &blocks[pred_b]; } while (idom_bb->postnum < pred_bb->postnum) { idom = idom_bb->idom; idom_bb = &blocks[idom]; } } while (idom != pred_b); } } p++; } while (--k > 0); if (idom > 0 && bb->idom != idom) { bb->idom = idom; changed = 1; } } } } while (changed); blocks[1].idom = 0; blocks[1].dom_depth = 0; /* Construct dominators tree */ for (b = 2, bb = &blocks[2]; b <= blocks_count; b++, bb++) { IR_ASSERT(!(bb->flags & IR_BB_UNREACHABLE)); if (bb->idom > 0) { ir_block *idom_bb = &blocks[bb->idom]; bb->dom_depth = idom_bb->dom_depth + 1; /* Sort by block number to traverse children in pre-order */ if (idom_bb->dom_child == 0) { idom_bb->dom_child = b; } else if (b < idom_bb->dom_child) { bb->dom_next_child = idom_bb->dom_child; idom_bb->dom_child = b; } else { int child = idom_bb->dom_child; ir_block *child_bb = &blocks[child]; while (child_bb->dom_next_child > 0 && b > child_bb->dom_next_child) { child = child_bb->dom_next_child; child_bb = &blocks[child]; } bb->dom_next_child = child_bb->dom_next_child; child_bb->dom_next_child = b; } } } return 1; } static bool ir_dominates(const ir_block *blocks, uint32_t b1, uint32_t b2) { uint32_t b1_depth = blocks[b1].dom_depth; const ir_block *bb2 = &blocks[b2]; while (bb2->dom_depth > b1_depth) { b2 = bb2->dom_parent; bb2 = &blocks[b2]; } return b1 == b2; } int ir_find_loops(ir_ctx *ctx) { uint32_t i, j, n, count; uint32_t *entry_times, *exit_times, *sorted_blocks, time = 1; ir_block *blocks = ctx->cfg_blocks; uint32_t *edges = ctx->cfg_edges; ir_worklist work; /* We don't materialize the DJ spanning tree explicitly, as we are only interested in ancestor * queries. These are implemented by checking entry/exit times of the DFS search. */ ir_worklist_init(&work, ctx->cfg_blocks_count + 1); entry_times = ir_mem_malloc((ctx->cfg_blocks_count + 1) * 3 * sizeof(uint32_t)); exit_times = entry_times + ctx->cfg_blocks_count + 1; sorted_blocks = exit_times + ctx->cfg_blocks_count + 1; memset(entry_times, 0, (ctx->cfg_blocks_count + 1) * sizeof(uint32_t)); ir_worklist_push(&work, 1); while (ir_worklist_len(&work)) { ir_block *bb; int child; next: i = ir_worklist_peek(&work); if (!entry_times[i]) { entry_times[i] = time++; } /* Visit blocks immediately dominated by i. */ bb = &blocks[i]; for (child = bb->dom_child; child > 0; child = blocks[child].dom_next_child) { if (ir_worklist_push(&work, child)) { goto next; } } /* Visit join edges. */ if (bb->successors_count) { uint32_t *p = edges + bb->successors; for (j = 0; j < bb->successors_count; j++,p++) { uint32_t succ = *p; if (blocks[succ].idom == i) { continue; } else if (ir_worklist_push(&work, succ)) { goto next; } } } exit_times[i] = time++; ir_worklist_pop(&work); } /* Sort blocks by level, which is the opposite order in which we want to process them */ sorted_blocks[1] = 1; j = 1; n = 2; while (j != n) { i = j; j = n; for (; i < j; i++) { int child; for (child = blocks[sorted_blocks[i]].dom_child; child > 0; child = blocks[child].dom_next_child) { sorted_blocks[n++] = child; } } } count = n; /* Identify loops. See Sreedhar et al, "Identifying Loops Using DJ Graphs". */ while (n > 1) { i = sorted_blocks[--n]; ir_block *bb = &blocks[i]; if (bb->predecessors_count > 1) { bool irreducible = 0; uint32_t *p = &edges[bb->predecessors]; j = bb->predecessors_count; do { uint32_t pred = *p; /* A join edge is one for which the predecessor does not immediately dominate the successor. */ if (bb->idom != pred) { /* In a loop back-edge (back-join edge), the successor dominates the predecessor. */ if (ir_dominates(blocks, i, pred)) { if (!ir_worklist_len(&work)) { ir_bitset_clear(work.visited, ir_bitset_len(ir_worklist_capasity(&work))); } blocks[pred].loop_header = 0; /* support for merged loops */ ir_worklist_push(&work, pred); } else { /* Otherwise it's a cross-join edge. See if it's a branch to an ancestor on the DJ spanning tree. */ if (entry_times[pred] > entry_times[i] && exit_times[pred] < exit_times[i]) { irreducible = 1; } } } p++; } while (--j); if (UNEXPECTED(irreducible)) { // TODO: Support for irreducible loops ??? bb->flags |= IR_BB_IRREDUCIBLE_LOOP; ctx->flags |= IR_IRREDUCIBLE_CFG; while (ir_worklist_len(&work)) { ir_worklist_pop(&work); } } else if (ir_worklist_len(&work)) { bb->flags |= IR_BB_LOOP_HEADER; bb->loop_depth = 1; while (ir_worklist_len(&work)) { j = ir_worklist_pop(&work); while (blocks[j].loop_header > 0) { j = blocks[j].loop_header; } if (j != i) { ir_block *bb = &blocks[j]; if (bb->idom == 0 && j != 1) { /* Ignore blocks that are unreachable or only abnormally reachable. */ continue; } bb->loop_header = i; if (bb->predecessors_count) { uint32_t *p = &edges[bb->predecessors]; j = bb->predecessors_count; do { ir_worklist_push(&work, *p); p++; } while (--j); } } } } } } for (n = 1; n < count; n++) { i = sorted_blocks[n]; ir_block *bb = &blocks[i]; if (bb->loop_header > 0) { ir_block *loop = &blocks[bb->loop_header]; uint32_t loop_depth = loop->loop_depth; if (bb->flags & IR_BB_LOOP_HEADER) { loop_depth++; } bb->loop_depth = loop_depth; if (bb->flags & (IR_BB_ENTRY|IR_BB_LOOP_WITH_ENTRY)) { loop->flags |= IR_BB_LOOP_WITH_ENTRY; } } } ir_mem_free(entry_times); ir_worklist_free(&work); return 1; } /* A variation of "Top-down Positioning" algorithm described by * Karl Pettis and Robert C. Hansen "Profile Guided Code Positioning" * * TODO: Switch to "Bottom-up Positioning" algorithm */ int ir_schedule_blocks(ir_ctx *ctx) { ir_bitqueue blocks; uint32_t b, best_successor, j, last_non_empty; ir_block *bb, *best_successor_bb; ir_insn *insn; uint32_t *list, *map; uint32_t count = 0; bool reorder = 0; ir_bitqueue_init(&blocks, ctx->cfg_blocks_count + 1); blocks.pos = 0; list = ir_mem_malloc(sizeof(uint32_t) * (ctx->cfg_blocks_count + 1) * 2); map = list + (ctx->cfg_blocks_count + 1); for (b = 1; b <= ctx->cfg_blocks_count; b++) { ir_bitset_incl(blocks.set, b); } while ((b = ir_bitqueue_pop(&blocks)) != (uint32_t)-1) { bb = &ctx->cfg_blocks[b]; /* Start trace */ last_non_empty = 0; do { if (UNEXPECTED(bb->flags & IR_BB_PREV_EMPTY_ENTRY) && ir_bitqueue_in(&blocks, b - 1)) { /* Schedule the previous empty ENTRY block before this one */ uint32_t predecessor = b - 1; ir_bitqueue_del(&blocks, predecessor); count++; list[count] = predecessor; map[predecessor] = count; if (predecessor != count) { reorder = 1; } } count++; list[count] = b; map[b] = count; if (b != count) { reorder = 1; } if (!(bb->flags & IR_BB_EMPTY)) { last_non_empty = b; } best_successor_bb = NULL; if (bb->successors_count == 1) { best_successor = ctx->cfg_edges[bb->successors]; if (ir_bitqueue_in(&blocks, best_successor)) { best_successor_bb = &ctx->cfg_blocks[best_successor]; } } else if (bb->successors_count > 1) { uint32_t prob, best_successor_prob; uint32_t *p, successor; ir_block *successor_bb; for (b = 0, p = &ctx->cfg_edges[bb->successors]; b < bb->successors_count; b++, p++) { successor = *p; if (ir_bitqueue_in(&blocks, successor)) { successor_bb = &ctx->cfg_blocks[successor]; insn = &ctx->ir_base[successor_bb->start]; if (insn->op == IR_IF_TRUE || insn->op == IR_IF_FALSE) { prob = insn->op2; if (!prob) { prob = 100 / bb->successors_count; if (!(successor_bb->flags & IR_BB_EMPTY)) { prob++; } } } else if (insn->op == IR_CASE_DEFAULT) { prob = insn->op2; if (!prob) { prob = 100 / bb->successors_count; } } else if (insn->op == IR_CASE_VAL) { prob = insn->op3; if (!prob) { prob = 100 / bb->successors_count; } } else if (insn->op == IR_ENTRY) { if ((ctx->flags & IR_MERGE_EMPTY_ENTRIES) && (successor_bb->flags & IR_BB_EMPTY)) { prob = 99; /* prefer empty ENTRY block to go first */ } else { prob = 1; } } else { prob = 100 / bb->successors_count; } if (!best_successor_bb || successor_bb->loop_depth > best_successor_bb->loop_depth || prob > best_successor_prob) { best_successor = successor; best_successor_bb = successor_bb; best_successor_prob = prob; } } } } if (!best_successor_bb) { /* Try to continue trace using the other successor of the last IF */ if ((bb->flags & IR_BB_EMPTY) && last_non_empty) { bb = &ctx->cfg_blocks[last_non_empty]; if (bb->successors_count == 2 && ctx->ir_base[bb->end].op == IR_IF) { b = ctx->cfg_edges[bb->successors]; if (!ir_bitqueue_in(&blocks, b)) { b = ctx->cfg_edges[bb->successors + 1]; } if (ir_bitqueue_in(&blocks, b)) { bb = &ctx->cfg_blocks[b]; ir_bitqueue_del(&blocks, b); continue; } } } /* End trace */ break; } b = best_successor; bb = best_successor_bb; ir_bitqueue_del(&blocks, b); } while (1); } if (reorder) { ir_block *cfg_blocks = ir_mem_malloc(sizeof(ir_block) * (ctx->cfg_blocks_count + 1)); memset(ctx->cfg_blocks, 0, sizeof(ir_block)); for (b = 1, bb = cfg_blocks + 1; b <= count; b++, bb++) { *bb = ctx->cfg_blocks[list[b]]; if (bb->dom_parent > 0) { bb->dom_parent = map[bb->dom_parent]; } if (bb->dom_child > 0) { bb->dom_child = map[bb->dom_child]; } if (bb->dom_next_child > 0) { bb->dom_next_child = map[bb->dom_next_child]; } if (bb->loop_header > 0) { bb->loop_header = map[bb->loop_header]; } } for (j = 0; j < ctx->cfg_edges_count; j++) { if (ctx->cfg_edges[j] > 0) { ctx->cfg_edges[j] = map[ctx->cfg_edges[j]]; } } ir_mem_free(ctx->cfg_blocks); ctx->cfg_blocks = cfg_blocks; if (ctx->osr_entry_loads) { ir_list *list = (ir_list*)ctx->osr_entry_loads; uint32_t pos = 0, count; while (1) { b = ir_list_at(list, pos); if (b == 0) { break; } ir_list_set(list, pos, map[b]); pos++; count = ir_list_at(list, pos); pos += count + 1; } } } ir_mem_free(list); ir_bitqueue_free(&blocks); return 1; } /* JMP target optimisation */ uint32_t ir_skip_empty_target_blocks(const ir_ctx *ctx, uint32_t b) { ir_block *bb; while (1) { bb = &ctx->cfg_blocks[b]; if ((bb->flags & (IR_BB_START|IR_BB_ENTRY|IR_BB_EMPTY)) == IR_BB_EMPTY) { b = ctx->cfg_edges[bb->successors]; } else { break; } } return b; } uint32_t ir_skip_empty_next_blocks(const ir_ctx *ctx, uint32_t b) { ir_block *bb; while (1) { if (b > ctx->cfg_blocks_count) { return 0; } bb = &ctx->cfg_blocks[b]; if ((bb->flags & (IR_BB_START|IR_BB_EMPTY)) == IR_BB_EMPTY) { b++; } else { break; } } return b; } void ir_get_true_false_blocks(const ir_ctx *ctx, uint32_t b, uint32_t *true_block, uint32_t *false_block, uint32_t *next_block) { ir_block *bb; uint32_t *p, use_block; *true_block = 0; *false_block = 0; bb = &ctx->cfg_blocks[b]; IR_ASSERT(ctx->ir_base[bb->end].op == IR_IF); IR_ASSERT(bb->successors_count == 2); p = &ctx->cfg_edges[bb->successors]; use_block = *p; if (ctx->ir_base[ctx->cfg_blocks[use_block].start].op == IR_IF_TRUE) { *true_block = ir_skip_empty_target_blocks(ctx, use_block); use_block = *(p+1); IR_ASSERT(ctx->ir_base[ctx->cfg_blocks[use_block].start].op == IR_IF_FALSE); *false_block = ir_skip_empty_target_blocks(ctx, use_block); } else { IR_ASSERT(ctx->ir_base[ctx->cfg_blocks[use_block].start].op == IR_IF_FALSE); *false_block = ir_skip_empty_target_blocks(ctx, use_block); use_block = *(p+1); IR_ASSERT(ctx->ir_base[ctx->cfg_blocks[use_block].start].op == IR_IF_TRUE); *true_block = ir_skip_empty_target_blocks(ctx, use_block); } IR_ASSERT(*true_block && *false_block); *next_block = b == ctx->cfg_blocks_count ? 0 : ir_skip_empty_next_blocks(ctx, b + 1); }