ir/ir.c
2022-05-25 10:57:21 +03:00

937 lines
23 KiB
C

#define _GNU_SOURCE
#include <sys/mman.h>
#include "ir.h"
#include "ir_private.h"
#include <math.h>
#define IR_TYPE_FLAGS(name, type, field, flags) ((flags)|sizeof(type)),
#define IR_TYPE_NAME(name, type, field, flags) #name,
#define IR_TYPE_CNAME(name, type, field, flags) #type,
#define IR_TYPE_SIZE(name, type, field, flags) sizeof(type),
#define IR_OP_NAME(name, flags, op1, op2, op3) #name,
const uint8_t ir_type_flags[IR_LAST_TYPE] = {
0,
IR_TYPES(IR_TYPE_FLAGS)
};
const char *ir_type_name[IR_LAST_TYPE] = {
"void",
IR_TYPES(IR_TYPE_NAME)
};
const uint8_t ir_type_size[IR_LAST_TYPE] = {
0,
IR_TYPES(IR_TYPE_SIZE)
};
const char *ir_type_cname[IR_LAST_TYPE] = {
"void",
IR_TYPES(IR_TYPE_CNAME)
};
const char *ir_op_name[IR_LAST_OP] = {
IR_OPS(IR_OP_NAME)
};
void ir_print_const(ir_ctx *ctx, ir_insn *insn, FILE *f)
{
if (insn->op == IR_FUNC) {
fprintf(f, "%s", ir_get_str(ctx, insn->val.addr));
return;
} else if (insn->op == IR_STR) {
fprintf(f, "\"%s\"", ir_get_str(ctx, insn->val.addr));
return;
}
IR_ASSERT(IR_IS_CONST(insn->op));
switch (insn->type) {
case IR_BOOL:
fprintf(f, "%u", insn->val.b);
break;
case IR_U8:
fprintf(f, "%u", insn->val.u8);
break;
case IR_U16:
fprintf(f, "%u", insn->val.u16);
break;
case IR_U32:
fprintf(f, "%u", insn->val.u32);
break;
case IR_U64:
fprintf(f, "%" PRIu64, insn->val.u64);
break;
case IR_ADDR:
fprintf(f, "%" PRIxPTR, insn->val.addr);
break;
case IR_CHAR:
if (insn->val.c == '\\') {
fprintf(f, "'\\\\'");
} else if (insn->val.c >= ' ') {
fprintf(f, "'%c'", insn->val.c);
} else if (insn->val.c == '\t') {
fprintf(f, "'\\t'");
} else if (insn->val.c == '\r') {
fprintf(f, "'\\r'");
} else if (insn->val.c == '\n') {
fprintf(f, "'\\n'");
} else if (insn->val.c == '\0') {
fprintf(f, "'\\0'");
} else {
fprintf(f, "%u", insn->val.c);
}
break;
case IR_I8:
fprintf(f, "%d", insn->val.i8);
break;
case IR_I16:
fprintf(f, "%d", insn->val.i16);
break;
case IR_I32:
fprintf(f, "%d", insn->val.i32);
break;
case IR_I64:
fprintf(f, "%" PRIi64, insn->val.i64);
break;
case IR_DOUBLE:
fprintf(f, "%g", insn->val.d);
break;
case IR_FLOAT:
fprintf(f, "%f", insn->val.f);
break;
default:
IR_ASSERT(0);
break;
}
}
#define ir_op_flag_v 0
#define ir_op_flag_v0X3 (0 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d IR_OP_FLAG_DATA
#define ir_op_flag_d0 ir_op_flag_d
#define ir_op_flag_d1 (ir_op_flag_d | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d2 (ir_op_flag_d | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d2C (ir_op_flag_d | IR_OP_FLAG_COMMUTATIVE | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d3 (ir_op_flag_d | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_dP (ir_op_flag_d | 5 | (5 << IR_OP_FLAG_OPERANDS_SHIFT)) // PHI (number of operands encoded in op1->op1)
#define ir_op_flag_r IR_OP_FLAG_DATA // "d" and "r" are the same now
#define ir_op_flag_r0 ir_op_flag_r
#define ir_op_flag_r0X1 (ir_op_flag_r | 0 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_r1 (ir_op_flag_r | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_r1X1 (ir_op_flag_r | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_r1X2 (ir_op_flag_r | 1 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_r2 (ir_op_flag_r | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_r3 (ir_op_flag_r | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_c IR_OP_FLAG_CONTROL
#define ir_op_flag_c0 ir_op_flag_c
#define ir_op_flag_c0X1 (ir_op_flag_c | 0 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_c0X2 (ir_op_flag_c | 0 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_c1 (ir_op_flag_c | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_c1X1 (ir_op_flag_c | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_c2 (ir_op_flag_c | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_c2X1 (ir_op_flag_c | 2 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_c3 (ir_op_flag_c | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_cN (ir_op_flag_c | 4 | (4 << IR_OP_FLAG_OPERANDS_SHIFT)) // MERGE (number of operands encoded in op1)
#define ir_op_flag_l (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_LOAD)
#define ir_op_flag_l0 ir_op_flag_l
#define ir_op_flag_l1 (ir_op_flag_l | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_l2 (ir_op_flag_l | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_l3 (ir_op_flag_l | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_s (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_STORE)
#define ir_op_flag_s0 ir_op_flag_s
#define ir_op_flag_s1 (ir_op_flag_s | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_s2 (ir_op_flag_s | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_s3 (ir_op_flag_s | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_xN (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_CALL | 4 | (4 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_a2 (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_ALLOC | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_kind____ IR_OPND_UNUSED
#define ir_op_kind_def IR_OPND_DATA
#define ir_op_kind_ref IR_OPND_DATA
#define ir_op_kind_src IR_OPND_CONTROL
#define ir_op_kind_reg IR_OPND_CONTROL_DEP
#define ir_op_kind_beg IR_OPND_CONTROL_REF
#define ir_op_kind_ret IR_OPND_CONTROL_REF
#define ir_op_kind_str IR_OPND_STR
#define ir_op_kind_num IR_OPND_NUM
#define ir_op_kind_fld IR_OPND_STR
#define ir_op_kind_var IR_OPND_VAR
#define ir_op_kind_prb IR_OPND_PROB
#define _IR_OP_FLAGS(name, flags, op1, op2, op3) \
IR_OP_FLAGS(ir_op_flag_ ## flags, ir_op_kind_ ## op1, ir_op_kind_ ## op2, ir_op_kind_ ## op3),
const uint32_t ir_op_flags[IR_LAST_OP] = {
IR_OPS(_IR_OP_FLAGS)
};
static void ir_grow_bottom(ir_ctx *ctx)
{
ir_insn *buf = ctx->ir_base - ctx->consts_limit;
ir_ref old_consts_limit = ctx->consts_limit;
if (ctx->consts_limit < 1024 * 4) {
ctx->consts_limit *= 2;
} else if (ctx->insns_limit < 1024 * 4 * 2) {
ctx->consts_limit = 1024 * 4 * 2;
} else {
ctx->consts_limit += 1024 * 4;
}
buf = ir_mem_realloc(buf, (ctx->consts_limit + ctx->insns_limit) * sizeof(ir_insn));
memmove(buf + ctx->consts_limit - ctx->consts_count,
buf + old_consts_limit - ctx->consts_count,
(old_consts_limit + ctx->insns_limit) * sizeof(ir_insn));
ctx->ir_base = buf + ctx->consts_limit;
}
static ir_ref ir_next_const(ir_ctx *ctx)
{
ir_ref ref = ctx->consts_count;
if (UNEXPECTED(ref >= ctx->consts_limit)) {
ir_grow_bottom(ctx);
}
ctx->consts_count = ref + 1;
return -ref;
}
static void ir_grow_top(ir_ctx *ctx)
{
ir_insn *buf = ctx->ir_base - ctx->consts_limit;
if (ctx->insns_limit < 1024 * 4) {
ctx->insns_limit *= 2;
} else if (ctx->insns_limit < 1024 * 4 * 2) {
ctx->insns_limit = 1024 * 4 * 2;
} else {
ctx->insns_limit += 1024 * 4;
}
buf = ir_mem_realloc(buf, (ctx->consts_limit + ctx->insns_limit) * sizeof(ir_insn));
ctx->ir_base = buf + ctx->consts_limit;
}
static ir_ref ir_next_insn(ir_ctx *ctx)
{
ir_ref ref = ctx->insns_count;
if (UNEXPECTED(ref >= ctx->insns_limit)) {
ir_grow_top(ctx);
}
ctx->insns_count = ref + 1;
return ref;
}
void ir_truncate(ir_ctx *ctx)
{
ir_insn *buf = ir_mem_malloc((ctx->consts_count + ctx->insns_count) * sizeof(ir_insn));
memcpy(buf, ctx->ir_base - ctx->consts_count, (ctx->consts_count + ctx->insns_count) * sizeof(ir_insn));
ir_mem_free(ctx->ir_base - ctx->consts_limit);
ctx->insns_limit = ctx->insns_count;
ctx->consts_limit = ctx->consts_count;
ctx->ir_base = buf + ctx->consts_limit;
}
void ir_init(ir_ctx *ctx, ir_ref consts_limit, ir_ref insns_limit)
{
ir_insn *buf;
IR_ASSERT(consts_limit >= -(IR_TRUE - 1));
IR_ASSERT(insns_limit >= IR_UNUSED + 1);
ctx->insns_count = IR_UNUSED + 1;
ctx->insns_limit = insns_limit;
ctx->consts_count = -(IR_TRUE - 1);
ctx->consts_limit = consts_limit;
ctx->fold_cse_limit = IR_UNUSED + 1;
ctx->flags = 0;
ctx->use_lists = NULL;
ctx->use_edges = NULL;
ctx->cfg_blocks_count = 0;
ctx->cfg_edges_count = 0;
ctx->cfg_blocks = NULL;
ctx->cfg_edges = NULL;
ctx->cfg_map = NULL;
ctx->rules = NULL;
ctx->vregs_count = 0;
ctx->vregs = NULL;
ctx->live_intervals = NULL;
ctx->regs = NULL;
ctx->prev_insn_len = NULL;
ctx->data = NULL;
ir_strtab_init(&ctx->strtab, 64, 4096);
buf = ir_mem_malloc((consts_limit + insns_limit) * sizeof(ir_insn));
ctx->ir_base = buf + consts_limit;
ctx->ir_base[IR_UNUSED].optx = IR_NOP;
ctx->ir_base[IR_NULL].optx = IR_OPT(IR_C_ADDR, IR_ADDR);
ctx->ir_base[IR_NULL].val.u64 = 0;
ctx->ir_base[IR_FALSE].optx = IR_OPT(IR_C_BOOL, IR_BOOL);
ctx->ir_base[IR_FALSE].val.u64 = 0;
ctx->ir_base[IR_TRUE].optx = IR_OPT(IR_C_BOOL, IR_BOOL);
ctx->ir_base[IR_TRUE].val.u64 = 1;
memset(ctx->prev_insn_chain, 0, sizeof(ctx->prev_insn_chain));
memset(ctx->prev_const_chain, 0, sizeof(ctx->prev_const_chain));
}
void ir_free(ir_ctx *ctx)
{
ir_insn *buf = ctx->ir_base - ctx->consts_limit;
ir_mem_free(buf);
ir_strtab_free(&ctx->strtab);
if (ctx->use_lists) {
ir_mem_free(ctx->use_lists);
}
if (ctx->use_edges) {
ir_mem_free(ctx->use_edges);
}
if (ctx->cfg_blocks) {
ir_mem_free(ctx->cfg_blocks);
}
if (ctx->cfg_edges) {
ir_mem_free(ctx->cfg_edges);
}
if (ctx->cfg_map) {
ir_mem_free(ctx->cfg_map);
}
if (ctx->rules) {
ir_mem_free(ctx->rules);
}
if (ctx->vregs) {
ir_mem_free(ctx->vregs);
}
if (ctx->live_intervals) {
ir_free_live_intervals(ctx->live_intervals, ctx->vregs_count);
}
if (ctx->regs) {
ir_mem_free(ctx->regs);
}
if (ctx->prev_insn_len) {
ir_mem_free(ctx->prev_insn_len);
}
}
ir_ref ir_const(ir_ctx *ctx, ir_val val, uint8_t type)
{
ir_insn *insn;
ir_ref ref;
if (type == IR_BOOL) {
return val.u64 ? IR_TRUE : IR_FALSE;
} else if (type == IR_ADDR && val.u64 == 0) {
return IR_NULL;
}
ref = ctx->prev_const_chain[type];
while (ref) {
insn = &ctx->ir_base[ref];
if (insn->val.u64 == val.u64) {
return ref;
}
ref = insn->prev_const;
}
ref = ir_next_const(ctx);
insn = &ctx->ir_base[ref];
insn->prev_const = ctx->prev_const_chain[type];
ctx->prev_const_chain[type] = ref;
insn->optx = IR_OPT(type, type); // IR_C_ ...
insn->val.u64 = val.u64;
return ref;
}
ir_ref ir_const_i8(ir_ctx *ctx, int8_t c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_I8);
}
ir_ref ir_const_i16(ir_ctx *ctx, int16_t c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_I16);
}
ir_ref ir_const_i32(ir_ctx *ctx, int32_t c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_I32);
}
ir_ref ir_const_i64(ir_ctx *ctx, int64_t c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_I64);
}
ir_ref ir_const_u8(ir_ctx *ctx, uint8_t c)
{
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_U8);
}
ir_ref ir_const_u16(ir_ctx *ctx, uint16_t c)
{
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_U16);
}
ir_ref ir_const_u32(ir_ctx *ctx, uint32_t c)
{
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_U32);
}
ir_ref ir_const_u64(ir_ctx *ctx, uint64_t c)
{
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_U64);
}
ir_ref ir_const_bool(ir_ctx *ctx, bool c)
{
return (c) ? IR_TRUE : IR_FALSE;
}
ir_ref ir_const_char(ir_ctx *ctx, char c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_CHAR);
}
ir_ref ir_const_float(ir_ctx *ctx, float c)
{
ir_val val;
val.u32_hi = 0;
val.f = c;
return ir_const(ctx, val, IR_FLOAT);
}
ir_ref ir_const_double(ir_ctx *ctx, double c)
{
ir_val val;
val.d = c;
return ir_const(ctx, val, IR_DOUBLE);
}
ir_ref ir_const_addr(ir_ctx *ctx, uintptr_t c)
{
if (c == 0) {
return IR_NULL;
}
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_ADDR);
}
ir_ref ir_const_func(ir_ctx *ctx, ir_ref str)
{
ir_ref ref = ir_next_const(ctx);
ir_insn *insn = &ctx->ir_base[ref];
insn->optx = IR_OPT(IR_FUNC, IR_ADDR);
insn->val.addr = str;
return ref;
}
ir_ref ir_const_str(ir_ctx *ctx, ir_ref str)
{
ir_ref ref = ir_next_const(ctx);
ir_insn *insn = &ctx->ir_base[ref];
insn->optx = IR_OPT(IR_STR, IR_ADDR);
insn->val.addr = str;
return ref;
}
ir_ref ir_str(ir_ctx *ctx, const char *s)
{
return ir_strtab_lookup(&ctx->strtab, s, strlen(s), ir_strtab_count(&ctx->strtab) + 1);
}
ir_ref ir_strl(ir_ctx *ctx, const char *s, size_t len)
{
return ir_strtab_lookup(&ctx->strtab, s, len, ir_strtab_count(&ctx->strtab) + 1);
}
const char *ir_get_str(ir_ctx *ctx, ir_ref idx)
{
return ir_strtab_str(&ctx->strtab, idx - 1);
}
static ir_ref _ir_emit(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
ir_ref ref = ir_next_insn(ctx);
ir_insn *insn = &ctx->ir_base[ref];
insn->optx = opt;
insn->op1 = op1;
insn->op2 = op2;
insn->op3 = op3;
return ref;
}
ir_ref ir_emit_N(ir_ctx *ctx, uint32_t opt, uint32_t count)
{
int i;
ir_ref ref = ctx->insns_count;
ir_insn *insn;
while (UNEXPECTED(ref + count/4 >= ctx->insns_limit)) {
ir_grow_top(ctx);
}
ctx->insns_count = ref + 1 + count/4;
insn = &ctx->ir_base[ref];
insn->optx = opt;
if ((opt & IR_OPT_OP_MASK) != IR_PHI) {
insn->inputs_count = count;
}
for (i = 1; i <= (count|3); i++) {
insn->ops[i] = IR_UNUSED;
}
return ref;
}
void ir_set_op(ir_ctx *ctx, ir_ref ref, uint32_t n, ir_ref val)
{
ir_insn *insn = &ctx->ir_base[ref];
if (n > 3) {
uint32_t count = 3;
if (insn->op == IR_MERGE) {
count = insn->inputs_count;
if (count == 0) {
count = 2;
}
} else if (insn->op == IR_CALL || insn->op == IR_TAILCALL) {
count = insn->inputs_count;
if (count == 0) {
count = 2;
}
} else if (insn->op == IR_PHI) {
count = ctx->ir_base[insn->op1].inputs_count + 1;
if (count == 1) {
count = 3;
}
} else {
IR_ASSERT(0);
}
IR_ASSERT(n <= count);
}
insn->ops[n] = val;
}
static ir_ref _ir_fold_cse(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
ir_ref ref = ctx->prev_insn_chain[opt & IR_OPT_OP_MASK];
ir_insn *insn;
if (ref) {
ir_ref limit = ctx->fold_cse_limit;
if (op1 > limit) {
limit = op1;
}
if (op2 > limit) {
limit = op2;
}
if (op3 > limit) {
limit = op3;
}
while (ref >= limit) {
insn = &ctx->ir_base[ref];
if (insn->opt == opt && insn->op1 == op1 && insn->op2 == op2 && insn->op3 == op3) {
return ref;
}
if (!insn->prev_insn_offset) {
break;
}
ref = ref - (ir_ref)(uint32_t)insn->prev_insn_offset;
}
}
return IR_UNUSED;
}
#define IR_FOLD(X) IR_FOLD1(X, __LINE__)
#define IR_FOLD1(X, Y) IR_FOLD2(X, Y)
#define IR_FOLD2(X, Y) case IR_RULE_ ## Y:
#define IR_FOLD_ERROR(msg) do { \
IR_ASSERT(0 && (msg)); \
goto ir_fold_emit; \
} while (0)
#define IR_FOLD_CONST_U(_val) do { \
val.u64 = (_val); \
goto ir_fold_const; \
} while (0)
#define IR_FOLD_CONST_I(_val) do { \
val.i64 = (_val); \
goto ir_fold_const; \
} while (0)
#define IR_FOLD_CONST_D(_val) do { \
val.d = (_val); \
goto ir_fold_const; \
} while (0)
#define IR_FOLD_CONST_F(_val) do { \
val.f = (_val); \
goto ir_fold_const; \
} while (0)
#define IR_FOLD_COPY(op) do { \
ref = (op); \
goto ir_fold_copy; \
} while (0)
#define IR_FOLD_BOOL(cond) \
IR_FOLD_COPY((cond) ? IR_TRUE : IR_FALSE)
#define IR_FOLD_NAMED(name) ir_fold_ ## name:
#define IR_FOLD_DO_NAMED(name) goto ir_fold_ ## name
#define IR_FOLD_RESTART goto ir_fold_restart
#define IR_FOLD_CSE goto ir_fold_cse
#define IR_FOLD_EMIT goto ir_fold_emit
#define IR_FOLD_NEXT break
#include "ir_fold_hash.h"
#define IR_FOLD_RULE(x) ((x) >> 21)
#define IR_FOLD_KEY(x) ((x) & 0x1fffff)
/*
* key = insn->op | (insn->op1->op << 7) | (insn->op1->op << 14)
*
* ANY and UNUSED ops are represented by 0
*/
IR_ALWAYS_INLINE ir_ref __ir_fold(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3, ir_insn *op1_insn, ir_insn *op2_insn, ir_insn *op3_insn)
{
uint8_t op;
ir_ref ref;
ir_val val;
uint32_t key, any;
restart:
key = (opt & IR_OPT_OP_MASK) + ((uint32_t)op1_insn->op << 7) + ((uint32_t)op2_insn->op << 14);
any = 0x1fffff;
do {
uint32_t k = key & any;
uint32_t h = _ir_fold_hashkey(k);
uint32_t fh = _ir_fold_hash[h];
if (IR_FOLD_KEY(fh) == k /*|| (fh = _ir_fold_hash[h+1], (fh & 0x1fffff) == k)*/) {
switch (IR_FOLD_RULE(fh)) {
#include "ir_fold.h"
default:
break;
}
}
if (any == 0x7f) {
/* All parrerns ar checked. Pass on to CSE. */
goto ir_fold_cse;
}
/* op2/op1/op op2/_/op _/op1/op _/_/op
* 0x1fffff -> 0x1fc07f -> 0x003fff -> 0x00007f
* from masks to bis: 11 -> 10 -> 01 -> 00
*
* a b => x y
* 1 1 1 0
* 1 0 0 1
* 0 1 0 0
*
* x = a & b; y = !b
*/
any = ((any & (any << 7)) & 0x1fc000) | (~any & 0x3f80) | 0x7f;
} while (1);
ir_fold_restart:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
op1_insn = ctx->ir_base + op1;
op2_insn = ctx->ir_base + op2;
op3_insn = ctx->ir_base + op3;
goto restart;
} else {
ctx->fold_insn.optx = opt;
ctx->fold_insn.op1 = op1;
ctx->fold_insn.op2 = op2;
ctx->fold_insn.op3 = op3;
return IR_FOLD_DO_RESTART;
}
ir_fold_cse:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
/* Local CSE */
ref = _ir_fold_cse(ctx, opt, op1, op2, op3);
if (ref) {
return ref;
}
ref = _ir_emit(ctx, opt, op1, op2, op3);
/* Update local CSE chain */
op = opt & IR_OPT_OP_MASK;
ir_ref prev = ctx->prev_insn_chain[op];
ir_insn *insn = ctx->ir_base + ref;
if (!prev || ref - prev > 0xffff) {
/* can't fit into 16-bit */
insn->prev_insn_offset = 0;
} else {
insn->prev_insn_offset = ref - prev;
}
ctx->prev_insn_chain[op] = ref;
return ref;
} else {
return IR_FOLD_DO_CSE;
}
ir_fold_emit:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
return _ir_emit(ctx, opt, op1, op2, op3);
} else {
return IR_FOLD_DO_EMIT;
}
ir_fold_copy:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
return ref;
} else {
ctx->fold_insn.op1 = ref;
return IR_FOLD_DO_COPY;
}
ir_fold_const:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
return ir_const(ctx, val, IR_OPT_TYPE(opt));
} else {
ctx->fold_insn.type = IR_OPT_TYPE(opt);
ctx->fold_insn.val.u64 = val.u64;
return IR_FOLD_DO_CONST;
}
}
ir_ref ir_fold(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3, ir_insn *op1_insn, ir_insn *op2_insn, ir_insn *op3_insn)
{
return __ir_fold(ctx, opt, op1, op2, op3, op1_insn, op2_insn, op3_insn);
}
static ir_ref _ir_fold(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
if (UNEXPECTED(!(ctx->flags & IR_OPT_FOLDING))) {
return _ir_emit(ctx, opt, op1, op2, op3);
}
return ir_fold(ctx, opt, op1, op2, op3, ctx->ir_base + op1, ctx->ir_base + op2, ctx->ir_base + op3);
}
ir_ref ir_emit0(ir_ctx *ctx, uint32_t opt)
{
return _ir_emit(ctx, opt, IR_UNUSED, IR_UNUSED, IR_UNUSED);
}
ir_ref ir_emit1(ir_ctx *ctx, uint32_t opt, ir_ref op1)
{
return _ir_emit(ctx, opt, op1, IR_UNUSED, IR_UNUSED);
}
ir_ref ir_emit2(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2)
{
return _ir_emit(ctx, opt, op1, op2, IR_UNUSED);
}
ir_ref ir_emit3(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
return _ir_emit(ctx, opt, op1, op2, op3);
}
ir_ref ir_fold0(ir_ctx *ctx, uint32_t opt)
{
return _ir_fold(ctx, opt, IR_UNUSED, IR_UNUSED, IR_UNUSED);
}
ir_ref ir_fold1(ir_ctx *ctx, uint32_t opt, ir_ref op1)
{
return _ir_fold(ctx, opt, op1, IR_UNUSED, IR_UNUSED);
}
ir_ref ir_fold2(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2)
{
return _ir_fold(ctx, opt, op1, op2, IR_UNUSED);
}
ir_ref ir_fold3(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
return _ir_fold(ctx, opt, op1, op2, op3);
}
void ir_bind(ir_ctx *ctx, ir_ref var, ir_ref def)
{
#if 0
_(START, c0X2, ret, inf, ___) /* function start */ \
_(BIND, v0X3, inf, inf, inf) /* local variable */ \
ir_insn *insn = &ctx->ir_base[1];
insn->op2 = ir_emit3(ctx, IR_BIND, insn->op2, var, def);
#endif
}
/* Batch construction of def->use edges */
void ir_build_def_use_lists(ir_ctx *ctx)
{
ir_ref n, i, j, *p, ref, def;
ir_insn *insn;
ir_bitset worklist1 = ir_bitset_malloc(ctx->insns_count);
ir_bitset worklist2 = ir_bitset_malloc(ctx->insns_count);
uint32_t edges_count = 0;
ir_use_list *lists = ir_mem_calloc(ctx->insns_count, sizeof(ir_use_list));
ir_ref *edges;
for (i = IR_UNUSED + 1, insn = ctx->ir_base + i; i < ctx->insns_count;) {
n = ir_input_edges_count(ctx, insn);
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
ref = *p;
if (ref > 0) {
ir_bitset_incl(worklist2, i);
ir_bitset_incl(worklist1, ref);
lists[ref].count++;
edges_count++;
}
}
n = 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI
i += n;
insn += n;
}
n = 0;
IR_BITSET_FOREACH(worklist1, ir_bitset_len(ctx->insns_count), ref) {
lists[ref].refs = n;
n += lists[ref].count;
lists[ref].count = 0;
} IR_BITSET_FOREACH_END();
IR_ASSERT(n == edges_count);
edges = ir_mem_malloc(edges_count * sizeof(ir_ref));
IR_BITSET_FOREACH(worklist2, ir_bitset_len(ctx->insns_count), ref) {
insn = &ctx->ir_base[ref];
n = ir_input_edges_count(ctx, insn);
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
def = *p;
if (def > 0) {
edges[lists[def].refs + lists[def].count++] = ref;
}
}
} IR_BITSET_FOREACH_END();
ir_mem_free(worklist2);
ir_mem_free(worklist1);
ctx->use_edges = edges;
ctx->use_lists = lists;
}
/* Helper Data Types */
void ir_array_grow(ir_array *a, uint32_t size)
{
IR_ASSERT(size > a->size);
a->refs = ir_mem_realloc(a->refs, size * sizeof(ir_ref));
memset(a->refs + a->size, 0, (size - a->size) * sizeof(ir_ref));
a->size = size;
}
void ir_array_insert(ir_array *a, uint32_t i, ir_ref val)
{
IR_ASSERT(i < a->size);
if (a->refs[a->size - 1]) {
ir_array_grow(a, a->size + 1);
}
memmove(a->refs + i + 1, a->refs + i, (a->size - i - 1) * sizeof(ir_ref));
a->refs[i] = val;
}
void ir_array_remove(ir_array *a, uint32_t i)
{
IR_ASSERT(i < a->size);
memmove(a->refs + i, a->refs + i + 1, (a->size - i - 1) * sizeof(ir_ref));
a->refs[a->size - 1] = IR_UNUSED;
}
void ir_list_insert(ir_list *l, uint32_t i, ir_ref val)
{
IR_ASSERT(i < l->len);
if (l->len >= l->a.size) {
ir_array_grow(&l->a, l->a.size + 1);
}
memmove(l->a.refs + i + 1, l->a.refs + i, (l->len - i) * sizeof(ir_ref));
l->a.refs[i] = val;
l->len++;
}
void ir_list_remove(ir_list *l, uint32_t i)
{
IR_ASSERT(i < l->len);
memmove(l->a.refs + i, l->a.refs + i + 1, (l->len - i) * sizeof(ir_ref));
l->len--;
}
bool ir_list_contains(ir_list *l, ir_ref val)
{
uint32_t i;
for (i = 0; i < l->len; i++) {
if (ir_array_at(&l->a, i) == val) {
return 1;
}
}
return 0;
}
void *ir_mem_mmap(size_t size)
{
return mmap(NULL, size, PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
}
int ir_mem_unmap(void *ptr, size_t size)
{
munmap(ptr, size);
return 1;
}
int ir_mem_protect(void *ptr, size_t size)
{
mprotect(ptr, size, PROT_READ | PROT_EXEC);
return 1;
}
int ir_mem_unprotect(void *ptr, size_t size)
{
mprotect(ptr, size, PROT_READ | PROT_WRITE);
return 1;
}
int ir_mem_flush(void *ptr, size_t size)
{
return 1;
}