/* * IR - Lightweight JIT Compilation Framework * (IR construction, folding, utilities) * Copyright (C) 2022 Zend by Perforce. * Authors: Dmitry Stogov * * The logical IR representation is based on Cliff Click's Sea of Nodes. * See: C. Click, M. Paleczny. “A Simple Graph-Based Intermediate * Representation” In ACM SIGPLAN Workshop on Intermediate Representations * (IR '95), pages 35-49, Jan. 1995. * * The phisical IR representation is based on Mike Pall's LuaJIT IR. * See: M. Pall. “LuaJIT 2.0 intellectual property disclosure and research * opportunities” November 2009 http://lua-users.org/lists/lua-l/2009-11/msg00089.html */ #ifndef _GNU_SOURCE # define _GNU_SOURCE #endif #include #include "ir.h" #include "ir_private.h" #include #ifdef HAVE_VALGRIND # include #endif #define IR_TYPE_FLAGS(name, type, field, flags) ((flags)|sizeof(type)), #define IR_TYPE_NAME(name, type, field, flags) #name, #define IR_TYPE_CNAME(name, type, field, flags) #type, #define IR_TYPE_SIZE(name, type, field, flags) sizeof(type), #define IR_OP_NAME(name, flags, op1, op2, op3) #name, const uint8_t ir_type_flags[IR_LAST_TYPE] = { 0, IR_TYPES(IR_TYPE_FLAGS) }; const char *ir_type_name[IR_LAST_TYPE] = { "void", IR_TYPES(IR_TYPE_NAME) }; const uint8_t ir_type_size[IR_LAST_TYPE] = { 0, IR_TYPES(IR_TYPE_SIZE) }; const char *ir_type_cname[IR_LAST_TYPE] = { "void", IR_TYPES(IR_TYPE_CNAME) }; const char *ir_op_name[IR_LAST_OP] = { IR_OPS(IR_OP_NAME) #ifdef IR_PHP IR_PHP_OPS(IR_OP_NAME) #endif }; void ir_print_const(ir_ctx *ctx, ir_insn *insn, FILE *f) { if (insn->op == IR_FUNC) { fprintf(f, "%s", ir_get_str(ctx, insn->val.addr)); return; } else if (insn->op == IR_STR) { fprintf(f, "\"%s\"", ir_get_str(ctx, insn->val.addr)); return; } IR_ASSERT(IR_IS_CONST_OP(insn->op) || insn->op == IR_FUNC_ADDR); switch (insn->type) { case IR_BOOL: fprintf(f, "%u", insn->val.b); break; case IR_U8: fprintf(f, "%u", insn->val.u8); break; case IR_U16: fprintf(f, "%u", insn->val.u16); break; case IR_U32: fprintf(f, "%u", insn->val.u32); break; case IR_U64: fprintf(f, "%" PRIu64, insn->val.u64); break; case IR_ADDR: if (insn->val.addr) { fprintf(f, "0x%" PRIxPTR, insn->val.addr); } else { fprintf(f, "0"); } break; case IR_CHAR: if (insn->val.c == '\\') { fprintf(f, "'\\\\'"); } else if (insn->val.c >= ' ') { fprintf(f, "'%c'", insn->val.c); } else if (insn->val.c == '\t') { fprintf(f, "'\\t'"); } else if (insn->val.c == '\r') { fprintf(f, "'\\r'"); } else if (insn->val.c == '\n') { fprintf(f, "'\\n'"); } else if (insn->val.c == '\0') { fprintf(f, "'\\0'"); } else { fprintf(f, "%u", insn->val.c); } break; case IR_I8: fprintf(f, "%d", insn->val.i8); break; case IR_I16: fprintf(f, "%d", insn->val.i16); break; case IR_I32: fprintf(f, "%d", insn->val.i32); break; case IR_I64: fprintf(f, "%" PRIi64, insn->val.i64); break; case IR_DOUBLE: fprintf(f, "%g", insn->val.d); break; case IR_FLOAT: fprintf(f, "%f", insn->val.f); break; default: IR_ASSERT(0); break; } } #define ir_op_flag_v 0 #define ir_op_flag_v0X3 (0 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_d IR_OP_FLAG_DATA #define ir_op_flag_d0 ir_op_flag_d #define ir_op_flag_d1 (ir_op_flag_d | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_d1X1 (ir_op_flag_d | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_d2 (ir_op_flag_d | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_d2C (ir_op_flag_d | IR_OP_FLAG_COMMUTATIVE | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_d3 (ir_op_flag_d | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_dP (ir_op_flag_d | 5 | (5 << IR_OP_FLAG_OPERANDS_SHIFT)) // PHI (number of operands encoded in op1->op1) #define ir_op_flag_r IR_OP_FLAG_DATA // "d" and "r" are the same now #define ir_op_flag_r0 ir_op_flag_r #define ir_op_flag_r0X1 (ir_op_flag_r | 0 | (1 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_r1 (ir_op_flag_r | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_r1X1 (ir_op_flag_r | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_r1X2 (ir_op_flag_r | 1 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_r2 (ir_op_flag_r | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_r3 (ir_op_flag_r | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_c IR_OP_FLAG_CONTROL #define ir_op_flag_c1X2 (ir_op_flag_c | 1 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_c3 (ir_op_flag_c | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_S (IR_OP_FLAG_CONTROL|IR_OP_FLAG_BB_START) #define ir_op_flag_S0X2 (ir_op_flag_S | 0 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_S1 (ir_op_flag_S | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_S1X1 (ir_op_flag_S | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_S2 (ir_op_flag_S | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_S2X1 (ir_op_flag_S | 2 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_SN (ir_op_flag_S | 4 | (4 << IR_OP_FLAG_OPERANDS_SHIFT)) // MERGE (number of operands encoded in op1) #define ir_op_flag_E (IR_OP_FLAG_CONTROL|IR_OP_FLAG_BB_END) #define ir_op_flag_E1 (ir_op_flag_E | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_E1X1 (ir_op_flag_E | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_E2 (ir_op_flag_E | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_T (IR_OP_FLAG_CONTROL|IR_OP_FLAG_BB_END|IR_OP_FLAG_TERMINATOR) #define ir_op_flag_T2X1 (ir_op_flag_T | 2 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_l (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_LOAD) #define ir_op_flag_l0 ir_op_flag_l #define ir_op_flag_l1 (ir_op_flag_l | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_l1X1 (ir_op_flag_l | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_l1X2 (ir_op_flag_l | 1 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_l2 (ir_op_flag_l | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_l3 (ir_op_flag_l | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_s (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_STORE) #define ir_op_flag_s0 ir_op_flag_s #define ir_op_flag_s1 (ir_op_flag_s | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_s2 (ir_op_flag_s | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_s2X1 (ir_op_flag_s | 2 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_s3 (ir_op_flag_s | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_x1 (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_CALL | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_x2 (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_CALL | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_xN (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_CALL | 4 | (4 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_flag_a2 (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_ALLOC | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT)) #define ir_op_kind____ IR_OPND_UNUSED #define ir_op_kind_def IR_OPND_DATA #define ir_op_kind_ref IR_OPND_DATA #define ir_op_kind_src IR_OPND_CONTROL #define ir_op_kind_reg IR_OPND_CONTROL_DEP #define ir_op_kind_beg IR_OPND_CONTROL_REF #define ir_op_kind_ret IR_OPND_CONTROL_REF #define ir_op_kind_ent IR_OPND_CONTROL_REF #define ir_op_kind_str IR_OPND_STR #define ir_op_kind_num IR_OPND_NUM #define ir_op_kind_fld IR_OPND_STR #define ir_op_kind_var IR_OPND_VAR #define ir_op_kind_prb IR_OPND_PROB #define ir_op_kind_opt IR_OPND_PROB #define _IR_OP_FLAGS(name, flags, op1, op2, op3) \ IR_OP_FLAGS(ir_op_flag_ ## flags, ir_op_kind_ ## op1, ir_op_kind_ ## op2, ir_op_kind_ ## op3), const uint32_t ir_op_flags[IR_LAST_OP] = { IR_OPS(_IR_OP_FLAGS) #ifdef IR_PHP IR_PHP_OPS(_IR_OP_FLAGS) #endif }; static void ir_grow_bottom(ir_ctx *ctx) { ir_insn *buf = ctx->ir_base - ctx->consts_limit; ir_ref old_consts_limit = ctx->consts_limit; if (ctx->consts_limit < 1024 * 4) { ctx->consts_limit *= 2; } else if (ctx->insns_limit < 1024 * 4 * 2) { ctx->consts_limit = 1024 * 4 * 2; } else { ctx->consts_limit += 1024 * 4; } buf = ir_mem_realloc(buf, (ctx->consts_limit + ctx->insns_limit) * sizeof(ir_insn)); memmove(buf + ctx->consts_limit - ctx->consts_count, buf + old_consts_limit - ctx->consts_count, (old_consts_limit + ctx->insns_limit) * sizeof(ir_insn)); ctx->ir_base = buf + ctx->consts_limit; } static ir_ref ir_next_const(ir_ctx *ctx) { ir_ref ref = ctx->consts_count; if (UNEXPECTED(ref >= ctx->consts_limit)) { ir_grow_bottom(ctx); } ctx->consts_count = ref + 1; return -ref; } static void ir_grow_top(ir_ctx *ctx) { ir_insn *buf = ctx->ir_base - ctx->consts_limit; if (ctx->insns_limit < 1024 * 4) { ctx->insns_limit *= 2; } else if (ctx->insns_limit < 1024 * 4 * 2) { ctx->insns_limit = 1024 * 4 * 2; } else { ctx->insns_limit += 1024 * 4; } buf = ir_mem_realloc(buf, (ctx->consts_limit + ctx->insns_limit) * sizeof(ir_insn)); ctx->ir_base = buf + ctx->consts_limit; } static ir_ref ir_next_insn(ir_ctx *ctx) { ir_ref ref = ctx->insns_count; if (UNEXPECTED(ref >= ctx->insns_limit)) { ir_grow_top(ctx); } ctx->insns_count = ref + 1; return ref; } void ir_truncate(ir_ctx *ctx) { ir_insn *buf = ir_mem_malloc((ctx->consts_count + ctx->insns_count) * sizeof(ir_insn)); memcpy(buf, ctx->ir_base - ctx->consts_count, (ctx->consts_count + ctx->insns_count) * sizeof(ir_insn)); ir_mem_free(ctx->ir_base - ctx->consts_limit); ctx->insns_limit = ctx->insns_count; ctx->consts_limit = ctx->consts_count; ctx->ir_base = buf + ctx->consts_limit; } void ir_init(ir_ctx *ctx, ir_ref consts_limit, ir_ref insns_limit) { ir_insn *buf; IR_ASSERT(consts_limit >= -(IR_TRUE - 1)); IR_ASSERT(insns_limit >= IR_UNUSED + 1); ctx->insns_count = IR_UNUSED + 1; ctx->insns_limit = insns_limit; ctx->consts_count = -(IR_TRUE - 1); ctx->consts_limit = consts_limit; ctx->fold_cse_limit = IR_UNUSED + 1; ctx->flags = 0; ctx->binding = NULL; ctx->use_lists = NULL; ctx->use_edges = NULL; ctx->use_edges_count = 0; ctx->cfg_blocks_count = 0; ctx->cfg_edges_count = 0; ctx->cfg_blocks = NULL; ctx->cfg_edges = NULL; ctx->cfg_map = NULL; ctx->rules = NULL; ctx->vregs = NULL; ctx->vregs_count = 0; ctx->spill_base = -1; ctx->fixed_stack_red_zone = 0; ctx->fixed_stack_frame_size = -1; ctx->fixed_regset = 0; ctx->fixed_save_regset = 0; ctx->live_intervals = NULL; ctx->regs = NULL; ctx->prev_insn_len = NULL; ctx->data = NULL; ctx->code_buffer = NULL; ctx->code_buffer_size = 0; ctx->strtab.data = NULL; buf = ir_mem_malloc((consts_limit + insns_limit) * sizeof(ir_insn)); ctx->ir_base = buf + consts_limit; ctx->ir_base[IR_UNUSED].optx = IR_NOP; ctx->ir_base[IR_NULL].optx = IR_OPT(IR_C_ADDR, IR_ADDR); ctx->ir_base[IR_NULL].val.u64 = 0; ctx->ir_base[IR_FALSE].optx = IR_OPT(IR_C_BOOL, IR_BOOL); ctx->ir_base[IR_FALSE].val.u64 = 0; ctx->ir_base[IR_TRUE].optx = IR_OPT(IR_C_BOOL, IR_BOOL); ctx->ir_base[IR_TRUE].val.u64 = 1; memset(ctx->prev_insn_chain, 0, sizeof(ctx->prev_insn_chain)); memset(ctx->prev_const_chain, 0, sizeof(ctx->prev_const_chain)); } void ir_free(ir_ctx *ctx) { ir_insn *buf = ctx->ir_base - ctx->consts_limit; ir_mem_free(buf); if (ctx->strtab.data) { ir_strtab_free(&ctx->strtab); } if (ctx->binding) { ir_hashtab_free(ctx->binding); ir_mem_free(ctx->binding); } if (ctx->use_lists) { ir_mem_free(ctx->use_lists); } if (ctx->use_edges) { ir_mem_free(ctx->use_edges); } if (ctx->cfg_blocks) { ir_mem_free(ctx->cfg_blocks); } if (ctx->cfg_edges) { ir_mem_free(ctx->cfg_edges); } if (ctx->cfg_map) { ir_mem_free(ctx->cfg_map); } if (ctx->rules) { ir_mem_free(ctx->rules); } if (ctx->vregs) { ir_mem_free(ctx->vregs); } if (ctx->live_intervals) { ir_free_live_intervals(ctx->live_intervals, ctx->vregs_count); } if (ctx->regs) { ir_mem_free(ctx->regs); } if (ctx->prev_insn_len) { ir_mem_free(ctx->prev_insn_len); } } ir_ref ir_unique_const_addr(ir_ctx *ctx, uintptr_t addr) { ir_ref ref = ir_next_const(ctx); ir_insn *insn = &ctx->ir_base[ref]; insn->optx = IR_OPT(IR_ADDR, IR_ADDR); insn->val.u64 = addr; /* don't insert into constants chain */ insn->prev_const = IR_UNUSED; #if 0 insn->prev_const = ctx->prev_const_chain[IR_ADDR]; ctx->prev_const_chain[IR_ADDR] = ref; #endif #if 0 ir_insn *prev_insn, *next_insn; ir_ref next; prev_insn = NULL; next = ctx->prev_const_chain[IR_ADDR]; while (next) { next_insn = &ctx->ir_base[next]; if (UNEXPECTED(next_insn->val.u64 >= addr)) { break; } prev_insn = next_insn; next = next_insn->prev_const; } if (prev_insn) { insn->prev_const = prev_insn->prev_const; prev_insn->prev_const = ref; } else { insn->prev_const = ctx->prev_const_chain[IR_ADDR]; ctx->prev_const_chain[IR_ADDR] = ref; } #endif return ref; } IR_NEVER_INLINE ir_ref ir_const(ir_ctx *ctx, ir_val val, uint8_t type) { ir_insn *insn, *prev_insn; ir_ref ref, prev; if (type == IR_BOOL) { return val.u64 ? IR_TRUE : IR_FALSE; } else if (type == IR_ADDR && val.u64 == 0) { return IR_NULL; } prev_insn = NULL; ref = ctx->prev_const_chain[type]; while (ref) { insn = &ctx->ir_base[ref]; if (UNEXPECTED(insn->val.u64 >= val.u64)) { if (insn->val.u64 == val.u64) { return ref; } else { break; } } prev_insn = insn; ref = insn->prev_const; } if (prev_insn) { prev = prev_insn->prev_const; prev_insn->prev_const = -ctx->consts_count; } else { prev = ctx->prev_const_chain[type]; ctx->prev_const_chain[type] = -ctx->consts_count; } ref = ir_next_const(ctx); insn = &ctx->ir_base[ref]; insn->prev_const = prev; insn->optx = IR_OPT(type, type); insn->val.u64 = val.u64; return ref; } ir_ref ir_const_i8(ir_ctx *ctx, int8_t c) { ir_val val; val.i64 = c; return ir_const(ctx, val, IR_I8); } ir_ref ir_const_i16(ir_ctx *ctx, int16_t c) { ir_val val; val.i64 = c; return ir_const(ctx, val, IR_I16); } ir_ref ir_const_i32(ir_ctx *ctx, int32_t c) { ir_val val; val.i64 = c; return ir_const(ctx, val, IR_I32); } ir_ref ir_const_i64(ir_ctx *ctx, int64_t c) { ir_val val; val.i64 = c; return ir_const(ctx, val, IR_I64); } ir_ref ir_const_u8(ir_ctx *ctx, uint8_t c) { ir_val val; val.u64 = c; return ir_const(ctx, val, IR_U8); } ir_ref ir_const_u16(ir_ctx *ctx, uint16_t c) { ir_val val; val.u64 = c; return ir_const(ctx, val, IR_U16); } ir_ref ir_const_u32(ir_ctx *ctx, uint32_t c) { ir_val val; val.u64 = c; return ir_const(ctx, val, IR_U32); } ir_ref ir_const_u64(ir_ctx *ctx, uint64_t c) { ir_val val; val.u64 = c; return ir_const(ctx, val, IR_U64); } ir_ref ir_const_bool(ir_ctx *ctx, bool c) { return (c) ? IR_TRUE : IR_FALSE; } ir_ref ir_const_char(ir_ctx *ctx, char c) { ir_val val; val.i64 = c; return ir_const(ctx, val, IR_CHAR); } ir_ref ir_const_float(ir_ctx *ctx, float c) { ir_val val; val.u32_hi = 0; val.f = c; return ir_const(ctx, val, IR_FLOAT); } ir_ref ir_const_double(ir_ctx *ctx, double c) { ir_val val; val.d = c; return ir_const(ctx, val, IR_DOUBLE); } ir_ref ir_const_addr(ir_ctx *ctx, uintptr_t c) { if (c == 0) { return IR_NULL; } ir_val val; val.u64 = c; return ir_const(ctx, val, IR_ADDR); } ir_ref ir_const_func_addr(ir_ctx *ctx, uintptr_t c, uint16_t flags) { ir_ref top = -ctx->consts_count; ir_ref ref; ir_insn *insn; if (c == 0) { return IR_NULL; } ir_val val; val.u64 = c; ref = ir_const(ctx, val, IR_ADDR); if (ref == top) { insn = &ctx->ir_base[ref]; insn->optx = IR_OPT(IR_FUNC_ADDR, IR_ADDR); insn->const_flags = flags; } else { IR_ASSERT(ctx->ir_base[ref].opt == IR_OPT(IR_FUNC_ADDR, IR_ADDR) && ctx->ir_base[ref].const_flags == flags); } return ref; } ir_ref ir_const_func(ir_ctx *ctx, ir_ref str, uint16_t flags) { ir_ref ref = ir_next_const(ctx); ir_insn *insn = &ctx->ir_base[ref]; insn->optx = IR_OPT(IR_FUNC, IR_ADDR); insn->const_flags = flags; insn->val.addr = str; return ref; } ir_ref ir_const_str(ir_ctx *ctx, ir_ref str) { ir_ref ref = ir_next_const(ctx); ir_insn *insn = &ctx->ir_base[ref]; insn->optx = IR_OPT(IR_STR, IR_ADDR); insn->val.addr = str; return ref; } ir_ref ir_str(ir_ctx *ctx, const char *s) { if (!ctx->strtab.data) { ir_strtab_init(&ctx->strtab, 64, 4096); } return ir_strtab_lookup(&ctx->strtab, s, strlen(s), ir_strtab_count(&ctx->strtab) + 1); } ir_ref ir_strl(ir_ctx *ctx, const char *s, size_t len) { if (!ctx->strtab.data) { ir_strtab_init(&ctx->strtab, 64, 4096); } return ir_strtab_lookup(&ctx->strtab, s, len, ir_strtab_count(&ctx->strtab) + 1); } const char *ir_get_str(ir_ctx *ctx, ir_ref idx) { IR_ASSERT(ctx->strtab.data); return ir_strtab_str(&ctx->strtab, idx - 1); } /* IR construction */ ir_ref ir_emit(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3) { ir_ref ref = ir_next_insn(ctx); ir_insn *insn = &ctx->ir_base[ref]; insn->optx = opt; insn->op1 = op1; insn->op2 = op2; insn->op3 = op3; return ref; } ir_ref ir_emit0(ir_ctx *ctx, uint32_t opt) { return ir_emit(ctx, opt, IR_UNUSED, IR_UNUSED, IR_UNUSED); } ir_ref ir_emit1(ir_ctx *ctx, uint32_t opt, ir_ref op1) { return ir_emit(ctx, opt, op1, IR_UNUSED, IR_UNUSED); } ir_ref ir_emit2(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2) { return ir_emit(ctx, opt, op1, op2, IR_UNUSED); } ir_ref ir_emit3(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3) { return ir_emit(ctx, opt, op1, op2, op3); } static ir_ref _ir_fold_cse(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3) { ir_ref ref = ctx->prev_insn_chain[opt & IR_OPT_OP_MASK]; ir_insn *insn; if (ref) { ir_ref limit = ctx->fold_cse_limit; if (op1 > limit) { limit = op1; } if (op2 > limit) { limit = op2; } if (op3 > limit) { limit = op3; } while (ref >= limit) { insn = &ctx->ir_base[ref]; if (insn->opt == opt && insn->op1 == op1 && insn->op2 == op2 && insn->op3 == op3) { return ref; } if (!insn->prev_insn_offset) { break; } ref = ref - (ir_ref)(uint32_t)insn->prev_insn_offset; } } return IR_UNUSED; } #define IR_FOLD(X) IR_FOLD1(X, __LINE__) #define IR_FOLD1(X, Y) IR_FOLD2(X, Y) #define IR_FOLD2(X, Y) case IR_RULE_ ## Y: #define IR_FOLD_ERROR(msg) do { \ IR_ASSERT(0 && (msg)); \ goto ir_fold_emit; \ } while (0) #define IR_FOLD_CONST_U(_val) do { \ val.u64 = (_val); \ goto ir_fold_const; \ } while (0) #define IR_FOLD_CONST_I(_val) do { \ val.i64 = (_val); \ goto ir_fold_const; \ } while (0) #define IR_FOLD_CONST_D(_val) do { \ val.d = (_val); \ goto ir_fold_const; \ } while (0) #define IR_FOLD_CONST_F(_val) do { \ val.f = (_val); \ goto ir_fold_const; \ } while (0) #define IR_FOLD_COPY(op) do { \ ref = (op); \ goto ir_fold_copy; \ } while (0) #define IR_FOLD_BOOL(cond) \ IR_FOLD_COPY((cond) ? IR_TRUE : IR_FALSE) #define IR_FOLD_NAMED(name) ir_fold_ ## name: #define IR_FOLD_DO_NAMED(name) goto ir_fold_ ## name #define IR_FOLD_RESTART goto ir_fold_restart #define IR_FOLD_CSE goto ir_fold_cse #define IR_FOLD_EMIT goto ir_fold_emit #define IR_FOLD_NEXT break #include "ir_fold_hash.h" #define IR_FOLD_RULE(x) ((x) >> 21) #define IR_FOLD_KEY(x) ((x) & 0x1fffff) /* * key = insn->op | (insn->op1->op << 7) | (insn->op1->op << 14) * * ANY and UNUSED ops are represented by 0 */ ir_ref ir_folding(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3, ir_insn *op1_insn, ir_insn *op2_insn, ir_insn *op3_insn) { uint8_t op; ir_ref ref; ir_val val; uint32_t key, any; (void) op3_insn; restart: key = (opt & IR_OPT_OP_MASK) + ((uint32_t)op1_insn->op << 7) + ((uint32_t)op2_insn->op << 14); any = 0x1fffff; do { uint32_t k = key & any; uint32_t h = _ir_fold_hashkey(k); uint32_t fh = _ir_fold_hash[h]; if (IR_FOLD_KEY(fh) == k /*|| (fh = _ir_fold_hash[h+1], (fh & 0x1fffff) == k)*/) { switch (IR_FOLD_RULE(fh)) { #include "ir_fold.h" default: break; } } if (any == 0x7f) { /* All parrerns ar checked. Pass on to CSE. */ goto ir_fold_cse; } /* op2/op1/op op2/_/op _/op1/op _/_/op * 0x1fffff -> 0x1fc07f -> 0x003fff -> 0x00007f * from masks to bis: 11 -> 10 -> 01 -> 00 * * a b => x y * 1 1 1 0 * 1 0 0 1 * 0 1 0 0 * * x = a & b; y = !b */ any = ((any & (any << 7)) & 0x1fc000) | (~any & 0x3f80) | 0x7f; } while (1); ir_fold_restart: if (!(ctx->flags & IR_OPT_IN_SCCP)) { op1_insn = ctx->ir_base + op1; op2_insn = ctx->ir_base + op2; op3_insn = ctx->ir_base + op3; goto restart; } else { ctx->fold_insn.optx = opt; ctx->fold_insn.op1 = op1; ctx->fold_insn.op2 = op2; ctx->fold_insn.op3 = op3; return IR_FOLD_DO_RESTART; } ir_fold_cse: if (!(ctx->flags & IR_OPT_IN_SCCP)) { /* Local CSE */ ref = _ir_fold_cse(ctx, opt, op1, op2, op3); if (ref) { return ref; } ref = ir_emit(ctx, opt, op1, op2, op3); /* Update local CSE chain */ op = opt & IR_OPT_OP_MASK; ir_ref prev = ctx->prev_insn_chain[op]; ir_insn *insn = ctx->ir_base + ref; if (!prev || ref - prev > 0xffff) { /* can't fit into 16-bit */ insn->prev_insn_offset = 0; } else { insn->prev_insn_offset = ref - prev; } ctx->prev_insn_chain[op] = ref; return ref; } ir_fold_emit: if (!(ctx->flags & IR_OPT_IN_SCCP)) { return ir_emit(ctx, opt, op1, op2, op3); } else { ctx->fold_insn.optx = opt; ctx->fold_insn.op1 = op1; ctx->fold_insn.op2 = op2; ctx->fold_insn.op3 = op3; return IR_FOLD_DO_EMIT; } ir_fold_copy: if (!(ctx->flags & IR_OPT_IN_SCCP)) { return ref; } else { ctx->fold_insn.op1 = ref; return IR_FOLD_DO_COPY; } ir_fold_const: if (!(ctx->flags & IR_OPT_IN_SCCP)) { return ir_const(ctx, val, IR_OPT_TYPE(opt)); } else { ctx->fold_insn.type = IR_OPT_TYPE(opt); ctx->fold_insn.val.u64 = val.u64; return IR_FOLD_DO_CONST; } } ir_ref ir_fold(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3) { if (UNEXPECTED(!(ctx->flags & IR_OPT_FOLDING))) { return ir_emit(ctx, opt, op1, op2, op3); } return ir_folding(ctx, opt, op1, op2, op3, ctx->ir_base + op1, ctx->ir_base + op2, ctx->ir_base + op3); } ir_ref ir_fold0(ir_ctx *ctx, uint32_t opt) { return ir_fold(ctx, opt, IR_UNUSED, IR_UNUSED, IR_UNUSED); } ir_ref ir_fold1(ir_ctx *ctx, uint32_t opt, ir_ref op1) { return ir_fold(ctx, opt, op1, IR_UNUSED, IR_UNUSED); } ir_ref ir_fold2(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2) { return ir_fold(ctx, opt, op1, op2, IR_UNUSED); } ir_ref ir_fold3(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3) { return ir_fold(ctx, opt, op1, op2, op3); } ir_ref ir_emit_N(ir_ctx *ctx, uint32_t opt, int32_t count) { int i; ir_ref *p, ref = ctx->insns_count; ir_insn *insn; IR_ASSERT(count >= 0); while (UNEXPECTED(ref + count/4 >= ctx->insns_limit)) { ir_grow_top(ctx); } ctx->insns_count = ref + 1 + count/4; insn = &ctx->ir_base[ref]; insn->optx = opt; if ((opt & IR_OPT_OP_MASK) != IR_PHI) { insn->inputs_count = count; } for (i = 1, p = insn->ops + i; i <= (count|3); i++, p++) { *p = IR_UNUSED; } return ref; } void ir_set_op(ir_ctx *ctx, ir_ref ref, int32_t n, ir_ref val) { ir_insn *insn = &ctx->ir_base[ref]; if (n > 3) { int32_t count = 3; if (insn->op == IR_MERGE || insn->op == IR_LOOP_BEGIN) { count = insn->inputs_count; if (count == 0) { count = 2; } } else if (insn->op == IR_CALL || insn->op == IR_TAILCALL || insn->op == IR_SNAPSHOT) { count = insn->inputs_count; if (count == 0) { count = 2; } } else if (insn->op == IR_PHI) { count = ctx->ir_base[insn->op1].inputs_count + 1; if (count == 1) { count = 3; } } else { IR_ASSERT(0); } IR_ASSERT(n <= count); } ir_insn_set_op(insn, n, val); } ir_ref ir_param(ir_ctx *ctx, ir_type type, ir_ref region, const char *name, int pos) { return ir_emit(ctx, IR_OPT(IR_PARAM, type), region, ir_str(ctx, name), pos); } ir_ref ir_var(ir_ctx *ctx, ir_type type, ir_ref region, const char *name) { return ir_emit(ctx, IR_OPT(IR_VAR, type), region, ir_str(ctx, name), IR_UNUSED); } ir_ref ir_bind(ir_ctx *ctx, ir_ref var, ir_ref def) { if (IR_IS_CONST_REF(def)) { return def; } if (!ctx->binding) { ctx->binding = ir_mem_malloc(sizeof(ir_hashtab));; ir_hashtab_init(ctx->binding, 16); } /* Node may be bound to some VAR node or to some special spill slot (using negative "var") */ IR_ASSERT(var < 0 || (var < ctx->insns_count && ctx->ir_base[var].op == IR_VAR)); if (!ir_hashtab_add(ctx->binding, def, var)) { /* Add a copy with different binding */ def = ir_emit2(ctx, IR_OPT(IR_COPY, ctx->ir_base[def].type), def, 1); ir_hashtab_add(ctx->binding, def, var); } return def; } /* Batch construction of def->use edges */ void ir_build_def_use_lists(ir_ctx *ctx) { ir_ref n, i, j, *p, def; ir_insn *insn; uint32_t edges_count = 0; ir_use_list *lists = ir_mem_calloc(ctx->insns_count, sizeof(ir_use_list)); ir_ref *edges; for (i = IR_UNUSED + 1, insn = ctx->ir_base + i; i < ctx->insns_count;) { n = ir_input_edges_count(ctx, insn); for (j = n, p = insn->ops + 1; j > 0; j--, p++) { def = *p; if (def > 0) { lists[def].refs = -1; lists[def].count++; edges_count++; } } n = 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI i += n; insn += n; } edges = ir_mem_malloc(edges_count * sizeof(ir_ref)); edges_count = 0; for (i = IR_UNUSED + 1, insn = ctx->ir_base + i; i < ctx->insns_count;) { n = ir_input_edges_count(ctx, insn); for (j = n, p = insn->ops + 1; j > 0; j--, p++) { def = *p; if (def > 0) { ir_use_list *use_list = &lists[def]; if (use_list->refs == -1) { use_list->refs = edges_count; edges_count += use_list->count; use_list->count = 0; } edges[use_list->refs + use_list->count++] = i; } } n = 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI i += n; insn += n; } ctx->use_edges = edges; ctx->use_edges_count = edges_count; ctx->use_lists = lists; } /* Helper Data Types */ void ir_array_grow(ir_array *a, uint32_t size) { IR_ASSERT(size > a->size); a->refs = ir_mem_realloc(a->refs, size * sizeof(ir_ref)); memset(a->refs + a->size, 0, (size - a->size) * sizeof(ir_ref)); a->size = size; } void ir_array_insert(ir_array *a, uint32_t i, ir_ref val) { IR_ASSERT(i < a->size); if (a->refs[a->size - 1]) { ir_array_grow(a, a->size + 1); } memmove(a->refs + i + 1, a->refs + i, (a->size - i - 1) * sizeof(ir_ref)); a->refs[i] = val; } void ir_array_remove(ir_array *a, uint32_t i) { IR_ASSERT(i < a->size); memmove(a->refs + i, a->refs + i + 1, (a->size - i - 1) * sizeof(ir_ref)); a->refs[a->size - 1] = IR_UNUSED; } void ir_list_insert(ir_list *l, uint32_t i, ir_ref val) { IR_ASSERT(i < l->len); if (l->len >= l->a.size) { ir_array_grow(&l->a, l->a.size + 1); } memmove(l->a.refs + i + 1, l->a.refs + i, (l->len - i) * sizeof(ir_ref)); l->a.refs[i] = val; l->len++; } void ir_list_remove(ir_list *l, uint32_t i) { IR_ASSERT(i < l->len); memmove(l->a.refs + i, l->a.refs + i + 1, (l->len - i) * sizeof(ir_ref)); l->len--; } bool ir_list_contains(ir_list *l, ir_ref val) { uint32_t i; for (i = 0; i < l->len; i++) { if (ir_array_at(&l->a, i) == val) { return 1; } } return 0; } static uint32_t ir_hashtab_hash_size(uint32_t size) { size -= 1; size |= (size >> 1); size |= (size >> 2); size |= (size >> 4); size |= (size >> 8); size |= (size >> 16); return size + 1; } static void ir_hashtab_resize(ir_hashtab *tab) { uint32_t old_hash_size = (uint32_t)(-(int32_t)tab->mask); char *old_data = tab->data; uint32_t size = tab->size * 2; uint32_t hash_size = ir_hashtab_hash_size(size); char *data = ir_mem_malloc(hash_size * sizeof(uint32_t) + size * sizeof(ir_hashtab_bucket)); ir_hashtab_bucket *p; uint32_t pos, i; memset(data, -1, hash_size * sizeof(uint32_t)); tab->data = data + (hash_size * sizeof(uint32_t)); tab->mask = (uint32_t)(-(int32_t)hash_size); tab->size = size; memcpy(tab->data, old_data, tab->count * sizeof(ir_hashtab_bucket)); ir_mem_free(old_data - (old_hash_size * sizeof(uint32_t))); i = tab->count; pos = 0; p = (ir_hashtab_bucket*)tab->data; do { uint32_t key = p->key | tab->mask; p->next = ((uint32_t*)tab->data)[(int32_t)key]; ((uint32_t*)tab->data)[(int32_t)key] = pos; pos += sizeof(ir_hashtab_bucket); p++; } while (--i); } void ir_hashtab_init(ir_hashtab *tab, uint32_t size) { IR_ASSERT(size > 0); uint32_t hash_size = ir_hashtab_hash_size(size); char *data = ir_mem_malloc(hash_size * sizeof(uint32_t) + size * sizeof(ir_hashtab_bucket)); memset(data, -1, hash_size * sizeof(uint32_t)); tab->data = (data + (hash_size * sizeof(uint32_t))); tab->mask = (uint32_t)(-(int32_t)hash_size); tab->size = size; tab->count = 0; tab->pos = 0; } void ir_hashtab_free(ir_hashtab *tab) { uint32_t hash_size = (uint32_t)(-(int32_t)tab->mask); char *data = tab->data - (hash_size * sizeof(uint32_t)); ir_mem_free(data); tab->data = NULL; } ir_ref ir_hashtab_find(ir_hashtab *tab, uint32_t key) { char *data = (char*)tab->data; uint32_t pos = ((uint32_t*)data)[(int32_t)(key | tab->mask)]; ir_hashtab_bucket *p; while (pos != IR_INVALID_IDX) { p = (ir_hashtab_bucket*)(data + pos); if (p->key == key) { return p->val; } pos = p->next; } return IR_INVALID_VAL; } bool ir_hashtab_add(ir_hashtab *tab, uint32_t key, ir_ref val) { char *data = (char*)tab->data; uint32_t pos = ((uint32_t*)data)[(int32_t)(key | tab->mask)]; ir_hashtab_bucket *p; while (pos != IR_INVALID_IDX) { p = (ir_hashtab_bucket*)(data + pos); if (p->key == key) { return p->val == val; } pos = p->next; } if (UNEXPECTED(tab->count >= tab->size)) { ir_hashtab_resize(tab); data = tab->data; } pos = tab->pos; tab->pos += sizeof(ir_hashtab_bucket); tab->count++; p = (ir_hashtab_bucket*)(data + pos); p->key = key; p->val = val; key |= tab->mask; p->next = ((uint32_t*)data)[(int32_t)key]; ((uint32_t*)data)[(int32_t)key] = pos; return 1; } static int ir_hashtab_key_cmp(const void *b1, const void *b2) { return ((ir_hashtab_bucket*)b1)->key - ((ir_hashtab_bucket*)b2)->key; } void ir_hashtab_key_sort(ir_hashtab *tab) { ir_hashtab_bucket *p; uint32_t hash_size, pos, i; if (!tab->count) { return; } qsort(tab->data, tab->count, sizeof(ir_hashtab_bucket), ir_hashtab_key_cmp); hash_size = ir_hashtab_hash_size(tab->size); memset((char*)tab->data - (hash_size * sizeof(uint32_t)), -1, hash_size * sizeof(uint32_t)); i = tab->count; pos = 0; p = (ir_hashtab_bucket*)tab->data; do { uint32_t key = p->key | tab->mask; p->next = ((uint32_t*)tab->data)[(int32_t)key]; ((uint32_t*)tab->data)[(int32_t)key] = pos; pos += sizeof(ir_hashtab_bucket); p++; } while (--i); } /* Memory API */ void *ir_mem_mmap(size_t size) { return mmap(NULL, size, PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); } int ir_mem_unmap(void *ptr, size_t size) { munmap(ptr, size); return 1; } int ir_mem_protect(void *ptr, size_t size) { mprotect(ptr, size, PROT_READ | PROT_EXEC); return 1; } int ir_mem_unprotect(void *ptr, size_t size) { mprotect(ptr, size, PROT_READ | PROT_WRITE); return 1; } int ir_mem_flush(void *ptr, size_t size) { #if ((defined(__GNUC__) && ZEND_GCC_VERSION >= 4003) || __has_builtin(__builtin___clear_cache)) __builtin___clear_cache((char*)(ptr), (char*)(ptr) + size); #endif #ifdef HAVE_VALGRIND VALGRIND_DISCARD_TRANSLATIONS(ptr, size); #endif return 1; }