ir/ir_load_llvm.c
2023-12-26 13:44:02 +03:00

2374 lines
73 KiB
C

/*
* IR - Lightweight JIT Compilation Framework
* (LLVM loader)
* Copyright (C) 2022 Zend by Perforce.
* Authors: Dmitry Stogov <dmitry@php.net>
*/
#include "ir.h"
#include "ir_builder.h"
#include "ir_private.h"
#include <llvm-c/Core.h>
#include <llvm-c/Target.h>
#include <llvm-c/BitReader.h>
#include <llvm-c/IRReader.h>
#define IR_BAD_TYPE IR_LAST_TYPE
#define BUILTIN_FUNC_1(name, ret_type, arg1_type) \
ir_const_func(ctx, \
ir_strl(ctx, name, strlen(name)), \
ir_proto_1(ctx, IR_BUILTIN_FUNC, ret_type, arg1_type))
#define BUILTIN_FUNC_2(name, ret_type, arg1_type, arg2_type) \
ir_const_func(ctx, \
ir_strl(ctx, name, strlen(name)), \
ir_proto_2(ctx, IR_BUILTIN_FUNC, ret_type, arg1_type, arg2_type))
#define BUILTIN_FUNC_3(name, ret_type, arg1_type, arg2_type, arg3_type) \
ir_const_func(ctx, \
ir_strl(ctx, name, strlen(name)), \
ir_proto_3(ctx, IR_BUILTIN_FUNC, ret_type, arg1_type, arg2_type, arg3_type))
static ir_ref llvm2ir_const_expr(ir_ctx *ctx, LLVMValueRef expr);
static ir_ref llvm2ir_auto_cast(ir_ctx *ctx, ir_ref ref, ir_type src_type, ir_type type);
static ir_type llvm2ir_type(LLVMTypeRef type)
{
char *str;
uint32_t width;
switch (LLVMGetTypeKind(type)) {
case LLVMVoidTypeKind:
return IR_VOID;
case LLVMIntegerTypeKind:
width = LLVMGetIntTypeWidth(type);
if (width == 1) {
return IR_BOOL;
} else if (width <= 8) {
return IR_I8;
} else if (width <= 16) {
return IR_I16;
} else if (width <= 32) {
return IR_I32;
} else if (width <= 64) {
return IR_I64;
}
break;
case LLVMFloatTypeKind:
return IR_FLOAT;
#if 0
case LLVMX86_FP80TypeKind:
// TODO: IR doesn't support "long double". Fallback to "double" ???
IR_FALLTHROUGH;
#endif
case LLVMDoubleTypeKind:
return IR_DOUBLE;
case LLVMPointerTypeKind:
case LLVMFunctionTypeKind:
case LLVMLabelTypeKind:
return IR_ADDR;
case LLVMVectorTypeKind:
IR_ASSERT(0 && "NIY LLVMVectorTypeKind use -fno-vectorize -fno-slp-vectorize");
default:
break;
}
str = LLVMPrintTypeToString(type);
fprintf(stderr, "Unsupported LLVM type: %s\n", str);
IR_ASSERT(0);
LLVMDisposeMessage(str);
return IR_BAD_TYPE;
}
static ir_type llvm2ir_unsigned_type(ir_type type)
{
if (IR_IS_TYPE_SIGNED(type)) {
IR_ASSERT(type >= IR_I8 && type <= IR_I64);
type = type - (IR_I8 - IR_U8);
}
return type;
}
static ir_type llvm2ir_signed_type(ir_type type)
{
if (!IR_IS_TYPE_SIGNED(type)) {
IR_ASSERT(type >= IR_U8 && type <= IR_U64);
type = type + (IR_I8 - IR_U8);
}
return type;
}
static const char *llvm2ir_sym_name(char *buf, const char *name, size_t name_len)
{
size_t i;
char c;
if (name_len > 255) {
return NULL;
}
for (i = 0; i < name_len; i++) {
c = name[i];
if (!(c >= 'a' && c <= 'z')
&& !(c >= 'A' && c <= 'Z')
&& !(c >= '0' && c <= '9')
&& c != '_') {
c = '_';
}
buf[i] = c;
}
buf[i] = 0;
return buf;
}
static ir_ref llvm2ir_proto(ir_ctx *ctx, uint32_t cconv, LLVMTypeRef ftype)
{
uint8_t flags = 0;
ir_type ret_type;
uint8_t *arg_types;
uint32_t i, num_args;
LLVMTypeRef *types;
if (cconv == LLVMCCallConv || cconv == LLVMFastCallConv) {
/* skip */
} else if (cconv == LLVMX86FastcallCallConv) {
flags |= IR_FASTCALL_FUNC;
} else {
fprintf(stderr, "Unsupported Calling Convention: %d\n", cconv);
IR_ASSERT(0);
return 0;
}
if (LLVMIsFunctionVarArg(ftype)) {
flags |= IR_VARARG_FUNC;
}
ret_type = llvm2ir_type(LLVMGetReturnType(ftype));
num_args = LLVMCountParamTypes(ftype);
types = alloca(sizeof(LLVMTypeRef) * num_args);
arg_types = alloca(num_args);
LLVMGetParamTypes(ftype, types);
for (i = 0; i < num_args; i++) {
arg_types[i] = llvm2ir_type(types[i]);
}
return ir_proto(ctx, flags, ret_type, num_args, arg_types);
}
static ir_ref llvm2ir_op(ir_ctx *ctx, LLVMValueRef op, ir_type type)
{
ir_ref ref;
LLVMBool lose;
const char *name;
size_t name_len;
ir_ref proto;
ir_val val;
char buf[256];
LLVMValueKind kind = LLVMGetValueKind(op);
switch (kind) {
case LLVMConstantIntValueKind:
IR_ASSERT(IR_IS_TYPE_INT(type));
if (IR_IS_TYPE_SIGNED(type)) {
val.i64 = LLVMConstIntGetSExtValue(op);
} else {
val.i64 = LLVMConstIntGetZExtValue(op);
}
return ir_const(ctx, val, type);
case LLVMConstantFPValueKind:
if (type == IR_DOUBLE) {
val.d = LLVMConstRealGetDouble(op, &lose);
} else {
val.f = (float)LLVMConstRealGetDouble(op, &lose);
}
return ir_const(ctx, val, type);
case LLVMConstantPointerNullValueKind:
return IR_NULL;
case LLVMConstantExprValueKind:
ref = llvm2ir_const_expr(ctx, op);
if (ctx->ir_base[ref].type != type) {
ref = llvm2ir_auto_cast(ctx, ref, ctx->ir_base[ref].type, type);
}
return ref;
case LLVMArgumentValueKind:
case LLVMInstructionValueKind:
ref = ir_addrtab_find(ctx->binding, (uintptr_t)op);
IR_ASSERT(ref != (ir_ref)IR_INVALID_VAL);
if (ctx->ir_base[ref].op == IR_VAR) {
return ir_VADDR(ref);
} else if (ctx->ir_base[ref].type != type) {
ref = llvm2ir_auto_cast(ctx, ref, ctx->ir_base[ref].type, type);
}
return ref;
case LLVMGlobalVariableValueKind:
// TODO: resolve variable address
name = LLVMGetValueName2(op, &name_len);
name = llvm2ir_sym_name(buf, name, name_len);
if (!name) {
return 0;
}
return ir_const_sym(ctx, ir_strl(ctx, name, name_len));
case LLVMFunctionValueKind:
// TODO: resolve function address
proto = llvm2ir_proto(ctx, LLVMGetFunctionCallConv(op), LLVMGlobalGetValueType(op));
name = LLVMGetValueName2(op, &name_len);
return ir_const_func(ctx, ir_strl(ctx, name, name_len), proto);
case LLVMUndefValueValueKind:
case LLVMPoisonValueValueKind:
// TODO: ???
val.u64 = 0;
return ir_const(ctx, val, type);
default:
fprintf(stderr, "Unsupported LLVM value kind: %d\n", kind);
IR_ASSERT(0);
return 0;
}
return 0;
}
static void llvm2ir_ret(ir_ctx *ctx, LLVMValueRef insn)
{
ir_ref ref;
if (LLVMGetNumOperands(insn) == 0) {
ref = IR_UNUSED;
} else {
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
ref = llvm2ir_op(ctx, op0, type);
}
ir_RETURN(ref);
}
static ir_ref llvm2ir_jmp(ir_ctx *ctx, LLVMValueRef insn)
{
ir_ref ref;
ref = ir_END(); /* END may be converted to LOOP_END later */
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
return ref;
}
static ir_ref llvm2ir_if(ir_ctx *ctx, LLVMValueRef insn)
{
ir_ref ref;
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
ref = ir_IF(llvm2ir_op(ctx, op0, type));
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
return ref;
}
static ir_ref llvm2ir_switch(ir_ctx *ctx, LLVMValueRef insn)
{
ir_ref ref;
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
ref = ir_SWITCH(llvm2ir_op(ctx, op0, type));
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
return ref;
}
static ir_ref llvm2ir_unary_op(ir_ctx *ctx, LLVMValueRef expr, ir_op op)
{
LLVMValueRef op0 = LLVMGetOperand(expr, 0);
ir_type type = llvm2ir_type(LLVMTypeOf(expr));
ir_ref ref;
ref = ir_fold1(ctx, IR_OPT(op, type), llvm2ir_op(ctx, op0, type));
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return ref;
}
static ir_ref llvm2ir_binary_expr(ir_ctx *ctx, ir_op op, ir_type type, LLVMValueRef expr)
{
return ir_fold2(ctx, IR_OPT(op, type),
llvm2ir_op(ctx, LLVMGetOperand(expr, 0), type),
llvm2ir_op(ctx, LLVMGetOperand(expr, 1), type));
}
static ir_ref llvm2ir_binary_op(ir_ctx *ctx, LLVMOpcode opcode, LLVMValueRef expr, ir_op op)
{
ir_type type = llvm2ir_type(LLVMTypeOf(expr));
ir_ref ref;
if (opcode == LLVMUDiv || opcode == LLVMURem) {
type = llvm2ir_unsigned_type(type);
} else if (opcode == LLVMSDiv || opcode == LLVMSRem) {
type = llvm2ir_signed_type(type);
}
ref = llvm2ir_binary_expr(ctx, op, type, expr);
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return ref;
}
static ir_ref llvm2ir_cast_op(ir_ctx *ctx, LLVMValueRef expr, ir_op op, LLVMOpcode opcode)
{
LLVMValueRef op0 = LLVMGetOperand(expr, 0);
ir_type src_type, dst_type;
ir_ref ref;
src_type = llvm2ir_type(LLVMTypeOf(op0));
dst_type = llvm2ir_type(LLVMTypeOf(expr));
if (op == IR_ZEXT) {
if (src_type == IR_BOOL && (dst_type == IR_I8 || dst_type == IR_U8)) {
op = IR_BITCAST;
} else if (ir_type_size[src_type] == ir_type_size[dst_type]) {
// TODO: may be we need to reset high bits ???
op = IR_BITCAST;
}
} else if (op == IR_SEXT) {
if (src_type == IR_BOOL) {
ref = llvm2ir_op(ctx, op0, src_type);
if (ir_type_size[dst_type] > 1) {
ref = ir_fold1(ctx, IR_OPT(IR_ZEXT, dst_type), ref);
} else {
ref = ir_fold1(ctx, IR_OPT(IR_BITCAST, dst_type), ref);
}
ref = ir_fold1(ctx, IR_OPT(IR_NEG, dst_type), ref);
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return ref;
}
} else if (op == IR_TRUNC) {
if (ir_type_size[src_type] == ir_type_size[dst_type]) {
// TODO: may be we need to reset high bits ???
op = IR_BITCAST;
}
} else if (op == IR_BITCAST && ir_type_size[src_type] != ir_type_size[dst_type]) {
op = (ir_type_size[src_type] < ir_type_size[dst_type]) ? IR_ZEXT : IR_TRUNC;
} else if (op == IR_INT2FP && opcode == LLVMUIToFP) {
src_type = llvm2ir_unsigned_type(src_type);
}
ref = llvm2ir_op(ctx, op0, src_type);
ref = ir_fold1(ctx, IR_OPT(op, dst_type), ref);
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return ref;
}
static ir_ref llvm2ir_icmp_op(ir_ctx *ctx, LLVMValueRef expr)
{
LLVMValueRef op0 = LLVMGetOperand(expr, 0);
LLVMValueRef op1 = LLVMGetOperand(expr, 1);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
ir_ref ref;
ir_op op;
switch (LLVMGetICmpPredicate(expr)) {
case LLVMIntEQ: op = IR_EQ; break;
case LLVMIntNE: op = IR_NE; break;
case LLVMIntUGT: op = IR_UGT; break;
case LLVMIntUGE: op = IR_UGE; break;
case LLVMIntULT: op = IR_ULT; break;
case LLVMIntULE: op = IR_ULE; break;
case LLVMIntSGT: op = IR_GT; break;
case LLVMIntSGE: op = IR_GE; break;
case LLVMIntSLT: op = IR_LT; break;
case LLVMIntSLE: op = IR_LE; break;
default: IR_ASSERT(0); return 0;
}
ref = ir_fold2(ctx, IR_OPT(op, IR_BOOL), llvm2ir_op(ctx, op0, type), llvm2ir_op(ctx, op1, type));
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return ref;
}
static ir_ref llvm2ir_fcmp_op_isnan(ir_ctx *ctx, LLVMValueRef expr, ir_type type,
LLVMRealPredicate predicate, LLVMValueRef op0, LLVMValueRef op1)
{
ir_ref func, ref;
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("isnan", IR_BOOL, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("isnanf", IR_BOOL, IR_FLOAT);
}
if (LLVMGetValueKind(op0) == LLVMConstantFPValueKind) {
ref = ir_CALL_1(IR_BOOL, func, llvm2ir_op(ctx, op1, type));
} else if (LLVMGetValueKind(op1) == LLVMConstantFPValueKind) {
ref = ir_CALL_1(IR_BOOL, func, llvm2ir_op(ctx, op0, type));
} else {
ref = ir_OR_B(
ir_CALL_1(IR_BOOL, func, llvm2ir_op(ctx, op0, type)),
ir_CALL_1(IR_BOOL, func, llvm2ir_op(ctx, op1, type)));
}
if (predicate == LLVMRealORD) {
ref = ir_NOT_B(ref);
}
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return ref;
}
static ir_ref llvm2ir_fcmp_op(ir_ctx *ctx, LLVMValueRef expr)
{
LLVMValueRef op0 = LLVMGetOperand(expr, 0);
LLVMValueRef op1 = LLVMGetOperand(expr, 1);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
ir_ref ref;
ir_op op;
LLVMRealPredicate predicate = LLVMGetFCmpPredicate(expr);
switch (predicate) {
case LLVMRealOEQ:
case LLVMRealUEQ: op = IR_EQ; break;
case LLVMRealONE:
case LLVMRealUNE: op = IR_NE; break;
case LLVMRealUGT: op = IR_UGT; break;
case LLVMRealUGE: op = IR_UGE; break;
case LLVMRealULT: op = IR_ULT; break;
case LLVMRealULE: op = IR_ULE; break;
case LLVMRealOGT: op = IR_GT; break;
case LLVMRealOGE: op = IR_GE; break;
case LLVMRealOLT: op = IR_LT; break;
case LLVMRealOLE: op = IR_LE; break;
case LLVMRealUNO:
case LLVMRealORD:
return llvm2ir_fcmp_op_isnan(ctx, expr, type, predicate, op0, op1);
default: IR_ASSERT(0); return 0;
}
ref = ir_fold2(ctx, IR_OPT(op, IR_BOOL), llvm2ir_op(ctx, op0, type), llvm2ir_op(ctx, op1, type));
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return ref;
}
static ir_ref llvm2ir_cond_op(ir_ctx *ctx, LLVMValueRef expr)
{
LLVMValueRef op0 = LLVMGetOperand(expr, 0);
LLVMValueRef op1 = LLVMGetOperand(expr, 1);
LLVMValueRef op2 = LLVMGetOperand(expr, 2);
ir_type type = llvm2ir_type(LLVMTypeOf(expr));
ir_ref ref;
ref = ir_fold3(ctx, IR_OPT(IR_COND, type), llvm2ir_op(ctx, op0, IR_BOOL), llvm2ir_op(ctx, op1, type), llvm2ir_op(ctx, op2, type));
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return ref;
}
static void llvm2ir_alloca(ir_ctx *ctx, LLVMValueRef insn)
{
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
ir_ref ref;
if (LLVMGetValueKind(op0) == LLVMConstantIntValueKind && LLVMConstIntGetZExtValue(op0) == 1) {
LLVMTypeKind type_kind = LLVMGetTypeKind(LLVMGetAllocatedType(insn));
if (type_kind == LLVMIntegerTypeKind
|| type_kind == LLVMFloatTypeKind
|| type_kind == LLVMDoubleTypeKind
|| type_kind == LLVMPointerTypeKind
|| type_kind == LLVMFunctionTypeKind
|| type_kind == LLVMLabelTypeKind) {
ir_type type = llvm2ir_type(LLVMGetAllocatedType(insn));
size_t name_len;
const char *name = LLVMGetValueName2(insn, &name_len);
char buf[32];
if (!name || !name_len) {
sprintf(buf, "var_%d", ctx->insns_count);
name = buf;
}
ref = ir_VAR(type, name);
} else {
ref = ir_ALLOCA(ir_MUL_I32(llvm2ir_op(ctx, op0, IR_I32),
ir_const_i32(ctx, LLVMABISizeOfType((LLVMTargetDataRef)ctx->rules, LLVMGetAllocatedType(insn)))));
}
} else {
ref = ir_ALLOCA(ir_MUL_I32(llvm2ir_op(ctx, op0, IR_I32),
ir_const_i32(ctx, LLVMABISizeOfType((LLVMTargetDataRef)ctx->rules, LLVMGetAllocatedType(insn)))));
}
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
}
static void llvm2ir_load(ir_ctx *ctx, LLVMValueRef insn)
{
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
ir_type type = llvm2ir_type(LLVMTypeOf(insn));
ir_ref ref;
if (LLVMGetValueKind(op0) == LLVMInstructionValueKind) {
ref = ir_addrtab_find(ctx->binding, (uintptr_t)op0);
if (ctx->ir_base[ref].op == IR_VAR) {
ref = ir_VLOAD(type, ref);
} else {
if (ctx->ir_base[ref].type != IR_ADDR) {
ref = llvm2ir_auto_cast(ctx, ref, ctx->ir_base[ref].type, IR_ADDR);
}
ref = ir_LOAD(type, ref);
}
} else {
ref = llvm2ir_op(ctx, op0, IR_ADDR);
ref = ir_LOAD(type, ref);
}
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
}
static void llvm2ir_store(ir_ctx *ctx, LLVMValueRef insn)
{
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
LLVMValueRef op1 = LLVMGetOperand(insn, 1);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
ir_ref ref, val;
val = llvm2ir_op(ctx, op0, type);
if (LLVMGetValueKind(op1) == LLVMInstructionValueKind) {
ref = ir_addrtab_find(ctx->binding, (uintptr_t)op1);
if (ctx->ir_base[ref].op == IR_VAR) {
ir_VSTORE(ref, val);
} else {
if (ctx->ir_base[ref].type != IR_ADDR) {
ref = llvm2ir_auto_cast(ctx, ref, ctx->ir_base[ref].type, IR_ADDR);
}
ir_STORE(ref, val);
}
} else {
ref = llvm2ir_op(ctx, op1, IR_ADDR);
ir_STORE(ref, val);
}
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ctx->control);
}
static ir_type llvm2ir_overflow_type(LLVMTypeRef stype)
{
ir_type type;
IR_ASSERT(LLVMGetTypeKind(stype) == LLVMStructTypeKind);
IR_ASSERT(LLVMCountStructElementTypes(stype) == 2);
IR_ASSERT(llvm2ir_type(LLVMStructGetTypeAtIndex(stype, 1)) == IR_BOOL);
stype = LLVMStructGetTypeAtIndex(stype, 0);
type = llvm2ir_type(stype);
IR_ASSERT(IR_IS_TYPE_INT(type));
return type;
}
static void llvm2ir_va_arg(ir_ctx *ctx, LLVMValueRef insn)
{
ir_type type = llvm2ir_type(LLVMTypeOf(insn));
ir_ref ref = ir_VA_ARG(type, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
}
#define STR_START(name, name_len, str) (name_len >= strlen(str) && memcmp(name, str, strlen(str)) == 0)
#define STR_EQUAL(name, name_len, str) (name_len == strlen(str) && memcmp(name, str, strlen(str)) == 0)
static ir_ref llvm2ir_intrinsic(ir_ctx *ctx, LLVMValueRef insn, LLVMTypeRef ftype, uint32_t count, const char *name, size_t name_len)
{
ir_type type;
ir_ref func;
if (STR_START(name, name_len, "llvm.lifetime.")) {
/* skip */
return IR_NULL;
} else if (STR_START(name, name_len, "llvm.dbg.")) {
/* skip */
return IR_NULL;
} else if (STR_EQUAL(name, name_len, "llvm.experimental.noalias.scope.decl")) {
/* skip */
return IR_NULL;
} else if (STR_EQUAL(name, name_len, "llvm.assume")) {
/* skip */
return IR_NULL;
} else if (STR_START(name, name_len, "llvm.smax.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
type = llvm2ir_signed_type(type);
return llvm2ir_binary_expr(ctx, IR_MAX, type, insn);
} else if (STR_START(name, name_len, "llvm.umax.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
type = llvm2ir_unsigned_type(type);
return llvm2ir_binary_expr(ctx, IR_MAX, type, insn);
} else if (STR_START(name, name_len, "llvm.maxnum.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
return llvm2ir_binary_expr(ctx, IR_MAX, type, insn);
} else if (STR_START(name, name_len, "llvm.smin.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
type = llvm2ir_signed_type(type);
return llvm2ir_binary_expr(ctx, IR_MIN, type, insn);
} else if (STR_START(name, name_len, "llvm.umin.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
type = llvm2ir_unsigned_type(type);
return llvm2ir_binary_expr(ctx, IR_MIN, type, insn);
} else if (STR_START(name, name_len, "llvm.minnum.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
return llvm2ir_binary_expr(ctx, IR_MIN, type, insn);
} else if (STR_START(name, name_len, "llvm.sadd.with.overflow.")) {
IR_ASSERT(count == 2);
type = llvm2ir_overflow_type(LLVMGetReturnType(ftype));
type = llvm2ir_signed_type(type);
return llvm2ir_binary_expr(ctx, IR_ADD_OV, type, insn);
} else if (STR_START(name, name_len, "llvm.uadd.with.overflow.")) {
IR_ASSERT(count == 2);
type = llvm2ir_overflow_type(LLVMGetReturnType(ftype));
type = llvm2ir_unsigned_type(type);
return llvm2ir_binary_expr(ctx, IR_ADD_OV, type, insn);
} else if (STR_START(name, name_len, "llvm.ssub.with.overflow.")) {
IR_ASSERT(count == 2);
type = llvm2ir_overflow_type(LLVMGetReturnType(ftype));
type = llvm2ir_signed_type(type);
return llvm2ir_binary_expr(ctx, IR_SUB_OV, type, insn);
} else if (STR_START(name, name_len, "llvm.usub.with.overflow.")) {
IR_ASSERT(count == 2);
type = llvm2ir_overflow_type(LLVMGetReturnType(ftype));
type = llvm2ir_unsigned_type(type);
return llvm2ir_binary_expr(ctx, IR_SUB_OV, type, insn);
} else if (STR_START(name, name_len, "llvm.smul.with.overflow.")) {
IR_ASSERT(count == 2);
type = llvm2ir_overflow_type(LLVMGetReturnType(ftype));
type = llvm2ir_signed_type(type);
return llvm2ir_binary_expr(ctx, IR_MUL_OV, type, insn);
} else if (STR_START(name, name_len, "llvm.umul.with.overflow.")) {
IR_ASSERT(count == 2);
type = llvm2ir_overflow_type(LLVMGetReturnType(ftype));
type = llvm2ir_unsigned_type(type);
return llvm2ir_binary_expr(ctx, IR_MUL_OV, type, insn);
} else if (STR_START(name, name_len, "llvm.sadd.sat.")) {
ir_ref ref, overflow, op0, op1, limit;
ir_val val;
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
type = llvm2ir_signed_type(type);
op0 = llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type);
op1 = llvm2ir_op(ctx, LLVMGetOperand(insn, 1), type);
if (IR_IS_CONST_REF(op0)) {
IR_ASSERT(ctx->ir_base[op0].type == type);
if (ctx->ir_base[op0].val.i64 >= 0) {
// positive_x + MIN -> y, positive_x + MAX = MAX
switch (ir_type_size[type]) {
case 1: val.u64 = 0x7f; break;
case 2: val.u64 = 0x7fff; break;
case 4: val.u64 = 0x7fffffff; break;
case 8: val.u64 = 0x7fffffffffffffff; break;
default: IR_ASSERT(0);
}
} else {
// negative_x + MIN -> MIN, negative_x + MAX = y
switch (ir_type_size[type]) {
case 1: val.u64 = 0x80; break;
case 2: val.u64 = 0x8000; break;
case 4: val.u64 = 0x80000000; break;
case 8: val.u64 = 0x8000000000000000; break;
default: IR_ASSERT(0);
}
}
limit = ir_const(ctx, val, type);
} else if (IR_IS_CONST_REF(op1)) {
IR_ASSERT(ctx->ir_base[op1].type == type);
if (ctx->ir_base[op1].val.i64 >= 0) {
// MIN + positive_x -> y, MAX + positive_x = MAX
switch (ir_type_size[type]) {
case 1: val.u64 = 0x7f; break;
case 2: val.u64 = 0x7fff; break;
case 4: val.u64 = 0x7fffffff; break;
case 8: val.u64 = 0x7fffffffffffffff; break;
default: IR_ASSERT(0);
}
} else {
// MIN + negative_x -> MIN, MAX + negative_x = y
switch (ir_type_size[type]) {
case 1: val.u64 = 0x80; break;
case 2: val.u64 = 0x8000; break;
case 4: val.u64 = 0x80000000; break;
case 8: val.u64 = 0x8000000000000000; break;
default: IR_ASSERT(0);
}
}
limit = ir_const(ctx, val, type);
} else {
ref = ir_SHR(type, op0, ir_const_u8(ctx, ir_type_size[type] * 8 - 1));
switch (ir_type_size[type]) {
case 1: val.u64 = 0x7f; break;
case 2: val.u64 = 0x7fff; break;
case 4: val.u64 = 0x7fffffff; break;
case 8: val.u64 = 0x7fffffffffffffff; break;
default: IR_ASSERT(0);
}
limit = ir_ADD(type, ref, ir_const(ctx, val, type));
}
ref = ir_fold2(ctx, IR_OPT(IR_ADD_OV, type), op0, op1);
overflow = ir_OVERFLOW(ref);
return ir_COND(type, overflow, limit, ref);
} else if (STR_START(name, name_len, "llvm.uadd.sat.")) {
ir_ref ref, overflow;
ir_val val;
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
type = llvm2ir_unsigned_type(type);
ref = llvm2ir_binary_expr(ctx, IR_ADD_OV, type, insn);
overflow = ir_OVERFLOW(ref);
switch (ir_type_size[type]) {
case 1: val.u64 = 0xff; break;
case 2: val.u64 = 0xffff; break;
case 4: val.u64 = 0xffffffff; break;
case 8: val.u64 = 0xffffffffffffffff; break;
default: IR_ASSERT(0);
}
return ir_COND(type, overflow, ir_const(ctx, val, type), ref);
} else if (STR_START(name, name_len, "llvm.ssub.sat.")) {
ir_ref ref, overflow, op0, op1, limit;
ir_val val;
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
type = llvm2ir_signed_type(type);
op0 = llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type);
op1 = llvm2ir_op(ctx, LLVMGetOperand(insn, 1), type);
if (IR_IS_CONST_REF(op0)) {
IR_ASSERT(ctx->ir_base[op0].type == type);
if (ctx->ir_base[op0].val.i64 >= 0) {
// positive_x - MIN -> MAX, positive_x - MAX = y
switch (ir_type_size[type]) {
case 1: val.u64 = 0x7f; break;
case 2: val.u64 = 0x7fff; break;
case 4: val.u64 = 0x7fffffff; break;
case 8: val.u64 = 0x7fffffffffffffff; break;
default: IR_ASSERT(0);
}
} else {
// negative_x - MIN -> y, negative_x - MAX = MIN
switch (ir_type_size[type]) {
case 1: val.u64 = 0x80; break;
case 2: val.u64 = 0x8000; break;
case 4: val.u64 = 0x80000000; break;
case 8: val.u64 = 0x8000000000000000; break;
default: IR_ASSERT(0);
}
}
limit = ir_const(ctx, val, type);
} else if (IR_IS_CONST_REF(op1)) {
IR_ASSERT(ctx->ir_base[op1].type == type);
if (ctx->ir_base[op1].val.i64 >= 0) {
// MIN - positive_x -> MIN, MAX - positive_x = y
switch (ir_type_size[type]) {
case 1: val.u64 = 0x80; break;
case 2: val.u64 = 0x8000; break;
case 4: val.u64 = 0x80000000; break;
case 8: val.u64 = 0x8000000000000000; break;
default: IR_ASSERT(0);
}
} else {
// MIN - negative_x -> y, MAX - negative_x = MAX
switch (ir_type_size[type]) {
case 1: val.u64 = 0x7f; break;
case 2: val.u64 = 0x7fff; break;
case 4: val.u64 = 0x7fffffff; break;
case 8: val.u64 = 0x7fffffffffffffff; break;
default: IR_ASSERT(0);
}
}
limit = ir_const(ctx, val, type);
} else {
ref = ir_SHR(type, op0, ir_const_u8(ctx, ir_type_size[type] * 8 - 1));
switch (ir_type_size[type]) {
case 1: val.u64 = 0x7f; break;
case 2: val.u64 = 0x7fff; break;
case 4: val.u64 = 0x7fffffff; break;
case 8: val.u64 = 0x7fffffffffffffff; break;
default: IR_ASSERT(0);
}
limit = ir_ADD(type, ref, ir_const(ctx, val, type));
}
ref = ir_fold2(ctx, IR_OPT(IR_SUB_OV, type), op0, op1);
overflow = ir_OVERFLOW(ref);
return ir_COND(type, overflow, limit, ref);
} else if (STR_START(name, name_len, "llvm.usub.sat.")) {
ir_ref ref, overflow;
ir_val val;
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
type = llvm2ir_unsigned_type(type);
ref = llvm2ir_binary_expr(ctx, IR_SUB_OV, type, insn);
overflow = ir_OVERFLOW(ref);
val.u64 = 0;
return ir_COND(type, overflow, ir_const(ctx, val, type), ref);
} else if (STR_START(name, name_len, "llvm.abs.")) {
IR_ASSERT(count == 2);
// TODO: support for the second argument
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
return ir_ABS(type, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.fabs.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
return ir_ABS(type, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.bswap.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
return ir_BSWAP(type, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.fshl.")
&& count == 3
&& LLVMGetOperand(insn, 0) == LLVMGetOperand(insn, 1)) {
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
return ir_ROL(type,
llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type),
llvm2ir_op(ctx, LLVMGetOperand(insn, 2), type));
} else if (STR_START(name, name_len, "llvm.fshr.")
&& count == 3
&& LLVMGetOperand(insn, 0) == LLVMGetOperand(insn, 1)) {
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_INT(type));
return ir_ROR(type,
llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type),
llvm2ir_op(ctx, LLVMGetOperand(insn, 2), type));
} else if (STR_EQUAL(name, name_len, "llvm.va_start")) {
IR_ASSERT(count == 1);
ir_VA_START(llvm2ir_op(ctx, LLVMGetOperand(insn, 0), IR_ADDR));
return IR_NULL;
} else if (STR_EQUAL(name, name_len, "llvm.va_end")) {
IR_ASSERT(count == 1);
ir_VA_END(llvm2ir_op(ctx, LLVMGetOperand(insn, 0), IR_ADDR));
return IR_NULL;
} else if (STR_EQUAL(name, name_len, "llvm.va_copy")) {
IR_ASSERT(count == 2);
ir_VA_COPY(
llvm2ir_op(ctx, LLVMGetOperand(insn, 0), IR_ADDR),
llvm2ir_op(ctx, LLVMGetOperand(insn, 1), IR_ADDR));
return IR_NULL;
} else if (STR_START(name, name_len, "llvm.ctpop.")) {
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
return ir_CTPOP(type, llvm2ir_op(ctx, op0, type));
} else if (STR_START(name, name_len, "llvm.ctlz.")) {
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
// TODO: support for the second argument
return ir_CTLZ(type, llvm2ir_op(ctx, op0, type));
} else if (STR_START(name, name_len, "llvm.cttz.")) {
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
ir_type type = llvm2ir_type(LLVMTypeOf(op0));
// TODO: support for the second argument
return ir_CTTZ(type, llvm2ir_op(ctx, op0, type));
} else if (STR_START(name, name_len, "llvm.memset.")) {
IR_ASSERT(count == 3 || count == 4);
func = BUILTIN_FUNC_3("memset", IR_ADDR, IR_ADDR, IR_I32, IR_SIZE_T);
return ir_CALL_3(IR_VOID, func,
llvm2ir_op(ctx, LLVMGetOperand(insn, 0), IR_ADDR),
llvm2ir_op(ctx, LLVMGetOperand(insn, 1), IR_I8),
llvm2ir_op(ctx, LLVMGetOperand(insn, 2), IR_SIZE_T));
} else if (STR_START(name, name_len, "llvm.memcpy.")) {
IR_ASSERT(count == 3 || count == 4);
func = BUILTIN_FUNC_3("memcpy", IR_ADDR, IR_ADDR, IR_ADDR, IR_SIZE_T);
return ir_CALL_3(IR_VOID, func,
llvm2ir_op(ctx, LLVMGetOperand(insn, 0), IR_ADDR),
llvm2ir_op(ctx, LLVMGetOperand(insn, 1), IR_ADDR),
llvm2ir_op(ctx, LLVMGetOperand(insn, 2), IR_SIZE_T));
} else if (STR_START(name, name_len, "llvm.memmove.")) {
IR_ASSERT(count == 3 || count == 4);
func = BUILTIN_FUNC_3("memmove", IR_ADDR, IR_ADDR, IR_ADDR, IR_SIZE_T);
return ir_CALL_3(IR_VOID, func,
llvm2ir_op(ctx, LLVMGetOperand(insn, 0), IR_ADDR),
llvm2ir_op(ctx, LLVMGetOperand(insn, 1), IR_ADDR),
llvm2ir_op(ctx, LLVMGetOperand(insn, 2), IR_SIZE_T));
} else if (STR_START(name, name_len, "llvm.frameaddress.")) {
IR_ASSERT(LLVMGetValueKind(LLVMGetOperand(insn, 0)) == LLVMConstantIntValueKind);
IR_ASSERT(LLVMConstIntGetSExtValue(LLVMGetOperand(insn, 0)) == 0);
return ir_FRAME_ADDR();
} else if (STR_EQUAL(name, name_len, "llvm.debugtrap")) {
ir_TRAP();
return ctx->control;
} else if (STR_START(name, name_len, "llvm.sqrt.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("sqrt", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("sqrtf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.sin.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("sin", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("sinf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.cos.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("cos", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("cosf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.pow.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("pow", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("powf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_2(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type),
llvm2ir_op(ctx, LLVMGetOperand(insn, 1), type));
} else if (STR_START(name, name_len, "llvm.exp.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("exp", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("expf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.exp2.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("exp2", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("exp2f", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.exp10.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("exp10", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("exp10f", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.ldexp.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_2("ldexp", IR_DOUBLE, IR_DOUBLE, IR_I32);
} else {
func = BUILTIN_FUNC_2("ldexpf", IR_FLOAT, IR_FLOAT, IR_I32);
}
return ir_CALL_2(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type),
llvm2ir_op(ctx, LLVMGetOperand(insn, 1), IR_I32));
} else if (STR_START(name, name_len, "llvm.log.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("log", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("logf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.log2.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("log2", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("log2f", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.log10.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("log10", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("log10f", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.copysign.")) {
IR_ASSERT(count == 2);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_2("copysign", IR_DOUBLE, IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_2("copysignf", IR_FLOAT, IR_FLOAT, IR_FLOAT);
}
return ir_CALL_2(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type),
llvm2ir_op(ctx, LLVMGetOperand(insn, 1), type));
} else if (STR_START(name, name_len, "llvm.floor.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("floor", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("floorf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.ceil.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("ceil", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("ceilf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.trunc.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("trunc", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("truncf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.round.")) {
IR_ASSERT(count == 1);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
if (type == IR_DOUBLE) {
func = BUILTIN_FUNC_1("round", IR_DOUBLE, IR_DOUBLE);
} else {
func = BUILTIN_FUNC_1("roundf", IR_FLOAT, IR_FLOAT);
}
return ir_CALL_1(type, func, llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type));
} else if (STR_START(name, name_len, "llvm.fmuladd.")
|| STR_START(name, name_len, "llvm.fma.")) {
IR_ASSERT(count == 3);
type = llvm2ir_type(LLVMGetReturnType(ftype));
IR_ASSERT(IR_IS_TYPE_FP(type));
return ir_fold2(ctx, IR_OPT(IR_ADD, type),
ir_fold2(ctx, IR_OPT(IR_MUL, type),
llvm2ir_op(ctx, LLVMGetOperand(insn, 0), type),
llvm2ir_op(ctx, LLVMGetOperand(insn, 1), type)),
llvm2ir_op(ctx, LLVMGetOperand(insn, 2), type));
} else if (STR_EQUAL(name, name_len, "llvm.bitreverse.i1")) {
IR_ASSERT(count == 1);
return llvm2ir_op(ctx, LLVMGetOperand(insn, 0), IR_BOOL);
} else {
fprintf(stderr, "Unsupported LLVM intrinsic: %s\n", name);
IR_ASSERT(0);
}
return IR_UNUSED;
}
static void llvm2ir_call(ir_ctx *ctx, LLVMValueRef insn)
{
LLVMValueRef arg, func = LLVMGetCalledValue(insn);
LLVMTypeRef ftype = LLVMGetCalledFunctionType(insn);
// uint32_t cconv = LLVMGetInstructionCallConv(insn);
// LLVMBool tail = LLVMIsTailCall(insn);
ir_type type;
uint32_t i, count = LLVMGetNumArgOperands(insn);
ir_ref ref;
ir_ref *args = alloca(sizeof(ref) * count);
if (LLVMGetValueKind(func) == LLVMFunctionValueKind) {
size_t name_len;
const char *name;
name = LLVMGetValueName2(func, &name_len);
if (STR_START(name, name_len, "llvm.")) {
ref = llvm2ir_intrinsic(ctx, insn, ftype, count, name, name_len);
if (ref) {
if (ref != IR_NULL) {
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
}
return;
}
}
}
args = alloca(sizeof(ref) * count);
for (i = 0; i < count; i++) {
arg = LLVMGetOperand(insn, i);
type = llvm2ir_type(LLVMTypeOf(arg));
args[i] = llvm2ir_op(ctx, arg, type);
}
do {
if (LLVMIsTailCall(insn)) {
LLVMValueRef next_insn = LLVMGetNextInstruction(insn);
if (LLVMGetInstructionOpcode(next_insn) == LLVMRet
&& LLVMGetNumOperands(next_insn) == 1
&& LLVMGetOperand(next_insn, 1) == insn) {
ref = ir_TAILCALL_N(llvm2ir_type(LLVMGetReturnType(ftype)), llvm2ir_op(ctx, func, IR_ADDR), count, args);
break;
}
}
ref = ir_CALL_N(llvm2ir_type(LLVMGetReturnType(ftype)), llvm2ir_op(ctx, func, IR_ADDR), count, args);
} while (0);
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
}
static bool llvm2ir_extract(ir_ctx *ctx, LLVMValueRef expr)
{
LLVMValueRef op0;
ir_ref ref;
uint32_t n;
IR_ASSERT(LLVMGetNumOperands(expr) == 1 && LLVMGetNumIndices(expr) == 1);
op0 = LLVMGetOperand(expr, 0);
ref = ir_addrtab_find(ctx->binding, (uintptr_t)op0);
IR_ASSERT(ref != (ir_ref)IR_INVALID_VAL);
if (ctx->ir_base[ref].op != IR_ADD_OV
&& ctx->ir_base[ref].op != IR_SUB_OV
&& ctx->ir_base[ref].op != IR_MUL_OV
&& ctx->ir_base[ref].op != IR_PHI) {
return 0;
}
n = *LLVMGetIndices(expr);
if (n == 0) {
/* use the same result */
} else if (n == 1) {
ref = ir_OVERFLOW(ref);
} else {
return 0;
}
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
return 1;
}
static void llvm2ir_freeze(ir_ctx *ctx, LLVMValueRef expr)
{
LLVMValueRef op0;
ir_ref ref;
IR_ASSERT(LLVMGetNumOperands(expr) == 1);
op0 = LLVMGetOperand(expr, 0);
ref = ir_addrtab_find(ctx->binding, (uintptr_t)op0);
IR_ASSERT(ref != (ir_ref)IR_INVALID_VAL);
ir_addrtab_add(ctx->binding, (uintptr_t)expr, ref);
}
static uintptr_t llvm2ir_const_element_ptr_offset(LLVMTargetDataRef target_data, LLVMValueRef expr)
{
LLVMValueRef op;
LLVMTypeRef type;
LLVMTypeKind type_kind;
uint32_t i, count;
uintptr_t index, offset = 0;
type = LLVMGetGEPSourceElementType(expr);
type_kind = LLVMGetTypeKind(type);
op = LLVMGetOperand(expr, 1);
IR_ASSERT(LLVMGetValueKind(op) == LLVMConstantIntValueKind);
index = LLVMConstIntGetSExtValue(op);
offset += index * LLVMABISizeOfType(target_data, type);
count = LLVMGetNumOperands(expr);
for (i = 2; i < count; i++) {
op = LLVMGetOperand(expr, i);
switch (type_kind) {
case LLVMStructTypeKind:
IR_ASSERT(LLVMGetValueKind(op) == LLVMConstantIntValueKind);
index = LLVMConstIntGetSExtValue(op);
offset += LLVMOffsetOfElement(target_data, type, index);
type = LLVMStructGetTypeAtIndex(type, index);
break;
case LLVMPointerTypeKind:
IR_ASSERT(!LLVMPointerTypeIsOpaque(type));
IR_FALLTHROUGH;
case LLVMArrayTypeKind:
IR_ASSERT(LLVMGetValueKind(op) == LLVMConstantIntValueKind);
index = LLVMConstIntGetSExtValue(op);
type = LLVMGetElementType(type);
offset += index * LLVMABISizeOfType(target_data, type);
break;
default:
IR_ASSERT(0);
return 0;
}
type_kind = LLVMGetTypeKind(type);
}
return offset;
}
static ir_ref llvm2ir_const_element_ptr(ir_ctx *ctx, LLVMValueRef expr)
{
LLVMValueRef op0 = LLVMGetOperand(expr, 0);
uintptr_t offset = llvm2ir_const_element_ptr_offset((LLVMTargetDataRef)ctx->rules, expr);
ir_ref ref = llvm2ir_op(ctx, op0, IR_ADDR);
if (offset) {
ref = ir_ADD_A(ref, ir_const_addr(ctx, (uintptr_t)offset));
}
return ref;
}
static void llvm2ir_element_ptr(ir_ctx *ctx, LLVMValueRef insn)
{
LLVMValueRef op;
LLVMValueRef op0 = LLVMGetOperand(insn, 0);
LLVMTypeRef type = LLVMTypeOf(op0);
LLVMTypeKind type_kind;
uint32_t i, count;
uintptr_t index, offset = 0, size;
ir_ref ref = llvm2ir_op(ctx, op0, IR_ADDR);
type_kind = LLVMGetTypeKind(type);
IR_ASSERT(type_kind == LLVMPointerTypeKind);
type = LLVMGetGEPSourceElementType(insn);
type_kind = LLVMGetTypeKind(type);
op = LLVMGetOperand(insn, 1);
if (LLVMGetValueKind(op) == LLVMConstantIntValueKind) {
index = LLVMConstIntGetSExtValue(op);
offset += index * LLVMABISizeOfType((LLVMTargetDataRef)ctx->rules, type);
} else {
size = LLVMABISizeOfType((LLVMTargetDataRef)ctx->rules, type);
if (size == 1) {
ref = ir_ADD_A(ref, llvm2ir_op(ctx, op, IR_ADDR));
} else {
ref = ir_ADD_A(ref, ir_MUL_A(
llvm2ir_op(ctx, op, IR_ADDR),
ir_const_addr(ctx, LLVMABISizeOfType((LLVMTargetDataRef)ctx->rules, type))));
}
}
count = LLVMGetNumOperands(insn);
for (i = 2; i < count; i++) {
op = LLVMGetOperand(insn, i);
switch (type_kind) {
case LLVMStructTypeKind:
IR_ASSERT(LLVMGetValueKind(op) == LLVMConstantIntValueKind);
index = LLVMConstIntGetSExtValue(op);
offset += LLVMOffsetOfElement((LLVMTargetDataRef)ctx->rules, type, index);
type = LLVMStructGetTypeAtIndex(type, index);
break;
case LLVMPointerTypeKind:
IR_ASSERT(!LLVMPointerTypeIsOpaque(type));
IR_FALLTHROUGH;
case LLVMArrayTypeKind:
type = LLVMGetElementType(type);
if (LLVMGetValueKind(op) == LLVMConstantIntValueKind) {
index = LLVMConstIntGetSExtValue(op);
offset += index * LLVMABISizeOfType((LLVMTargetDataRef)ctx->rules, type);
} else {
if (offset) {
ref = ir_ADD_A(ref, ir_const_addr(ctx, (uintptr_t)offset));
offset = 0;
}
size = LLVMABISizeOfType((LLVMTargetDataRef)ctx->rules, type);
if (size == 1) {
ref = ir_ADD_A(ref, llvm2ir_op(ctx, op, IR_ADDR));
} else {
ref = ir_ADD_A(ref, ir_MUL_A(
llvm2ir_op(ctx, op, IR_ADDR),
ir_const_addr(ctx, LLVMABISizeOfType((LLVMTargetDataRef)ctx->rules, type))));
}
}
break;
default:
IR_ASSERT(0);
return;
}
type_kind = LLVMGetTypeKind(type);
}
if (offset) {
ref = ir_ADD_A(ref, ir_const_addr(ctx, (uintptr_t)offset));
}
ir_addrtab_add(ctx->binding, (uintptr_t)insn, ref);
}
static ir_ref llvm2ir_const_expr(ir_ctx *ctx, LLVMValueRef expr)
{
LLVMOpcode opcode = LLVMGetConstOpcode(expr);
switch (opcode) {
case LLVMFNeg:
return llvm2ir_unary_op(ctx, expr, IR_NEG);
case LLVMAdd:
case LLVMFAdd:
return llvm2ir_binary_op(ctx, opcode, expr, IR_ADD);
case LLVMSub:
case LLVMFSub:
return llvm2ir_binary_op(ctx, opcode, expr, IR_SUB);
case LLVMMul:
case LLVMFMul:
return llvm2ir_binary_op(ctx, opcode, expr, IR_MUL);
case LLVMUDiv:
case LLVMSDiv:
case LLVMFDiv:
return llvm2ir_binary_op(ctx, opcode, expr, IR_DIV);
case LLVMURem:
case LLVMSRem:
break;
case LLVMShl:
return llvm2ir_binary_op(ctx, opcode, expr, IR_SHL);
case LLVMLShr:
return llvm2ir_binary_op(ctx, opcode, expr, IR_SHR);
case LLVMAShr:
return llvm2ir_binary_op(ctx, opcode, expr, IR_SAR);
case LLVMAnd:
return llvm2ir_binary_op(ctx, opcode, expr, IR_AND);
case LLVMOr:
return llvm2ir_binary_op(ctx, opcode, expr, IR_OR);
case LLVMXor:
return llvm2ir_binary_op(ctx, opcode, expr, IR_XOR);
case LLVMTrunc:
return llvm2ir_cast_op(ctx, expr, IR_TRUNC, opcode);
case LLVMZExt:
return llvm2ir_cast_op(ctx, expr, IR_ZEXT, opcode);
case LLVMSExt:
return llvm2ir_cast_op(ctx, expr, IR_SEXT, opcode);
case LLVMFPTrunc:
case LLVMFPExt:
return llvm2ir_cast_op(ctx, expr, IR_FP2FP, opcode);
case LLVMFPToUI:
case LLVMFPToSI:
return llvm2ir_cast_op(ctx, expr, IR_FP2INT, opcode);
case LLVMUIToFP:
case LLVMSIToFP:
return llvm2ir_cast_op(ctx, expr, IR_INT2FP, opcode);
case LLVMPtrToInt:
case LLVMIntToPtr:
case LLVMBitCast:
return llvm2ir_cast_op(ctx, expr, IR_BITCAST, opcode);
case LLVMICmp:
return llvm2ir_icmp_op(ctx, expr);
case LLVMFCmp:
return llvm2ir_fcmp_op(ctx, expr);
case LLVMSelect:
return llvm2ir_cond_op(ctx, expr);
case LLVMGetElementPtr:
return llvm2ir_const_element_ptr(ctx, expr);
default:
break;
}
fprintf(stderr, "Unsupported LLVM expr: %d\n", opcode);
IR_ASSERT(0);
return 0;
}
static ir_ref llvm2ir_auto_cast(ir_ctx *ctx, ir_ref ref, ir_type src_type, ir_type type)
{
if (IR_IS_TYPE_INT(type)) {
if (IR_IS_TYPE_INT(src_type)) {
if (ir_type_size[type] == ir_type_size[src_type]) {
if (type == IR_ADDR) {
return ref;
} else {
return ir_BITCAST(type, ref);
}
} else if (ir_type_size[type] > ir_type_size[src_type]) {
if (IR_IS_TYPE_SIGNED(src_type)) {
return ir_SEXT(type, ref);
} else {
return ir_ZEXT(type, ref);
}
} else if (ir_type_size[type] < ir_type_size[src_type]) {
return ir_TRUNC(type, ref);
}
} else {
// TODO: FP to INT conversion
}
} else if (IR_IS_TYPE_FP(type)) {
if (IR_IS_TYPE_FP(src_type)) {
return ir_FP2FP(type, ref);
} else {
return ir_INT2FP(type, ref);
}
}
IR_ASSERT(0);
return ref;
}
static void llvm2ir_bb_start(ir_ctx *ctx, LLVMBasicBlockRef bb, LLVMBasicBlockRef pred_bb)
{
LLVMValueRef insn = LLVMGetLastInstruction(pred_bb);
LLVMOpcode opcode = LLVMGetInstructionOpcode(insn);
if (opcode == LLVMBr) {
ir_ref ref = ir_addrtab_find(ctx->binding, (uintptr_t)insn);
IR_ASSERT(ref != (ir_ref)IR_INVALID_VAL);
if (!LLVMIsConditional(insn)) {
ir_BEGIN(ref);
} else {
LLVMBasicBlockRef true_bb;
IR_ASSERT(LLVMGetNumSuccessors(insn) == 2);
true_bb = LLVMGetSuccessor(insn, 0); /* true branch */
if (bb == true_bb) {
IR_ASSERT(bb != LLVMGetSuccessor(insn, 1)); /* false branch */
ir_IF_TRUE(ref);
} else {
IR_ASSERT(bb == LLVMGetSuccessor(insn, 1)); /* false branch */
ir_IF_FALSE(ref);
}
}
} else if (opcode == LLVMSwitch) {
ir_ref ref = ir_addrtab_find(ctx->binding, (uintptr_t)insn);
IR_ASSERT(ref != (ir_ref)IR_INVALID_VAL);
if (LLVMGetSwitchDefaultDest(insn) == bb) {
ir_CASE_DEFAULT(ref);
} else {
uint32_t i;
uint32_t count = LLVMGetNumOperands(insn);
for (i = 2; i < count; i += 2) {
if (LLVMValueAsBasicBlock(LLVMGetOperand(insn, i + 1)) == bb) {
LLVMValueRef val = LLVMGetOperand(insn, i);
ir_type type = llvm2ir_type(LLVMTypeOf(val));
ir_CASE_VAL(ref, llvm2ir_op(ctx, val, type));
break;
}
}
}
} else {
IR_ASSERT(0);
}
}
static void llvm2ir_set_predecessor_ref(uint32_t b, ir_ref ref, uint32_t count, uint32_t *edges, ir_ref *refs)
{
do {
if (*edges == b && !*refs) {
*refs = ref;
return;
}
edges++;
refs++;
count--;
} while (count);
IR_ASSERT(0);
}
static void llvm2ir_patch_merge(ir_ctx *ctx, ir_ref merge, ir_ref ref, uint32_t b, uint32_t *edges)
{
ir_insn *insn = &ctx->ir_base[merge];
ir_ref *ops = insn->ops + 1;
uint32_t count = insn->inputs_count;
IR_ASSERT(insn->op == IR_MERGE || insn->op == IR_LOOP_BEGIN);
insn->op = IR_LOOP_BEGIN;
do {
if (*edges == b && !*ops) {
*ops = ref;
return;
}
edges++;
ops++;
count--;
} while (count);
IR_ASSERT(0);
}
static uint32_t llvm2ir_compute_post_order(
ir_hashtab *bb_hash,
LLVMBasicBlockRef *bbs,
uint32_t bb_count,
uint32_t start,
uint32_t *post_order)
{
uint32_t b, succ_b, j, n, count = 0;
LLVMBasicBlockRef bb, succ_bb;
LLVMValueRef insn;
LLVMOpcode opcode;
ir_worklist worklist;
ir_worklist_init(&worklist, bb_count);
ir_worklist_push(&worklist, start);
while (ir_worklist_len(&worklist) != 0) {
next:
b = ir_worklist_peek(&worklist);
bb = bbs[b];
insn = LLVMGetLastInstruction(bb);
opcode = LLVMGetInstructionOpcode(insn);
if (opcode == LLVMBr || opcode == LLVMSwitch) {
n = LLVMGetNumSuccessors(insn);
for (j = 0; j < n; j++) {
succ_bb = LLVMGetSuccessor(insn, j);
succ_b = ir_addrtab_find(bb_hash, (uintptr_t)succ_bb);
IR_ASSERT(succ_b < bb_count);
if (ir_worklist_push(&worklist, succ_b)) {
goto next;
}
}
}
ir_worklist_pop(&worklist);
post_order[count++] = b;
}
ir_worklist_free(&worklist);
return count;
}
static int llvm2ir_func(ir_ctx *ctx, LLVMValueRef func)
{
uint32_t i, j, b, count, cconv, bb_count;
LLVMBasicBlockRef *bbs, bb;
LLVMValueRef param, insn;
LLVMOpcode opcode;
LLVMTypeRef ftype;
ir_type type;
ir_ref ref, max_inputs_count;
ir_hashtab bb_hash;
ir_use_list *predecessors;
uint32_t *predecessor_edges;
ir_ref *inputs, *bb_starts, *predecessor_refs;
// TODO: function prototype
ftype = LLVMGlobalGetValueType(func);
cconv = LLVMGetFunctionCallConv(func);
if (cconv == LLVMCCallConv || cconv == LLVMFastCallConv) {
/* skip */
} else if (cconv == LLVMX86FastcallCallConv) {
ctx->flags |= IR_FASTCALL_FUNC;
} else {
fprintf(stderr, "Unsupported Calling Convention: %d\n", cconv);
IR_ASSERT(0);
return 0;
}
if (LLVMIsFunctionVarArg(ftype)) {
ctx->flags |= IR_VARARG_FUNC;
}
ctx->ret_type = llvm2ir_type(LLVMGetReturnType(ftype));
/* Reuse "binding" for LLVMValueRef -> ir_ref hash */
ctx->binding = ir_mem_malloc(sizeof(ir_hashtab));
ir_addrtab_init(ctx->binding, 256);
ir_START();
for (i = 0; i < LLVMCountParams(func); i++) {
size_t name_len;
const char *name;
char buf[32];
param = LLVMGetParam(func, i);
type = llvm2ir_type(LLVMTypeOf(param));
if (type == IR_BAD_TYPE) {
return 0;
}
name = LLVMGetValueName2(param, &name_len);
if (!name || !name_len) {
sprintf(buf, "arg_%d", i + 1);
name = buf;
}
ref = ir_PARAM(type, name, i + 1);
ir_addrtab_add(ctx->binding, (uintptr_t)param, ref);
}
/* Find LLVM BasicBlocks Predecessors */
bb_count = LLVMCountBasicBlocks(func);
bbs = ir_mem_malloc(bb_count * sizeof(LLVMBasicBlockRef));
predecessors = ir_mem_calloc(bb_count, sizeof(ir_use_list));
LLVMGetBasicBlocks(func, bbs);
ir_addrtab_init(&bb_hash, bb_count);
for (i = 0; i < bb_count; i++) {
bb = bbs[i];
ir_addrtab_add(&bb_hash, (uintptr_t)bb, i);
}
for (i = 0; i < bb_count; i++) {
bb = bbs[i];
insn = LLVMGetLastInstruction(bb);
opcode = LLVMGetInstructionOpcode(insn);
if (opcode == LLVMBr || opcode == LLVMSwitch) {
count = LLVMGetNumSuccessors(insn);
for (j = 0; j < count; j++) {
uint32_t b = ir_addrtab_find(&bb_hash, (uintptr_t)LLVMGetSuccessor(insn, j));
IR_ASSERT(b < bb_count);
predecessors[b].count++;
}
}
}
count = 0;
max_inputs_count = 0;
for (i = 0; i < bb_count; i++) {
predecessors[i].refs = count;
count += predecessors[i].count;
max_inputs_count = IR_MAX(max_inputs_count, predecessors[i].count);
predecessors[i].count = 0;
}
predecessor_edges = ir_mem_malloc(sizeof(uint32_t) * count);
predecessor_refs = ir_mem_calloc(sizeof(ir_ref), count);
inputs = ir_mem_malloc(sizeof(ir_ref) * max_inputs_count);
for (i = 0; i < bb_count; i++) {
bb = bbs[i];
insn = LLVMGetLastInstruction(bb);
opcode = LLVMGetInstructionOpcode(insn);
if (opcode == LLVMBr || opcode == LLVMSwitch) {
count = LLVMGetNumSuccessors(insn);
for (j = 0; j < count; j++) {
uint32_t b = ir_addrtab_find(&bb_hash, (uintptr_t)LLVMGetSuccessor(insn, j));
IR_ASSERT(b < bb_count);
predecessor_edges[predecessors[b].refs + predecessors[b].count++] = i;
}
}
}
/* Find proper basic blocks order */
bb = LLVMGetEntryBasicBlock(func);
b = ir_addrtab_find(&bb_hash, (uintptr_t)bb);
IR_ASSERT(b < bb_count);
uint32_t *post_order = ir_mem_malloc(sizeof(uint32_t) * bb_count);
uint32_t post_order_count = llvm2ir_compute_post_order(&bb_hash, bbs, bb_count, b, post_order);
/* Process all reachable basic blocks in proper order */
ir_bitset visited = ir_bitset_malloc(bb_count);
bb_starts = ir_mem_malloc(bb_count * sizeof(ir_ref));
while (post_order_count) {
i = post_order[--post_order_count];
bb = bbs[i];
count = predecessors[i].count;
if (count == 1) {
llvm2ir_bb_start(ctx, bb, bbs[predecessor_edges[predecessors[i].refs]]);
} else if (count > 1) {
ir_MERGE_N(count, predecessor_refs + predecessors[i].refs); /* MERGE may be converted to LOOP_BEGIN later */
} else if (i != 0) {
ir_BEGIN(IR_UNUSED); /* unreachable block */
}
bb_starts[i] = ctx->control;
ir_bitset_incl(visited, i);
for (insn = LLVMGetFirstInstruction(bb); insn; insn = LLVMGetNextInstruction(insn)) {
opcode = LLVMGetInstructionOpcode(insn);
switch (opcode) {
case LLVMRet:
if (ctx->control) {
llvm2ir_ret(ctx, insn);
}
break;
case LLVMBr:
if (!LLVMIsConditional(insn)) {
ref = llvm2ir_jmp(ctx, insn);
b = ir_addrtab_find(&bb_hash, (uintptr_t)LLVMGetSuccessor(insn, 0));
IR_ASSERT(b < bb_count);
if (predecessors[b].count > 1) {
if (ir_bitset_in(visited, b)) {
llvm2ir_patch_merge(ctx, bb_starts[b], ref, i, predecessor_edges + predecessors[b].refs);
ctx->ir_base[ref].op = IR_LOOP_END;
} else {
llvm2ir_set_predecessor_ref(i, ref, predecessors[b].count,
predecessor_edges + predecessors[b].refs, predecessor_refs + predecessors[b].refs);
}
}
} else {
ref = llvm2ir_if(ctx, insn);
b = ir_addrtab_find(&bb_hash, (uintptr_t)LLVMGetSuccessor(insn, 0)); /* true branch */
IR_ASSERT(b < bb_count);
if (predecessors[b].count > 1) {
ir_IF_TRUE(ref);
if (ir_bitset_in(visited, b)) {
llvm2ir_patch_merge(ctx, bb_starts[b], ir_LOOP_END(), i, predecessor_edges + predecessors[b].refs);
} else {
llvm2ir_set_predecessor_ref(i, ir_END(), predecessors[b].count,
predecessor_edges + predecessors[b].refs, predecessor_refs + predecessors[b].refs);
}
} else {
IR_ASSERT(!ir_bitset_in(visited, b));
}
b = ir_addrtab_find(&bb_hash, (uintptr_t)LLVMGetSuccessor(insn, 1)); /* false branch */
IR_ASSERT(b < bb_count);
if (predecessors[b].count > 1) {
ir_IF_FALSE(ref);
if (ir_bitset_in(visited, b)) {
llvm2ir_patch_merge(ctx, bb_starts[b], ir_LOOP_END(), i, predecessor_edges + predecessors[b].refs);
} else {
llvm2ir_set_predecessor_ref(i, ir_END(), predecessors[b].count,
predecessor_edges + predecessors[b].refs, predecessor_refs + predecessors[b].refs);
}
} else {
IR_ASSERT(!ir_bitset_in(visited, b));
}
}
break;
case LLVMSwitch:
ref = llvm2ir_switch(ctx, insn);
b = ir_addrtab_find(&bb_hash, (uintptr_t)LLVMGetSwitchDefaultDest(insn));
IR_ASSERT(b < bb_count);
if (predecessors[b].count > 1) {
ir_CASE_DEFAULT(ref);
if (ir_bitset_in(visited, b)) {
llvm2ir_patch_merge(ctx, bb_starts[b], ir_LOOP_END(), i, predecessor_edges + predecessors[b].refs);
} else {
llvm2ir_set_predecessor_ref(i, ir_END(), predecessors[b].count,
predecessor_edges + predecessors[b].refs, predecessor_refs + predecessors[b].refs);
}
} else {
IR_ASSERT(!ir_bitset_in(visited, b));
}
count = LLVMGetNumOperands(insn);
for (j = 2; j < count; j += 2) {
b = ir_addrtab_find(&bb_hash, (uintptr_t)LLVMValueAsBasicBlock(LLVMGetOperand(insn, j + 1)));
IR_ASSERT(b < bb_count);
if (predecessors[b].count > 1) {
LLVMValueRef val = LLVMGetOperand(insn, j);
ir_type type = llvm2ir_type(LLVMTypeOf(val));
ir_CASE_VAL(ref, llvm2ir_op(ctx, val, type));
if (ir_bitset_in(visited, b)) {
llvm2ir_patch_merge(ctx, bb_starts[b], ir_LOOP_END(), i, predecessor_edges + predecessors[b].refs);
} else {
llvm2ir_set_predecessor_ref(i, ir_END(), predecessors[b].count,
predecessor_edges + predecessors[b].refs, predecessor_refs + predecessors[b].refs);
}
} else {
IR_ASSERT(!ir_bitset_in(visited, b));
}
}
break;
case LLVMIndirectBr:
// TODO:
IR_ASSERT(0 && "NIY LLVMIndirectBr");
break;
case LLVMUnreachable:
ir_UNREACHABLE();
break;
case LLVMFNeg:
llvm2ir_unary_op(ctx, insn, IR_NEG);
break;
case LLVMAdd:
case LLVMFAdd:
llvm2ir_binary_op(ctx, opcode, insn, IR_ADD);
break;
case LLVMSub:
case LLVMFSub:
llvm2ir_binary_op(ctx, opcode, insn, IR_SUB);
break;
case LLVMMul:
case LLVMFMul:
llvm2ir_binary_op(ctx, opcode, insn, IR_MUL);
break;
case LLVMUDiv:
case LLVMSDiv:
case LLVMFDiv:
llvm2ir_binary_op(ctx, opcode, insn, IR_DIV);
break;
case LLVMURem:
case LLVMSRem:
llvm2ir_binary_op(ctx, opcode, insn, IR_MOD);
break;
case LLVMShl:
llvm2ir_binary_op(ctx, opcode, insn, IR_SHL);
break;
case LLVMLShr:
llvm2ir_binary_op(ctx, opcode, insn, IR_SHR);
break;
case LLVMAShr:
llvm2ir_binary_op(ctx, opcode, insn, IR_SAR);
break;
case LLVMAnd:
llvm2ir_binary_op(ctx, opcode, insn, IR_AND);
break;
case LLVMOr:
llvm2ir_binary_op(ctx, opcode, insn, IR_OR);
break;
case LLVMXor:
llvm2ir_binary_op(ctx, opcode, insn, IR_XOR);
break;
case LLVMAlloca:
llvm2ir_alloca(ctx, insn);
break;
case LLVMLoad:
llvm2ir_load(ctx, insn);
break;
case LLVMStore:
llvm2ir_store(ctx, insn);
break;
case LLVMTrunc:
llvm2ir_cast_op(ctx, insn, IR_TRUNC, opcode);
break;
case LLVMZExt:
llvm2ir_cast_op(ctx, insn, IR_ZEXT, opcode);
break;
case LLVMSExt:
llvm2ir_cast_op(ctx, insn, IR_SEXT, opcode);
break;
case LLVMFPTrunc:
case LLVMFPExt:
llvm2ir_cast_op(ctx, insn, IR_FP2FP, opcode);
break;
case LLVMFPToUI:
case LLVMFPToSI:
llvm2ir_cast_op(ctx, insn, IR_FP2INT, opcode);
break;
case LLVMUIToFP:
case LLVMSIToFP:
llvm2ir_cast_op(ctx, insn, IR_INT2FP, opcode);
break;
case LLVMPtrToInt:
case LLVMIntToPtr:
case LLVMBitCast:
llvm2ir_cast_op(ctx, insn, IR_BITCAST, opcode);
break;
case LLVMICmp:
llvm2ir_icmp_op(ctx, insn);
break;
case LLVMFCmp:
llvm2ir_fcmp_op(ctx, insn);
break;
case LLVMPHI:
count = LLVMCountIncoming(insn);
memset(inputs, 0, count * sizeof(ir_ref));
if (LLVMGetTypeKind(LLVMTypeOf(insn)) == LLVMStructTypeKind) {
type = llvm2ir_overflow_type(LLVMTypeOf(insn));
} else {
type = llvm2ir_type(LLVMTypeOf(insn));
}
ref = ir_PHI_N(type, count, inputs);
ir_addrtab_add(ctx->binding, (uint64_t)insn, ref);
break;
case LLVMSelect:
llvm2ir_cond_op(ctx, insn);
break;
case LLVMCall:
llvm2ir_call(ctx, insn);
break;
case LLVMGetElementPtr:
llvm2ir_element_ptr(ctx, insn);
break;
case LLVMFreeze:
llvm2ir_freeze(ctx, insn);
break;
case LLVMVAArg:
llvm2ir_va_arg(ctx, insn);
break;
case LLVMExtractValue:
if (llvm2ir_extract(ctx, insn)) {
break;
}
IR_FALLTHROUGH;
default:
fprintf(stderr, "Unsupported LLVM insn: %d\n", opcode);
IR_ASSERT(0);
return 0;
}
}
}
/* Backpatch PHIs */
for (i = 0; i < bb_count; i++) {
ir_ref phi;
uint32_t k;
bb = bbs[i];
count = predecessors[i].count;
if (count <= 1) continue;
IR_ASSERT(ctx->ir_base[bb_starts[i]].op == IR_MERGE || ctx->ir_base[bb_starts[i]].op == IR_LOOP_BEGIN);
for (insn = LLVMGetFirstInstruction(bb);
insn && LLVMGetInstructionOpcode(insn) == LLVMPHI;
insn = LLVMGetNextInstruction(insn)) {
phi = ir_addrtab_find(ctx->binding, (uint64_t)insn);
IR_ASSERT(phi != (ir_ref)IR_INVALID_VAL);
IR_ASSERT(ctx->ir_base[phi].op == IR_PHI);
IR_ASSERT(LLVMCountIncoming(insn) == count);
for (j = 0; j < count; j++) {
LLVMValueRef op = LLVMGetIncomingValue(insn, j);
uint32_t b = ir_addrtab_find(&bb_hash, (uintptr_t)LLVMGetIncomingBlock(insn, j));
IR_ASSERT(b < bb_count);
ref = llvm2ir_op(ctx, op, ctx->ir_base[phi].type);
for (k = 0; k < count; k++) {
if (predecessor_edges[predecessors[i].refs + k] == b) {
ir_PHI_SET_OP(phi, k + 1, ref);
}
}
}
}
}
ir_mem_free(visited);
ir_mem_free(post_order);
ir_mem_free(predecessor_refs);
ir_mem_free(bb_starts);
ir_addrtab_free(ctx->binding);
ir_mem_free(ctx->binding);
ctx->binding = NULL;
ir_addrtab_free(&bb_hash);
ir_mem_free(bbs);
ir_mem_free(predecessors);
ir_mem_free(predecessor_edges);
ir_mem_free(inputs);
return 1;
}
static int llvm2ir_external_func(ir_loader *loader, const char *name, LLVMValueRef func)
{
uint32_t i, count, cconv, flags = 0;
LLVMTypeRef ftype;
ir_type ret_type;
uint8_t *param_types;
ftype = LLVMGlobalGetValueType(func);
cconv = LLVMGetFunctionCallConv(func);
if (cconv == LLVMCCallConv || cconv == LLVMFastCallConv) {
/* skip */
} else if (cconv == LLVMX86FastcallCallConv) {
flags |= IR_FASTCALL_FUNC;
} else {
fprintf(stderr, "Unsupported Calling Convention: %d\n", cconv);
IR_ASSERT(0);
return 0;
}
if (LLVMIsFunctionVarArg(ftype)) {
flags |= IR_VARARG_FUNC;
}
ret_type = llvm2ir_type(LLVMGetReturnType(ftype));
count = LLVMCountParams(func);
param_types = alloca(count * sizeof(ir_type));
for (i = 0; i < count; i++) {
param_types[i] = llvm2ir_type(LLVMTypeOf(LLVMGetParam(func, i)));
}
return loader->external_func_dcl(loader, name, flags, ret_type, count, param_types);
}
static int llvm2ir_forward_func(ir_loader *loader, const char *name, LLVMValueRef func, LLVMBool is_static)
{
uint32_t i, count, cconv, flags = 0;
LLVMTypeRef ftype;
ir_type ret_type;
uint8_t *param_types;
ftype = LLVMGlobalGetValueType(func);
cconv = LLVMGetFunctionCallConv(func);
if (cconv == LLVMCCallConv || cconv == LLVMFastCallConv) {
/* skip */
} else if (cconv == LLVMX86FastcallCallConv) {
flags |= IR_FASTCALL_FUNC;
} else {
fprintf(stderr, "Unsupported Calling Convention: %d\n", cconv);
IR_ASSERT(0);
return 0;
}
if (LLVMIsFunctionVarArg(ftype)) {
flags |= IR_VARARG_FUNC;
}
if (is_static) {
flags |= IR_STATIC;
}
ret_type = llvm2ir_type(LLVMGetReturnType(ftype));
count = LLVMCountParams(func);
param_types = alloca(count * sizeof(ir_type));
for (i = 0; i < count; i++) {
param_types[i] = llvm2ir_type(LLVMTypeOf(LLVMGetParam(func, i)));
}
return loader->forward_func_dcl(loader, name, flags, ret_type, count, param_types);
}
static int llvm2ir_data(ir_loader *loader, LLVMTargetDataRef target_data, LLVMTypeRef type, LLVMValueRef op, size_t pos)
{
LLVMTypeRef el_type;
LLVMValueRef el;
LLVMBool lose;
ir_type t;
ir_val val;
uint32_t i, len;
const char *name;
size_t name_len;
char buf[256];
void *p = NULL;
size_t offset, el_size;
LLVMValueKind kind = LLVMGetValueKind(op);
LLVMOpcode opcode;
switch (kind) {
case LLVMConstantIntValueKind:
t = llvm2ir_type(type);
IR_ASSERT(IR_IS_TYPE_INT(t));
if (IR_IS_TYPE_SIGNED(t)) {
val.i64 = LLVMConstIntGetSExtValue(op);
} else {
val.i64 = LLVMConstIntGetZExtValue(op);
}
switch (ir_type_size[t]) {
case 1: p = &val.i8; break;
case 2: p = &val.i16; break;
case 4: p = &val.i32; break;
case 8: p = &val.i64; break;
default:
IR_ASSERT(0);
break;
}
return loader->sym_data(loader, t, 1, p);
case LLVMConstantFPValueKind:
t = llvm2ir_type(type);
if (t == IR_DOUBLE) {
val.d = LLVMConstRealGetDouble(op, &lose);
return loader->sym_data(loader, t, 1, &val.d);
} else {
IR_ASSERT(t == IR_FLOAT);
val.f = (float)LLVMConstRealGetDouble(op, &lose);
return loader->sym_data(loader, t, 1, &val.f);
}
case LLVMConstantPointerNullValueKind:
val.addr = 0;
return loader->sym_data(loader, IR_ADDR, 1, &val.addr);
case LLVMConstantArrayValueKind:
case LLVMConstantDataArrayValueKind:
el_type = LLVMGetElementType(type);
el_size = LLVMABISizeOfType(target_data, el_type);
len = LLVMGetArrayLength(type);
offset = 0;
for (i = 0; i < len; i++) {
if (i > 0 && loader->sym_data_pad) {
loader->sym_data_pad(loader, pos + offset);
}
el = LLVMGetAggregateElement(op, i);
if (!llvm2ir_data(loader, target_data, el_type, el, pos)) {
return 0;
}
pos += el_size;
}
return 1;
case LLVMConstantStructValueKind:
len = LLVMCountStructElementTypes(type);
for (i = 0; i < len; i++) {
offset = LLVMOffsetOfElement(target_data, type, i);
if (i > 0 && loader->sym_data_pad) {
loader->sym_data_pad(loader, pos + offset);
}
el_type = LLVMStructGetTypeAtIndex(type, i);
el = LLVMGetAggregateElement(op, i);
if (!llvm2ir_data(loader, target_data, el_type, el, pos + offset)) {
return 0;
}
}
return 1;
case LLVMConstantAggregateZeroValueKind:
switch (LLVMGetTypeKind(type)) {
case LLVMIntegerTypeKind:
case LLVMFloatTypeKind:
case LLVMDoubleTypeKind:
case LLVMPointerTypeKind:
case LLVMFunctionTypeKind:
case LLVMLabelTypeKind:
t = llvm2ir_type(type);
val.u64 = 0;
return loader->sym_data(loader, t, 1, &val.u64);
default:
// TODO: use bigger type if possible
len = LLVMABISizeOfType(target_data, type);
val.u64 = 0;
return loader->sym_data(loader, IR_U8, len, &val.u64);
}
case LLVMGlobalVariableValueKind:
// TODO: resolve variable address
name = LLVMGetValueName2(op, &name_len);
name = llvm2ir_sym_name(buf, name, name_len);
if (!name) {
return 0;
}
return loader->sym_data_ref(loader, IR_SYM, name, 0);
case LLVMFunctionValueKind:
// TODO: function prototype
// TODO: resolve function address
name = LLVMGetValueName2(op, &name_len);
name = llvm2ir_sym_name(buf, name, name_len);
if (!name) {
return 0;
}
return loader->sym_data_ref(loader, IR_FUNC, name, 0);
case LLVMConstantExprValueKind:
opcode = LLVMGetConstOpcode(op);
if (opcode == LLVMGetElementPtr) {
LLVMValueRef op0 = LLVMGetOperand(op, 0);
if (LLVMGetValueKind(op0) == LLVMGlobalVariableValueKind) {
uintptr_t offset = llvm2ir_const_element_ptr_offset(target_data, op);
name = LLVMGetValueName2(op0, &name_len);
name = llvm2ir_sym_name(buf, name, name_len);
if (!name) {
return 0;
}
return loader->sym_data_ref(loader, IR_SYM, name, offset);
}
}
fprintf(stderr, "Unsupported constant expr: %d\n", (int)opcode);
IR_ASSERT(0);
return 0;
case LLVMUndefValueValueKind:
case LLVMPoisonValueValueKind:
// TODO: ???
if (LLVMGetTypeKind(type) == LLVMArrayTypeKind) {
el_type = LLVMGetElementType(type);
len = LLVMGetArrayLength(type);
t = llvm2ir_type(el_type);
val.i64 = 0;
return loader->sym_data(loader, t, len, &val.i64);
} else {
t = llvm2ir_type(type);
val.i64 = 0;
return loader->sym_data(loader, t, 1, &val.i64);
}
default:
fprintf(stderr, "Unsupported LLVM value kind: %d\n", kind);
IR_ASSERT(0);
return 0;
}
return 1;
}
static int ir_load_llvm_module(ir_loader *loader, LLVMModuleRef module)
{
ir_ctx ctx;
LLVMValueRef sym, func;
LLVMTargetDataRef target_data = LLVMGetModuleDataLayout(module);
const char *name;
size_t name_len;
char buf[256];
if (loader->init_module
&& !loader->init_module(loader,
LLVMGetModuleIdentifier(module, &name_len),
LLVMGetSourceFileName(module, &name_len),
LLVMGetTarget(module))) {
IR_ASSERT(0);
return 0;
}
if (loader->external_func_dcl) {
for (func = LLVMGetFirstFunction(module); func; func = LLVMGetNextFunction(func)) {
LLVMLinkage linkage;
bool is_external = 0;
bool is_static = 0;
if (!LLVMIsDeclaration(func)) continue;
linkage = LLVMGetLinkage(func);
name = LLVMGetValueName2(func, &name_len);
if (STR_START(name, name_len, "llvm.")) continue;
switch (linkage) {
case LLVMExternalLinkage:
is_external = 1;
break;
case LLVMInternalLinkage:
case LLVMPrivateLinkage:
is_static = 1;
break;
default:
fprintf(stderr, "Unsupported LLVM linkage: %d\n", linkage);
IR_ASSERT(0);
}
if (is_external) {
if (!llvm2ir_external_func(loader, name, func)) {
fprintf(stderr, "Cannot compile external LLVM function \"%s\"\n", name);
return 0;
}
} else {
if (loader->forward_func_dcl
&& !llvm2ir_forward_func(loader, name, func, is_static)) {
fprintf(stderr, "Cannot compile forward LLVM function \"%s\"\n", name);
return 0;
}
}
}
}
if (loader->forward_func_dcl) {
for (func = LLVMGetFirstFunction(module); func; func = LLVMGetNextFunction(func)) {
LLVMLinkage linkage;
bool is_static = 0;
if (LLVMIsDeclaration(func)) continue;
linkage = LLVMGetLinkage(func);
name = LLVMGetValueName2(func, &name_len);
switch (linkage) {
case LLVMExternalLinkage:
break;
case LLVMInternalLinkage:
case LLVMPrivateLinkage:
is_static = 1;
break;
default:
fprintf(stderr, "Unsupported LLVM linkage: %d\n", linkage);
IR_ASSERT(0);
}
if (!llvm2ir_forward_func(loader, name, func, is_static)) {
fprintf(stderr, "Cannot compile forward LLVM function \"%s\"\n", name);
return 0;
}
}
}
for (sym = LLVMGetFirstGlobal(module); sym; sym = LLVMGetNextGlobal(sym)) {
LLVMLinkage linkage = LLVMGetLinkage(sym);
LLVMValueRef init = LLVMGetInitializer(sym);
bool is_external = 0;
uint32_t flags = 0;
IR_ASSERT(!LLVMIsThreadLocal(sym));
switch (linkage) {
case LLVMExternalLinkage:
if (!init) {
is_external = 1;
}
break;
case LLVMInternalLinkage:
case LLVMPrivateLinkage:
flags |= IR_STATIC;
break;
default:
fprintf(stderr, "Unsupported LLVM linkage: %d\n", linkage);
IR_ASSERT(0);
}
name = LLVMGetValueName2(sym, &name_len);
if (is_external) {
if (LLVMIsGlobalConstant(sym)) {
flags |= IR_CONST;
}
name = llvm2ir_sym_name(buf, name, name_len);
if (!name) {
fprintf(stderr, "Bad LLVM symbol name \"%s\"\n", LLVMGetValueName2(sym, &name_len));
return 0;
}
if (loader->external_sym_dcl
&& !loader->external_sym_dcl(loader, name, flags)) {
fprintf(stderr, "Cannot compile external LLVM symbol \"%s\"\n", name);
return 0;
}
} else {
if (loader->sym_dcl) {
LLVMTypeRef type;
size_t size;
bool has_data = 0;
char buf[256];
type = LLVMGlobalGetValueType(sym);
size = LLVMABISizeOfType(target_data, type);
name = llvm2ir_sym_name(buf, name, name_len);
if (!name) {
fprintf(stderr, "Bad LLVM symbol name \"%s\"\n", LLVMGetValueName2(sym, &name_len));
return 0;
}
if (LLVMIsGlobalConstant(sym)) {
flags |= IR_CONST;
}
if (init) {
has_data = 1;
}
if (!loader->sym_dcl(loader, name, flags, size, has_data)) {
fprintf(stderr, "Cannot compile LLVM symbol \"%s\"\n", name);
return 0;
}
if (has_data) {
if (!llvm2ir_data(loader, target_data, type, init, 0)
|| !loader->sym_data_end(loader)) {
fprintf(stderr, "Cannot compile LLVM symbol \"%s\"\n", name);
return 0;
}
}
}
}
}
for (func = LLVMGetFirstFunction(module); func; func = LLVMGetNextFunction(func)) {
if (LLVMIsDeclaration(func)) continue;
name = LLVMGetValueName2(func, &name_len);
if (!loader->func_init(loader, &ctx, name)) {
fprintf(stderr, "Cannot compile function \"%s\"\n", name);
return 0;
}
switch (LLVMGetLinkage(func)) {
case LLVMInternalLinkage:
case LLVMPrivateLinkage:
ctx.flags |= IR_STATIC;
break;
default:
break;
}
ctx.rules = (void*)target_data;
if (!llvm2ir_func(&ctx, func)) {
ctx.rules = NULL;
ir_free(&ctx);
fprintf(stderr, "Cannot compile function \"%s\"\n", name);
return 0;
}
ctx.rules = NULL;
if (!loader->func_process(loader, &ctx, name)) {
ir_free(&ctx);
fprintf(stderr, "Cannot compile function \"%s\"\n", name);
return 0;
}
ir_free(&ctx);
}
return 1;
}
int ir_load_llvm_bitcode(ir_loader *loader, const char *filename)
{
LLVMMemoryBufferRef memory_buffer;
LLVMModuleRef module;
LLVMBool ret;
char *message;
if (LLVMCreateMemoryBufferWithContentsOfFile(filename, &memory_buffer, &message)) {
fprintf(stderr, "Cannot open '%s': %s\n", filename, message);
free(message);
return 0;
}
ret = LLVMParseBitcodeInContext2(LLVMGetGlobalContext(), memory_buffer, &module);
LLVMDisposeMemoryBuffer(memory_buffer);
if (ret) {
fprintf(stderr, "Cannot parse LLVM bitcode\n");
return 0;
}
if (!ir_load_llvm_module(loader, module)) {
LLVMDisposeModule(module);
fprintf(stderr, "Cannot convert LLVM to IR\n");
return 0;
}
LLVMDisposeModule(module);
return 1;
}
int ir_load_llvm_asm(ir_loader *loader, const char *filename)
{
LLVMMemoryBufferRef memory_buffer;
LLVMModuleRef module;
LLVMBool ret;
char *message;
if (LLVMCreateMemoryBufferWithContentsOfFile(filename, &memory_buffer, &message)) {
fprintf(stderr, "Cannot open '%s': %s\n", filename, message);
free(message);
return 0;
}
ret = LLVMParseIRInContext(LLVMGetGlobalContext(), memory_buffer, &module, &message);
if (ret) {
fprintf(stderr, "Cannot parse LLVM file: %s\n", message);
free(message);
return 0;
}
if (!ir_load_llvm_module(loader, module)) {
LLVMDisposeModule(module);
fprintf(stderr, "Cannot convert LLVM to IR\n");
return 0;
}
LLVMDisposeModule(module);
return 1;
}