mirror of
https://github.com/danog/ir.git
synced 2024-11-30 04:39:43 +01:00
684 lines
17 KiB
C
684 lines
17 KiB
C
/*
|
||
* IR - Lightweight JIT Compilation Framework
|
||
* (GCM - Global Code Motion and Scheduler)
|
||
* Copyright (C) 2022 Zend by Perforce.
|
||
* Authors: Dmitry Stogov <dmitry@php.net>
|
||
*
|
||
* The GCM algorithm is based on Cliff Click's publication
|
||
* See: C. Click. "Global code motion, global value numbering" Submitted to PLDI‘95.
|
||
*/
|
||
|
||
#include "ir.h"
|
||
#include "ir_private.h"
|
||
|
||
static void ir_gcm_schedule_early(ir_ctx *ctx, uint32_t *_blocks, ir_ref ref)
|
||
{
|
||
ir_ref j, n, *p;
|
||
ir_insn *insn;
|
||
|
||
insn = &ctx->ir_base[ref];
|
||
|
||
IR_ASSERT(insn->op != IR_PARAM && insn->op != IR_VAR);
|
||
IR_ASSERT(insn->op != IR_PHI && insn->op != IR_PI);
|
||
|
||
_blocks[ref] = 1;
|
||
|
||
n = ir_input_edges_count(ctx, insn);
|
||
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
|
||
ir_ref input = *p;
|
||
if (input > 0) {
|
||
if (_blocks[input] == 0) {
|
||
ir_gcm_schedule_early(ctx, _blocks, input);
|
||
}
|
||
if (ctx->cfg_blocks[_blocks[ref]].dom_depth < ctx->cfg_blocks[_blocks[input]].dom_depth) {
|
||
_blocks[ref] = _blocks[input];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Last Common Ancestor */
|
||
static uint32_t ir_gcm_find_lca(ir_ctx *ctx, uint32_t b1, uint32_t b2)
|
||
{
|
||
while (ctx->cfg_blocks[b1].dom_depth > ctx->cfg_blocks[b2].dom_depth) {
|
||
b1 = ctx->cfg_blocks[b1].dom_parent;
|
||
}
|
||
while (ctx->cfg_blocks[b2].dom_depth > ctx->cfg_blocks[b1].dom_depth) {
|
||
b2 = ctx->cfg_blocks[b2].dom_parent;
|
||
}
|
||
while (b1 != b2) {
|
||
b1 = ctx->cfg_blocks[b1].dom_parent;
|
||
b2 = ctx->cfg_blocks[b2].dom_parent;
|
||
}
|
||
return b2;
|
||
}
|
||
|
||
static void ir_gcm_schedule_late(ir_ctx *ctx, uint32_t *_blocks, ir_bitset visited, ir_ref ref)
|
||
{
|
||
ir_ref i, n, *p, use;
|
||
ir_insn *insn;
|
||
|
||
ir_bitset_incl(visited, ref);
|
||
n = ctx->use_lists[ref].count;
|
||
if (n) {
|
||
uint32_t lca, b;
|
||
|
||
insn = &ctx->ir_base[ref];
|
||
IR_ASSERT(insn->op != IR_PARAM && insn->op != IR_VAR);
|
||
IR_ASSERT(insn->op != IR_PHI && insn->op != IR_PI);
|
||
|
||
lca = 0;
|
||
for (i = 0, p = &ctx->use_edges[ctx->use_lists[ref].refs]; i < n; i++, p++) {
|
||
use = *p;
|
||
if (!ir_bitset_in(visited, use) && _blocks[use]) {
|
||
ir_gcm_schedule_late(ctx, _blocks, visited, use);
|
||
}
|
||
b = _blocks[use];
|
||
if (!b) {
|
||
continue;
|
||
}
|
||
insn = &ctx->ir_base[use];
|
||
if (insn->op == IR_PHI) {
|
||
if (insn->op2 == ref) {
|
||
b = _blocks[ctx->ir_base[insn->op1].op1];
|
||
} else if (insn->op3 == ref) {
|
||
b = _blocks[ctx->ir_base[insn->op1].op2];
|
||
} else {
|
||
ir_ref j, n, *p;
|
||
|
||
b = 0;
|
||
n = ir_input_edges_count(ctx, insn);
|
||
for (j = 3, p = insn->ops + 4; j < n; j++, p++) {
|
||
if (*p == ref) {
|
||
b = _blocks[ctx->ir_base[insn->op1].ops[j]];
|
||
break;
|
||
}
|
||
}
|
||
IR_ASSERT(b != 0);
|
||
}
|
||
}
|
||
lca = !lca ? b : ir_gcm_find_lca(ctx, lca, b);
|
||
}
|
||
IR_ASSERT(lca != 0 && "No Common Antecessor");
|
||
b = lca;
|
||
while (ctx->cfg_blocks[b].loop_depth && lca != ctx->cfg_blocks[_blocks[ref]].dom_parent) {
|
||
if (ctx->cfg_blocks[lca].loop_depth < ctx->cfg_blocks[b].loop_depth) {
|
||
b = lca;
|
||
}
|
||
lca = ctx->cfg_blocks[lca].dom_parent;
|
||
}
|
||
_blocks[ref] = b;
|
||
}
|
||
}
|
||
|
||
int ir_gcm(ir_ctx *ctx)
|
||
{
|
||
ir_ref i, j, k, n, *p, ref;
|
||
ir_bitset visited;
|
||
ir_block *bb;
|
||
ir_list queue;
|
||
uint32_t *_blocks;
|
||
ir_insn *insn, *use_insn;
|
||
ir_use_list *use_list;
|
||
uint32_t flags;
|
||
|
||
_blocks = ir_mem_calloc(ctx->insns_count, sizeof(uint32_t));
|
||
ir_list_init(&queue, ctx->insns_count);
|
||
visited = ir_bitset_malloc(ctx->insns_count);
|
||
|
||
/* pin and collect control and control depended (PARAM, VAR, PHI, PI) instructions */
|
||
for (i = 1, bb = ctx->cfg_blocks + 1; i <= ctx->cfg_blocks_count; i++, bb++) {
|
||
if (bb->flags & IR_BB_UNREACHABLE) {
|
||
continue;
|
||
}
|
||
j = bb->end;
|
||
while (1) {
|
||
insn = &ctx->ir_base[j];
|
||
ir_bitset_incl(visited, j);
|
||
_blocks[j] = i; /* pin to block */
|
||
flags = ir_op_flags[insn->op];
|
||
if (IR_OPND_KIND(flags, 2) == IR_OPND_DATA
|
||
|| IR_OPND_KIND(flags, 3) == IR_OPND_DATA
|
||
|| ((flags & IR_OP_FLAG_MEM) && insn->type != IR_VOID)) {
|
||
ir_list_push(&queue, j);
|
||
}
|
||
if (j == bb->start) {
|
||
use_list = &ctx->use_lists[j];
|
||
n = use_list->count;
|
||
for (p = &ctx->use_edges[use_list->refs]; n > 0; n--, p++) {
|
||
ref = *p;
|
||
use_insn = &ctx->ir_base[ref];
|
||
if (use_insn->op == IR_PARAM || use_insn->op == IR_VAR) {
|
||
_blocks[ref] = i; /* pin to block */
|
||
ir_bitset_incl(visited, ref);
|
||
} else
|
||
if (use_insn->op == IR_PHI || use_insn->op == IR_PI) {
|
||
ir_bitset_incl(visited, ref);
|
||
if (UNEXPECTED(ctx->use_lists[ref].count == 0)) {
|
||
// TODO: Unused PHI ???
|
||
} else {
|
||
_blocks[ref] = i; /* pin to block */
|
||
ir_list_push(&queue, ref);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
j = insn->op1; /* control predecessor */
|
||
}
|
||
}
|
||
|
||
n = ir_list_len(&queue);
|
||
for (i = 0; i < n; i++) {
|
||
ref = ir_list_at(&queue, i);
|
||
insn = &ctx->ir_base[ref];
|
||
flags = ir_op_flags[insn->op];
|
||
if (IR_OPND_KIND(flags, 2) == IR_OPND_DATA) {
|
||
if (insn->op2 > 0 && _blocks[insn->op2] == 0) {
|
||
ir_gcm_schedule_early(ctx, _blocks, insn->op2);
|
||
}
|
||
}
|
||
if (IR_OPND_KIND(flags, 3) == IR_OPND_DATA) {
|
||
if (insn->op3 > 0 && _blocks[insn->op3] == 0) {
|
||
ir_gcm_schedule_early(ctx, _blocks, insn->op3);
|
||
}
|
||
ir_ref n = ir_input_edges_count(ctx, insn);
|
||
for (k = 4, p = insn->ops + 4; k <= n; k++, p++) {
|
||
ref = *p;
|
||
if (ref > 0 && _blocks[ref] == 0) {
|
||
ir_gcm_schedule_early(ctx, _blocks, ref);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef IR_DEBUG
|
||
if (ctx->flags & IR_DEBUG_GCM) {
|
||
fprintf(stderr, "GCM Schedule Early\n");
|
||
for (i = 1; i < ctx->insns_count; i++) {
|
||
fprintf(stderr, "%d -> %d\n", i, _blocks[i]);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
n = ir_list_len(&queue);
|
||
for (i = 0; i < n; i++) {
|
||
ref = ir_list_at(&queue, i);
|
||
use_list = &ctx->use_lists[ref];
|
||
ir_ref n = use_list->count;
|
||
if (n > 0) {
|
||
for (p = &ctx->use_edges[use_list->refs]; n > 0; n--, p++) {
|
||
ref = *p;
|
||
if (!ir_bitset_in(visited, ref) && _blocks[ref]) {
|
||
ir_gcm_schedule_late(ctx, _blocks, visited, ref);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
ir_mem_free(visited);
|
||
ir_list_free(&queue);
|
||
|
||
#ifdef IR_DEBUG
|
||
if (ctx->flags & IR_DEBUG_GCM) {
|
||
fprintf(stderr, "GCM Schedule Late\n");
|
||
for (i = 1; i < ctx->insns_count; i++) {
|
||
fprintf(stderr, "%d -> %d\n", i, _blocks[i]);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
ctx->cfg_map = _blocks;
|
||
|
||
return 1;
|
||
}
|
||
|
||
static void ir_xlat_binding(ir_ctx *ctx, ir_ref *_xlat)
|
||
{
|
||
uint32_t n1, n2, pos, key;
|
||
ir_hashtab_bucket *b1, *b2;
|
||
ir_hashtab *binding = ctx->binding;
|
||
uint32_t hash_size = (uint32_t)(-(int32_t)binding->mask);
|
||
|
||
memset(binding->data - (hash_size * sizeof(uint32_t)), -1, hash_size * sizeof(uint32_t));
|
||
n1 = binding->count;
|
||
n2 = 0;
|
||
pos = 0;
|
||
b1 = binding->data;
|
||
b2 = binding->data;
|
||
while (n1 > 0) {
|
||
key = b1->key;
|
||
IR_ASSERT(key < ctx->insns_count);
|
||
if (_xlat[key]) {
|
||
key = _xlat[key];
|
||
b2->key = key;
|
||
if (b1->val > 0) {
|
||
IR_ASSERT(_xlat[b1->val]);
|
||
b2->val = _xlat[b1->val];
|
||
} else {
|
||
b2->val = b1->val;
|
||
}
|
||
key |= binding->mask;
|
||
b2->next = ((uint32_t*)binding->data)[(int32_t)key];
|
||
((uint32_t*)binding->data)[(int32_t)key] = pos;
|
||
pos += sizeof(ir_hashtab_bucket);
|
||
b2++;
|
||
n2++;
|
||
}
|
||
b1++;
|
||
n1--;
|
||
}
|
||
binding->count = n2;
|
||
}
|
||
|
||
int ir_schedule(ir_ctx *ctx)
|
||
{
|
||
ir_ctx new_ctx;
|
||
ir_ref i, j, k, n, *p, ref, new_ref, insns_count, consts_count;
|
||
ir_ref *_xlat;
|
||
uint32_t flags;
|
||
uint32_t edges_count;
|
||
ir_use_list *lists;
|
||
ir_ref *edges;
|
||
ir_bitset used;
|
||
ir_ref b;
|
||
uint32_t *_blocks = ctx->cfg_map;
|
||
ir_ref *_next = ir_mem_calloc(ctx->insns_count, sizeof(ir_ref));
|
||
ir_ref *_prev = ir_mem_calloc(ctx->insns_count, sizeof(ir_ref));
|
||
ir_ref _rest = 0;
|
||
ir_block *bb;
|
||
ir_insn *insn, *new_insn;
|
||
|
||
/* Create double-linked list of nodes ordered by BB, respecting BB->start and BB->end */
|
||
IR_ASSERT(_blocks[1]);
|
||
_prev[1] = 0;
|
||
for (i = 2, j = 1; i < ctx->insns_count; i++) {
|
||
b = _blocks[i];
|
||
if (b) {
|
||
bb = &ctx->cfg_blocks[b];
|
||
if (_blocks[j] == b || i == bb->start) {
|
||
/* add to the end of list */
|
||
_next[j] = i;
|
||
_prev[i] = j;
|
||
j = i;
|
||
} else if (_prev[bb->end]) {
|
||
/* move up, insert before the end of alredy scheduled BB */
|
||
k = bb->end;
|
||
_prev[i] = _prev[k];
|
||
_next[i] = k;
|
||
_next[_prev[k]] = i;
|
||
_prev[k] = i;
|
||
} else {
|
||
/* move down late */
|
||
_next[i] = _rest;
|
||
_rest = i;
|
||
}
|
||
}
|
||
}
|
||
_next[j] = 0;
|
||
|
||
while (_rest) {
|
||
i = _rest;
|
||
_rest = _next[i];
|
||
b = _blocks[i];
|
||
bb = &ctx->cfg_blocks[b];
|
||
if (i == bb->end) {
|
||
// TODO: When removing MERGE, SCCP may move END of the block below other blocks ???
|
||
/* insert at the end of the block */
|
||
k = _next[bb->start];
|
||
while (_blocks[k] == b) {
|
||
k = _next[k];
|
||
}
|
||
} else {
|
||
/* insert after start of the block and all PARAM, VAR, PI, PHI */
|
||
k = _next[bb->start];
|
||
insn = &ctx->ir_base[k];
|
||
while (insn->op == IR_PARAM || insn->op == IR_VAR || insn->op == IR_PI || insn->op == IR_PHI) {
|
||
k = _next[k];
|
||
insn = &ctx->ir_base[k];
|
||
}
|
||
}
|
||
/* insert before "k" */
|
||
_prev[i] = _prev[k];
|
||
_next[i] = k;
|
||
_next[_prev[k]] = i;
|
||
_prev[k] = i;
|
||
}
|
||
|
||
#ifdef IR_DEBUG
|
||
if (ctx->flags & IR_DEBUG_SCHEDULE) {
|
||
fprintf(stderr, "Before Schedule\n");
|
||
for (b = 1, bb = ctx->cfg_blocks + 1; b <= ctx->cfg_blocks_count; b++, bb++) {
|
||
for (i = bb->start; i <= bb->end && i > 0; i = _next[i]) {
|
||
fprintf(stderr, "%d -> %d\n", i, b);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Topological sort according dependencies inside each basic block */
|
||
ir_bitset scheduled = ir_bitset_malloc(ctx->insns_count);
|
||
for (b = 1, bb = ctx->cfg_blocks + 1; b <= ctx->cfg_blocks_count; b++, bb++) {
|
||
if (bb->flags & IR_BB_UNREACHABLE) {
|
||
continue;
|
||
}
|
||
i = bb->start;
|
||
ir_bitset_incl(scheduled, i);
|
||
i = _next[i];
|
||
insn = &ctx->ir_base[i];
|
||
while (insn->op == IR_PARAM || insn->op == IR_VAR || insn->op == IR_PI || insn->op == IR_PHI) {
|
||
ir_bitset_incl(scheduled, i);
|
||
i = _next[i];
|
||
insn = &ctx->ir_base[i];
|
||
}
|
||
for (; i != bb->end; i = _next[i]) {
|
||
ir_ref n, j, *p, def;
|
||
|
||
restart:
|
||
insn = &ctx->ir_base[i];
|
||
n = ir_input_edges_count(ctx, insn);
|
||
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
|
||
def = *p;
|
||
if (def > 0
|
||
&& _blocks[def] == b
|
||
&& !ir_bitset_in(scheduled, def)
|
||
&& insn->op != IR_PHI
|
||
&& insn->op != IR_PI) {
|
||
/* "def" should be before "i" to satisfy dependency */
|
||
#ifdef IR_DEBUG
|
||
if (ctx->flags & IR_DEBUG_SCHEDULE) {
|
||
fprintf(stderr, "Wrong dependency %d:%d -> %d\n", b, def, i);
|
||
}
|
||
#endif
|
||
/* remove "def" */
|
||
_prev[_next[def]] = _prev[def];
|
||
_next[_prev[def]] = _next[def];
|
||
/* insert before "i" */
|
||
_prev[def] = _prev[i];
|
||
_next[def] = i;
|
||
_next[_prev[i]] = def;
|
||
_prev[i] = def;
|
||
/* restart from "def" */
|
||
i = def;
|
||
goto restart;
|
||
}
|
||
}
|
||
ir_bitset_incl(scheduled, i);
|
||
}
|
||
}
|
||
ir_mem_free(scheduled);
|
||
|
||
#ifdef IR_DEBUG
|
||
if (ctx->flags & IR_DEBUG_SCHEDULE) {
|
||
fprintf(stderr, "After Schedule\n");
|
||
for (b = 1, bb = ctx->cfg_blocks + 1; b <= ctx->cfg_blocks_count; b++, bb++) {
|
||
for (i = bb->start; i <= bb->end && i > 0; i = _next[i]) {
|
||
fprintf(stderr, "%d -> %d\n", i, b);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
ir_mem_free(_prev);
|
||
|
||
/* TODO: linearize without reallocation and reconstruction ??? */
|
||
|
||
_xlat = ir_mem_malloc((ctx->consts_count + ctx->insns_count) * sizeof(ir_ref));
|
||
if (ctx->binding) {
|
||
memset(_xlat, 0, (ctx->consts_count + ctx->insns_count) * sizeof(ir_ref));
|
||
}
|
||
_xlat += ctx->consts_count;
|
||
_xlat[IR_TRUE] = IR_TRUE;
|
||
_xlat[IR_FALSE] = IR_FALSE;
|
||
_xlat[IR_NULL] = IR_NULL;
|
||
_xlat[IR_UNUSED] = IR_UNUSED;
|
||
used = ir_bitset_malloc(ctx->consts_count + 1);
|
||
insns_count = 1;
|
||
consts_count = -(IR_TRUE - 1);
|
||
|
||
for (i = 1; i != 0; i = _next[i]) {
|
||
_xlat[i] = insns_count;
|
||
insn = &ctx->ir_base[i];
|
||
n = ir_input_edges_count(ctx, insn);
|
||
for (k = 1, p = insn->ops + 1; k <= n; k++, p++) {
|
||
ref = *p;
|
||
if (ref < IR_TRUE) {
|
||
if (!ir_bitset_in(used, -ref)) {
|
||
ir_bitset_incl(used, -ref);
|
||
consts_count++;
|
||
}
|
||
}
|
||
}
|
||
n = 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI
|
||
insns_count += n;
|
||
}
|
||
|
||
#if 1
|
||
if (consts_count == ctx->consts_count && insns_count == ctx->insns_count) {
|
||
bool changed = 0;
|
||
|
||
for (i = 1; i != 0; i = _next[i]) {
|
||
if (_xlat[i] != i) {
|
||
changed = 1;
|
||
break;
|
||
}
|
||
}
|
||
if (!changed) {
|
||
ir_mem_free(used);
|
||
_xlat -= ctx->consts_count;
|
||
ir_mem_free(_xlat);
|
||
ir_mem_free(_next);
|
||
|
||
ctx->flags |= IR_LINEAR;
|
||
ir_truncate(ctx);
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
lists = ir_mem_calloc(insns_count, sizeof(ir_use_list));
|
||
ir_init(&new_ctx, consts_count, insns_count);
|
||
new_ctx.flags = ctx->flags;
|
||
new_ctx.spill_base = ctx->spill_base;
|
||
new_ctx.fixed_stack_red_zone = ctx->fixed_stack_red_zone;
|
||
new_ctx.fixed_stack_frame_size = ctx->fixed_stack_frame_size;
|
||
new_ctx.fixed_regset = ctx->fixed_regset;
|
||
new_ctx.fixed_save_regset = ctx->fixed_save_regset;
|
||
|
||
IR_BITSET_FOREACH(used, ir_bitset_len(ctx->consts_count + 1), ref) {
|
||
new_ref = new_ctx.consts_count;
|
||
IR_ASSERT(new_ref < ctx->consts_limit);
|
||
new_ctx.consts_count = new_ref + 1;
|
||
_xlat[-ref] = new_ref = -new_ref;
|
||
insn = &ctx->ir_base[-ref];
|
||
new_insn = &new_ctx.ir_base[new_ref];
|
||
new_insn->optx = insn->optx;
|
||
new_insn->prev_const = 0;
|
||
if (insn->op == IR_FUNC || insn->op == IR_STR) {
|
||
new_insn->val.addr = ir_str(&new_ctx, ir_get_str(ctx, insn->val.addr));
|
||
} else {
|
||
new_insn->val.u64 = insn->val.u64;
|
||
}
|
||
} IR_BITSET_FOREACH_END();
|
||
|
||
ir_mem_free(used);
|
||
edges_count = 0;
|
||
|
||
for (i = 1; i != 0; i = _next[i]) {
|
||
insn = &ctx->ir_base[i];
|
||
flags = ir_op_flags[insn->op];
|
||
n = ir_operands_count(ctx, insn);
|
||
|
||
new_ref = new_ctx.insns_count;
|
||
new_ctx.insns_count = new_ref + 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI;
|
||
IR_ASSERT(new_ctx.insns_count <= new_ctx.insns_limit);
|
||
new_insn = &new_ctx.ir_base[new_ref];
|
||
|
||
*new_insn = *insn;
|
||
switch (IR_OPND_KIND(flags, 1)) {
|
||
case IR_OPND_UNUSED:
|
||
continue;
|
||
case IR_OPND_DATA:
|
||
case IR_OPND_CONTROL:
|
||
case IR_OPND_CONTROL_DEP:
|
||
case IR_OPND_VAR:
|
||
ref = _xlat[insn->op1];
|
||
if (ref > 0) {
|
||
lists[ref].refs = -1;
|
||
lists[ref].count++;
|
||
edges_count++;
|
||
}
|
||
new_insn->op1 = ref;
|
||
break;
|
||
case IR_OPND_CONTROL_REF:
|
||
new_insn->op1 = _xlat[insn->op1];
|
||
break;
|
||
case IR_OPND_STR:
|
||
new_insn->op1 = ir_str(&new_ctx, ir_get_str(ctx, insn->op1));
|
||
break;
|
||
case IR_OPND_NUM:
|
||
case IR_OPND_PROB:
|
||
break;
|
||
default:
|
||
IR_ASSERT(0);
|
||
}
|
||
if (n < 2) {
|
||
continue;
|
||
}
|
||
switch (IR_OPND_KIND(flags, 2)) {
|
||
case IR_OPND_UNUSED:
|
||
continue;
|
||
case IR_OPND_DATA:
|
||
case IR_OPND_CONTROL:
|
||
case IR_OPND_CONTROL_DEP:
|
||
case IR_OPND_VAR:
|
||
ref = _xlat[insn->op2];
|
||
if (ref > 0) {
|
||
lists[ref].refs = -1;
|
||
lists[ref].count++;
|
||
edges_count++;
|
||
}
|
||
new_insn->op2 = ref;
|
||
break;
|
||
case IR_OPND_CONTROL_REF:
|
||
new_insn->op2 = _xlat[insn->op2];
|
||
break;
|
||
case IR_OPND_STR:
|
||
new_insn->op2 = ir_str(&new_ctx, ir_get_str(ctx, insn->op2));
|
||
break;
|
||
case IR_OPND_NUM:
|
||
case IR_OPND_PROB:
|
||
break;
|
||
default:
|
||
IR_ASSERT(0);
|
||
}
|
||
if (n < 3) {
|
||
continue;
|
||
}
|
||
switch (IR_OPND_KIND(flags, 3)) {
|
||
case IR_OPND_UNUSED:
|
||
break;
|
||
case IR_OPND_DATA:
|
||
case IR_OPND_CONTROL:
|
||
case IR_OPND_CONTROL_DEP:
|
||
case IR_OPND_VAR:
|
||
ref = _xlat[insn->op3];
|
||
if (ref > 0) {
|
||
lists[ref].refs = -1;
|
||
lists[ref].count++;
|
||
edges_count++;
|
||
}
|
||
new_insn->op3 = ref;
|
||
if (n > 3) {
|
||
ir_ref *ops = new_insn->ops;
|
||
for (k = 4, p = insn->ops + 4; k <= n; k++, p++) {
|
||
ref = *p;
|
||
ref = _xlat[ref];
|
||
if (ref > 0) {
|
||
lists[ref].refs = -1;
|
||
lists[ref].count++;
|
||
edges_count++;
|
||
}
|
||
ops[k] = ref;
|
||
}
|
||
}
|
||
break;
|
||
case IR_OPND_CONTROL_REF:
|
||
new_insn->op3 = _xlat[insn->op3];
|
||
break;
|
||
case IR_OPND_STR:
|
||
new_insn->op3 = ir_str(&new_ctx, ir_get_str(ctx, insn->op3));
|
||
break;
|
||
case IR_OPND_NUM:
|
||
case IR_OPND_PROB:
|
||
break;
|
||
default:
|
||
IR_ASSERT(0);
|
||
}
|
||
}
|
||
|
||
if (ctx->binding) {
|
||
ir_xlat_binding(ctx, _xlat);
|
||
new_ctx.binding = ctx->binding;
|
||
ctx->binding = NULL;
|
||
}
|
||
|
||
edges = ir_mem_malloc(edges_count * sizeof(ir_ref));
|
||
edges_count = 0;
|
||
for (i = IR_UNUSED + 1, insn = new_ctx.ir_base + i; i < new_ctx.insns_count;) {
|
||
n = ir_input_edges_count(&new_ctx, insn);
|
||
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
|
||
ref = *p;
|
||
if (ref > 0) {
|
||
ir_use_list *use_list = &lists[ref];
|
||
|
||
if (use_list->refs == -1) {
|
||
use_list->refs = edges_count;
|
||
edges_count += use_list->count;
|
||
use_list->count = 0;
|
||
}
|
||
edges[use_list->refs + use_list->count++] = i;
|
||
}
|
||
}
|
||
n = 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI
|
||
i += n;
|
||
insn += n;
|
||
}
|
||
|
||
new_ctx.use_edges = edges;
|
||
new_ctx.use_edges_count = edges_count;
|
||
new_ctx.use_lists = lists;
|
||
|
||
if (ctx->cfg_blocks) {
|
||
uint32_t b;
|
||
ir_block *bb;
|
||
|
||
new_ctx.cfg_blocks_count = ctx->cfg_blocks_count;
|
||
if (ctx->cfg_edges_count) {
|
||
new_ctx.cfg_edges_count = ctx->cfg_edges_count;
|
||
new_ctx.cfg_edges = ir_mem_malloc(ctx->cfg_edges_count * sizeof(uint32_t));
|
||
memcpy(new_ctx.cfg_edges, ctx->cfg_edges, ctx->cfg_edges_count * sizeof(uint32_t));
|
||
}
|
||
new_ctx.cfg_blocks = ir_mem_malloc((ctx->cfg_blocks_count + 1) * sizeof(ir_block));
|
||
memcpy(new_ctx.cfg_blocks, ctx->cfg_blocks, (ctx->cfg_blocks_count + 1) * sizeof(ir_block));
|
||
for (b = 1, bb = new_ctx.cfg_blocks + 1; b <= new_ctx.cfg_blocks_count; b++, bb++) {
|
||
bb->start = _xlat[bb->start];
|
||
bb->end = _xlat[bb->end];
|
||
}
|
||
}
|
||
|
||
_xlat -= ctx->consts_count;
|
||
ir_mem_free(_xlat);
|
||
|
||
ir_free(ctx);
|
||
IR_ASSERT(new_ctx.consts_count == new_ctx.consts_limit);
|
||
IR_ASSERT(new_ctx.insns_count == new_ctx.insns_limit);
|
||
memcpy(ctx, &new_ctx, sizeof(ir_ctx));
|
||
ctx->flags |= IR_LINEAR;
|
||
|
||
ir_mem_free(_next);
|
||
|
||
return 1;
|
||
}
|