ir/ir_gcm.c
Dmitry Stogov 56b0dbccde Use ir_ctx.mflags for CPU specific code-generation options
'mflags' and ir_cpuinfo() return value have the same meaning.
2023-04-18 09:54:35 +03:00

856 lines
22 KiB
C

/*
* IR - Lightweight JIT Compilation Framework
* (GCM - Global Code Motion and Scheduler)
* Copyright (C) 2022 Zend by Perforce.
* Authors: Dmitry Stogov <dmitry@php.net>
*
* The GCM algorithm is based on Cliff Click's publication
* See: C. Click. "Global code motion, global value numbering" Submitted to PLDI'95.
*/
#include "ir.h"
#include "ir_private.h"
static void ir_gcm_schedule_early(ir_ctx *ctx, uint32_t *_blocks, ir_ref ref, ir_list *queue_rest)
{
ir_ref n, *p, input;
ir_insn *insn;
uint32_t dom_depth, b;
bool reschedule_late = 1;
insn = &ctx->ir_base[ref];
IR_ASSERT(insn->op != IR_PARAM && insn->op != IR_VAR);
IR_ASSERT(insn->op != IR_PHI && insn->op != IR_PI);
_blocks[ref] = 1;
dom_depth = 0;
n = ir_input_edges_count(ctx, insn);
for (p = insn->ops + 1; n > 0; p++, n--) {
input = *p;
if (input > 0) {
if (_blocks[input] == 0) {
ir_gcm_schedule_early(ctx, _blocks, input, queue_rest);
}
b = _blocks[input];
if (dom_depth < ctx->cfg_blocks[b].dom_depth) {
dom_depth = ctx->cfg_blocks[b].dom_depth;
_blocks[ref] = b;
}
reschedule_late = 0;
}
}
if (UNEXPECTED(reschedule_late)) {
/* Floating nodes that doesn't depend on other nodes
* (e.g. only on constants), has to be scheduled to the
* last common ancestor. Otherwise they always goes to the
* first block.
*
* TODO:
* It's possible to reuse ir_gcm_schedule_late() and move
* these nodes out of the loops, but then we mgiht need
* to rematerialize them at proper place(s).
*/
ir_list_push_unchecked(queue_rest, ref);
}
}
/* Last Common Ancestor */
static uint32_t ir_gcm_find_lca(ir_ctx *ctx, uint32_t b1, uint32_t b2)
{
uint32_t dom_depth;
dom_depth = ctx->cfg_blocks[b2].dom_depth;
while (ctx->cfg_blocks[b1].dom_depth > dom_depth) {
b1 = ctx->cfg_blocks[b1].dom_parent;
}
dom_depth = ctx->cfg_blocks[b1].dom_depth;
while (ctx->cfg_blocks[b2].dom_depth > dom_depth) {
b2 = ctx->cfg_blocks[b2].dom_parent;
}
while (b1 != b2) {
b1 = ctx->cfg_blocks[b1].dom_parent;
b2 = ctx->cfg_blocks[b2].dom_parent;
}
return b2;
}
static void ir_gcm_schedule_late(ir_ctx *ctx, uint32_t *_blocks, ir_bitset visited, ir_ref ref)
{
ir_ref n, *p, use;
ir_insn *insn;
ir_bitset_incl(visited, ref);
n = ctx->use_lists[ref].count;
if (n) {
uint32_t lca, b;
insn = &ctx->ir_base[ref];
IR_ASSERT(insn->op != IR_PARAM && insn->op != IR_VAR);
IR_ASSERT(insn->op != IR_PHI && insn->op != IR_PI);
lca = 0;
for (p = &ctx->use_edges[ctx->use_lists[ref].refs]; n > 0; p++, n--) {
use = *p;
b = _blocks[use];
if (!b) {
continue;
} else if (!ir_bitset_in(visited, use)) {
ir_gcm_schedule_late(ctx, _blocks, visited, use);
b = _blocks[use];
IR_ASSERT(b != 0);
}
insn = &ctx->ir_base[use];
if (insn->op == IR_PHI) {
ir_ref *p = insn->ops + 2; /* PHI data inputs */
ir_ref *q = ctx->ir_base[insn->op1].ops + 1; /* MERGE inputs */
while (*p != ref) {
p++;
q++;
}
b = _blocks[*q];
IR_ASSERT(b);
}
lca = !lca ? b : ir_gcm_find_lca(ctx, lca, b);
}
IR_ASSERT(lca != 0 && "No Common Antecessor");
b = lca;
if (b != _blocks[ref]) {
ir_block *bb = &ctx->cfg_blocks[b];
uint32_t loop_depth = bb->loop_depth;
if (loop_depth) {
if ((ctx->cfg_blocks[bb->loop_header].flags & IR_BB_LOOP_WITH_ENTRY)
&& !(ctx->binding && ir_binding_find(ctx, ref))) {
/* Don't move loop invariant code across an OSR ENTRY if we can't restore it */
} else {
lca = bb->dom_parent;
while (lca != _blocks[ref]) {
bb = &ctx->cfg_blocks[lca];
if (bb->loop_depth < loop_depth) {
loop_depth = bb->loop_depth;
b = lca;
if (!loop_depth) {
break;
}
}
lca = bb->dom_parent;
}
}
}
_blocks[ref] = b;
}
}
}
static void ir_gcm_schedule_rest(ir_ctx *ctx, uint32_t *_blocks, ir_bitset visited, ir_ref ref)
{
ir_ref n, *p, use;
ir_insn *insn;
ir_bitset_incl(visited, ref);
n = ctx->use_lists[ref].count;
if (n) {
uint32_t lca, b;
insn = &ctx->ir_base[ref];
IR_ASSERT(insn->op != IR_PARAM && insn->op != IR_VAR);
IR_ASSERT(insn->op != IR_PHI && insn->op != IR_PI);
lca = 0;
for (p = &ctx->use_edges[ctx->use_lists[ref].refs]; n > 0; p++, n--) {
use = *p;
b = _blocks[use];
if (!b) {
continue;
} else if (!ir_bitset_in(visited, use)) {
ir_gcm_schedule_late(ctx, _blocks, visited, use);
b = _blocks[use];
IR_ASSERT(b != 0);
}
insn = &ctx->ir_base[use];
if (insn->op == IR_PHI) {
ir_ref *p = insn->ops + 2; /* PHI data inputs */
ir_ref *q = ctx->ir_base[insn->op1].ops + 1; /* MERGE inputs */
while (*p != ref) {
p++;
q++;
}
b = _blocks[*q];
IR_ASSERT(b);
}
lca = !lca ? b : ir_gcm_find_lca(ctx, lca, b);
}
IR_ASSERT(lca != 0 && "No Common Antecessor");
b = lca;
_blocks[ref] = b;
}
}
int ir_gcm(ir_ctx *ctx)
{
ir_ref k, n, *p, ref;
ir_bitset visited;
ir_block *bb;
ir_list queue_early;
ir_list queue_late;
ir_list queue_rest;
uint32_t *_blocks, b;
ir_insn *insn, *use_insn;
ir_use_list *use_list;
uint32_t flags;
IR_ASSERT(ctx->cfg_map);
_blocks = ctx->cfg_map;
ir_list_init(&queue_early, ctx->insns_count);
if (ctx->cfg_blocks_count == 1) {
ref = ctx->cfg_blocks[1].end;
do {
insn = &ctx->ir_base[ref];
_blocks[ref] = 1; /* pin to block */
flags = ir_op_flags[insn->op];
#if 1
n = IR_INPUT_EDGES_COUNT(flags);
if (!IR_IS_FIXED_INPUTS_COUNT(n) || n > 1) {
ir_list_push_unchecked(&queue_early, ref);
}
#else
if (IR_OPND_KIND(flags, 2) == IR_OPND_DATA
|| IR_OPND_KIND(flags, 3) == IR_OPND_DATA) {
ir_list_push_unchecked(&queue_early, ref);
}
#endif
ref = insn->op1; /* control predecessor */
} while (ref != 1); /* IR_START */
_blocks[1] = 1; /* pin to block */
use_list = &ctx->use_lists[1];
n = use_list->count;
for (p = &ctx->use_edges[use_list->refs]; n > 0; n--, p++) {
ref = *p;
use_insn = &ctx->ir_base[ref];
if (use_insn->op == IR_PARAM || use_insn->op == IR_VAR) {
_blocks[ref] = 1; /* pin to block */
}
}
/* Place all live nodes to the first block */
while (ir_list_len(&queue_early)) {
ref = ir_list_pop(&queue_early);
insn = &ctx->ir_base[ref];
n = ir_input_edges_count(ctx, insn);
for (p = insn->ops + 1; n > 0; p++, n--) {
ref = *p;
if (ref > 0 && _blocks[ref] == 0) {
_blocks[ref] = 1;
ir_list_push_unchecked(&queue_early, ref);
}
}
}
ir_list_free(&queue_early);
return 1;
}
ir_list_init(&queue_late, ctx->insns_count);
visited = ir_bitset_malloc(ctx->insns_count);
/* pin and collect control and control depended (PARAM, VAR, PHI, PI) instructions */
b = ctx->cfg_blocks_count;
for (bb = ctx->cfg_blocks + b; b > 0; bb--, b--) {
IR_ASSERT(!(bb->flags & IR_BB_UNREACHABLE));
ref = bb->end;
do {
insn = &ctx->ir_base[ref];
ir_bitset_incl(visited, ref);
_blocks[ref] = b; /* pin to block */
flags = ir_op_flags[insn->op];
#if 1
n = IR_INPUT_EDGES_COUNT(flags);
if (!IR_IS_FIXED_INPUTS_COUNT(n) || n > 1) {
ir_list_push_unchecked(&queue_early, ref);
}
#else
if (IR_OPND_KIND(flags, 2) == IR_OPND_DATA
|| IR_OPND_KIND(flags, 3) == IR_OPND_DATA) {
ir_list_push_unchecked(&queue_early, ref);
}
#endif
if (insn->type != IR_VOID) {
IR_ASSERT(flags & IR_OP_FLAG_MEM);
ir_list_push_unchecked(&queue_late, ref);
}
ref = insn->op1; /* control predecessor */
} while (ref != bb->start);
ir_bitset_incl(visited, ref);
_blocks[ref] = b; /* pin to block */
use_list = &ctx->use_lists[ref];
n = use_list->count;
for (p = &ctx->use_edges[use_list->refs]; n > 0; n--, p++) {
ref = *p;
use_insn = &ctx->ir_base[ref];
if (use_insn->op == IR_PARAM || use_insn->op == IR_VAR) {
_blocks[ref] = b; /* pin to block */
ir_bitset_incl(visited, ref);
} else if (use_insn->op == IR_PHI || use_insn->op == IR_PI) {
ir_bitset_incl(visited, ref);
if (EXPECTED(ctx->use_lists[ref].count != 0)) {
_blocks[ref] = b; /* pin to block */
ir_list_push_unchecked(&queue_early, ref);
ir_list_push_unchecked(&queue_late, ref);
}
}
}
}
ir_list_init(&queue_rest, ctx->insns_count);
n = ir_list_len(&queue_early);
while (n > 0) {
n--;
ref = ir_list_at(&queue_early, n);
insn = &ctx->ir_base[ref];
k = ir_input_edges_count(ctx, insn) - 1;
for (p = insn->ops + 2; k > 0; p++, k--) {
ref = *p;
if (ref > 0 && _blocks[ref] == 0) {
ir_gcm_schedule_early(ctx, _blocks, ref, &queue_rest);
}
}
}
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_GCM) {
fprintf(stderr, "GCM Schedule Early\n");
for (n = 1; n < ctx->insns_count; n++) {
fprintf(stderr, "%d -> %d\n", n, _blocks[n]);
}
}
#endif
n = ir_list_len(&queue_late);
while (n > 0) {
n--;
ref = ir_list_at(&queue_late, n);
use_list = &ctx->use_lists[ref];
k = use_list->count;
for (p = &ctx->use_edges[use_list->refs]; k > 0; p++, k--) {
ref = *p;
if (!ir_bitset_in(visited, ref) && _blocks[ref]) {
ir_gcm_schedule_late(ctx, _blocks, visited, ref);
}
}
}
n = ir_list_len(&queue_rest);
while (n > 0) {
n--;
ref = ir_list_at(&queue_rest, n);
ir_gcm_schedule_rest(ctx, _blocks, visited, ref);
}
ir_mem_free(visited);
ir_list_free(&queue_early);
ir_list_free(&queue_late);
ir_list_free(&queue_rest);
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_GCM) {
fprintf(stderr, "GCM Schedule Late\n");
for (n = 1; n < ctx->insns_count; n++) {
fprintf(stderr, "%d -> %d\n", n, _blocks[n]);
}
}
#endif
return 1;
}
static void ir_xlat_binding(ir_ctx *ctx, ir_ref *_xlat)
{
uint32_t n1, n2, pos;
ir_ref key;
ir_hashtab_bucket *b1, *b2;
ir_hashtab *binding = ctx->binding;
uint32_t hash_size = (uint32_t)(-(int32_t)binding->mask);
memset((char*)binding->data - (hash_size * sizeof(uint32_t)), -1, hash_size * sizeof(uint32_t));
n1 = binding->count;
n2 = 0;
pos = 0;
b1 = binding->data;
b2 = binding->data;
while (n1 > 0) {
key = b1->key;
IR_ASSERT(key < ctx->insns_count);
if (_xlat[key]) {
key = _xlat[key];
b2->key = key;
if (b1->val > 0) {
IR_ASSERT(_xlat[b1->val]);
b2->val = _xlat[b1->val];
} else {
b2->val = b1->val;
}
key |= binding->mask;
b2->next = ((uint32_t*)binding->data)[key];
((uint32_t*)binding->data)[key] = pos;
pos += sizeof(ir_hashtab_bucket);
b2++;
n2++;
}
b1++;
n1--;
}
binding->count = n2;
}
IR_ALWAYS_INLINE ir_ref ir_count_constant(ir_bitset used, ir_ref ref)
{
if (!ir_bitset_in(used, -ref)) {
ir_bitset_incl(used, -ref);
return 1;
}
return 0;
}
int ir_schedule(ir_ctx *ctx)
{
ir_ctx new_ctx;
ir_ref i, j, k, n, *p, *q, ref, new_ref, prev_ref, insns_count, consts_count, edges_count;
ir_ref *_xlat;
uint32_t flags;
ir_ref *edges;
ir_bitset used, scheduled;
uint32_t b, prev_b;
uint32_t *_blocks = ctx->cfg_map;
ir_ref *_next = ir_mem_malloc(ctx->insns_count * sizeof(ir_ref));
ir_ref *_prev = ir_mem_malloc(ctx->insns_count * sizeof(ir_ref));
ir_ref _move_down = 0;
ir_block *bb;
ir_insn *insn, *new_insn;
ir_use_list *lists, *use_list, *new_list;
/* Create a double-linked list of nodes ordered by BB, respecting BB->start and BB->end */
prev_b = _blocks[1];
IR_ASSERT(prev_b);
_prev[1] = 0;
_prev[ctx->cfg_blocks[1].end] = 0;
for (i = 2, j = 1; i < ctx->insns_count; i++) {
b = _blocks[i];
if (b == prev_b) {
/* add to the end of the list */
_next[j] = i;
_prev[i] = j;
j = i;
} else if (b > prev_b) {
bb = &ctx->cfg_blocks[b];
if (i == bb->start) {
IR_ASSERT(bb->end > bb->start);
prev_b = b;
_prev[bb->end] = 0;
/* add to the end of the list */
_next[j] = i;
_prev[i] = j;
j = i;
} else {
IR_ASSERT(i != bb->end);
/* move down late (see the following loop) */
_next[i] = _move_down;
_move_down = i;
}
} else if (b) {
bb = &ctx->cfg_blocks[b];
IR_ASSERT(i != bb->start);
if (_prev[bb->end]) {
/* move up, insert before the end of the alredy scheduled BB */
k = bb->end;
} else {
/* move up, insert at the end of the block */
k = ctx->cfg_blocks[b + 1].start;
}
/* insert before "k" */
_prev[i] = _prev[k];
_next[i] = k;
_next[_prev[k]] = i;
_prev[k] = i;
}
}
_next[j] = 0;
while (_move_down) {
i = _move_down;
_move_down = _next[i];
b = _blocks[i];
bb = &ctx->cfg_blocks[b];
/* insert after the start of the block and all PARAM, VAR, PI, PHI */
k = _next[bb->start];
insn = &ctx->ir_base[k];
while (insn->op == IR_PARAM || insn->op == IR_VAR || insn->op == IR_PI || insn->op == IR_PHI) {
k = _next[k];
insn = &ctx->ir_base[k];
}
/* insert before "k" */
_prev[i] = _prev[k];
_next[i] = k;
_next[_prev[k]] = i;
_prev[k] = i;
}
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_SCHEDULE) {
fprintf(stderr, "Before Schedule\n");
for (i = 1; i != 0; i = _next[i]) {
fprintf(stderr, "%d -> %d\n", i, _blocks[i]);
}
}
#endif
_xlat = ir_mem_malloc((ctx->consts_count + ctx->insns_count) * sizeof(ir_ref));
if (ctx->binding) {
memset(_xlat, 0, (ctx->consts_count + ctx->insns_count) * sizeof(ir_ref));
}
_xlat += ctx->consts_count;
_xlat[IR_TRUE] = IR_TRUE;
_xlat[IR_FALSE] = IR_FALSE;
_xlat[IR_NULL] = IR_NULL;
_xlat[IR_UNUSED] = IR_UNUSED;
insns_count = 1;
consts_count = -(IR_TRUE - 1);
/* Topological sort according dependencies inside each basic block */
scheduled = ir_bitset_malloc(ctx->insns_count);
used = ir_bitset_malloc(ctx->consts_count + 1);
for (b = 1, bb = ctx->cfg_blocks + 1; b <= ctx->cfg_blocks_count; b++, bb++) {
IR_ASSERT(!(bb->flags & IR_BB_UNREACHABLE));
/* Schedule BB start */
i = bb->start;
ir_bitset_incl(scheduled, i);
_xlat[i] = bb->start = insns_count;
insn = &ctx->ir_base[i];
if (insn->op == IR_CASE_VAL) {
IR_ASSERT(insn->op2 < IR_TRUE);
consts_count += ir_count_constant(used, insn->op2);
}
n = ir_input_edges_count(ctx, insn);
insns_count += 1 + (n >> 2); // support for multi-word instructions like MERGE
i = _next[i];
insn = &ctx->ir_base[i];
/* Schedule PARAM, VAR, PI */
while (insn->op == IR_PARAM || insn->op == IR_VAR || insn->op == IR_PI) {
ir_bitset_incl(scheduled, i);
_xlat[i] = insns_count;
insns_count += 1;
i = _next[i];
insn = &ctx->ir_base[i];
}
/* Schedule PHIs */
while (insn->op == IR_PHI) {
ir_ref j, *p, input;
ir_bitset_incl(scheduled, i);
_xlat[i] = insns_count;
/* Reuse "n" from MERGE and skip first input */
insns_count += 1 + ((n + 1) >> 2); // support for multi-word instructions like PHI
for (j = n, p = insn->ops + 2; j > 0; p++, j--) {
input = *p;
if (input < IR_TRUE) {
consts_count += ir_count_constant(used, input);
}
}
i = _next[i];
insn = &ctx->ir_base[i];
}
while (i != bb->end) {
ir_ref n, j, *p, input;
restart:
n = ir_input_edges_count(ctx, insn);
for (j = n, p = insn->ops + 1; j > 0; p++, j--) {
input = *p;
if (input > 0) {
if (!ir_bitset_in(scheduled, input) && _blocks[input] == b) {
/* "input" should be before "i" to satisfy dependency */
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_SCHEDULE) {
fprintf(stderr, "Wrong dependency %d:%d -> %d\n", b, input, i);
}
#endif
/* remove "input" */
_prev[_next[input]] = _prev[input];
_next[_prev[input]] = _next[input];
/* insert before "i" */
_prev[input] = _prev[i];
_next[input] = i;
_next[_prev[i]] = input;
_prev[i] = input;
/* restart from "input" */
i = input;
insn = &ctx->ir_base[i];
goto restart;
}
} else if (input < IR_TRUE) {
consts_count += ir_count_constant(used, input);
}
}
ir_bitset_incl(scheduled, i);
_xlat[i] = insns_count;
insns_count += 1 + (n >> 2); // support for multi-word instructions like CALL
i = _next[i];
insn = &ctx->ir_base[i];
}
/* Schedule BB end */
ir_bitset_incl(scheduled, i);
_xlat[i] = bb->end = insns_count;
insns_count++;
if (IR_INPUT_EDGES_COUNT(ir_op_flags[insn->op]) == 2) {
if (insn->op2 < IR_TRUE) {
consts_count += ir_count_constant(used, insn->op2);
}
}
}
#ifdef IR_DEBUG
if (ctx->flags & IR_DEBUG_SCHEDULE) {
fprintf(stderr, "After Schedule\n");
for (i = 1; i != 0; i = _next[i]) {
fprintf(stderr, "%d -> %d\n", i, _blocks[i]);
}
}
#endif
#if 1
if (consts_count == ctx->consts_count && insns_count == ctx->insns_count) {
bool changed = 0;
for (i = 1; i != 0; i = _next[i]) {
if (_xlat[i] != i) {
changed = 1;
break;
}
}
if (!changed) {
ir_mem_free(used);
ir_mem_free(scheduled);
_xlat -= ctx->consts_count;
ir_mem_free(_xlat);
ir_mem_free(_next);
ctx->prev_ref = _prev;
ctx->flags |= IR_LINEAR;
ir_truncate(ctx);
return 1;
}
}
#endif
ir_mem_free(_prev);
ir_init(&new_ctx, ctx->flags, consts_count, insns_count);
new_ctx.insns_count = insns_count;
new_ctx.mflags = ctx->mflags;
new_ctx.spill_base = ctx->spill_base;
new_ctx.fixed_stack_red_zone = ctx->fixed_stack_red_zone;
new_ctx.fixed_stack_frame_size = ctx->fixed_stack_frame_size;
new_ctx.fixed_call_stack_size = ctx->fixed_call_stack_size;
new_ctx.fixed_regset = ctx->fixed_regset;
new_ctx.fixed_save_regset = ctx->fixed_save_regset;
new_ctx.entries_count = ctx->entries_count;
/* Copy constants */
if (consts_count == ctx->consts_count) {
new_ctx.consts_count = consts_count;
ref = 1 - consts_count;
insn = &ctx->ir_base[ref];
new_insn = &new_ctx.ir_base[ref];
memcpy(new_insn, insn, sizeof(ir_insn) * (IR_TRUE - ref));
while (ref != IR_TRUE) {
_xlat[ref] = ref;
if (new_insn->op == IR_FUNC || new_insn->op == IR_STR) {
new_insn->val.addr = ir_str(&new_ctx, ir_get_str(ctx, new_insn->val.i32));
}
new_insn++;
ref++;
}
} else {
IR_BITSET_FOREACH(used, ir_bitset_len(ctx->consts_count + 1), ref) {
new_ref = new_ctx.consts_count;
IR_ASSERT(new_ref < ctx->consts_limit);
new_ctx.consts_count = new_ref + 1;
_xlat[-ref] = new_ref = -new_ref;
insn = &ctx->ir_base[-ref];
new_insn = &new_ctx.ir_base[new_ref];
new_insn->optx = insn->optx;
new_insn->prev_const = 0;
if (insn->op == IR_FUNC || insn->op == IR_STR) {
new_insn->val.addr = ir_str(&new_ctx, ir_get_str(ctx, insn->val.i32));
} else {
new_insn->val.u64 = insn->val.u64;
}
} IR_BITSET_FOREACH_END();
}
ir_mem_free(used);
/* Copy instructions and count use edges */
edges_count = 0;
for (i = 1; i != 0; i = _next[i]) {
insn = &ctx->ir_base[i];
new_ref = _xlat[i];
new_insn = &new_ctx.ir_base[new_ref];
*new_insn = *insn;
n = ir_input_edges_count(ctx, insn);
for (j = n, p = insn->ops + 1, q = new_insn->ops + 1; j > 0; p++, q++, j--) {
ref = *p;
*q = ref = _xlat[ref];
edges_count += (ref > 0);
}
flags = ir_op_flags[insn->op];
j = IR_OPERANDS_COUNT(flags);
if (j > n) {
switch (j) {
case 3:
switch (IR_OPND_KIND(flags, 3)) {
case IR_OPND_CONTROL_REF:
new_insn->op3 = _xlat[insn->op3];
break;
case IR_OPND_STR:
new_insn->op3 = ir_str(&new_ctx, ir_get_str(ctx, insn->op3));
break;
default:
break;
}
if (n == 2) {
break;
}
IR_FALLTHROUGH;
case 2:
switch (IR_OPND_KIND(flags, 2)) {
case IR_OPND_CONTROL_REF:
new_insn->op2 = _xlat[insn->op2];
break;
case IR_OPND_STR:
new_insn->op2 = ir_str(&new_ctx, ir_get_str(ctx, insn->op2));
break;
default:
break;
}
if (n == 1) {
break;
}
IR_FALLTHROUGH;
case 1:
switch (IR_OPND_KIND(flags, 1)) {
case IR_OPND_CONTROL_REF:
new_insn->op1 = _xlat[insn->op1];
break;
case IR_OPND_STR:
new_insn->op1 = ir_str(&new_ctx, ir_get_str(ctx, insn->op1));
break;
default:
break;
}
break;
default:
break;
}
}
}
if (ctx->binding) {
ir_xlat_binding(ctx, _xlat);
new_ctx.binding = ctx->binding;
ctx->binding = NULL;
}
/* Copy use lists and edges */
new_ctx.use_lists = lists = ir_mem_malloc(insns_count * sizeof(ir_use_list));
new_ctx.use_edges = edges = ir_mem_malloc(edges_count * sizeof(ir_ref));
new_ctx.use_edges_count = edges_count;
new_ctx.prev_ref = _prev = ir_mem_malloc(insns_count * sizeof(ir_ref));
prev_ref = 0;
edges_count = 0;
for (i = 1; i != 0; i = _next[i]) {
use_list = &ctx->use_lists[i];
new_ref = _xlat[i];
_prev[new_ref] = prev_ref;
prev_ref = new_ref;
new_list = &lists[new_ref];
new_list->refs = edges_count;
n = use_list->count;
k = 0;
if (n) {
for (p = &ctx->use_edges[use_list->refs]; n > 0; n--, p++) {
ref = *p;
if (ir_bitset_in(scheduled, ref)) {
*edges = _xlat[ref];
edges++;
k++;
}
}
edges_count += k;
}
new_list->count = k;
}
IR_ASSERT(new_ctx.use_edges_count >= edges_count);
ir_mem_free(scheduled);
_xlat -= ctx->consts_count;
ir_mem_free(_xlat);
new_ctx.cfg_blocks_count = ctx->cfg_blocks_count;
new_ctx.cfg_edges_count = ctx->cfg_edges_count;
new_ctx.cfg_blocks = ctx->cfg_blocks;
new_ctx.cfg_edges = ctx->cfg_edges;
ctx->cfg_blocks = NULL;
ctx->cfg_edges = NULL;
ir_free(ctx);
IR_ASSERT(new_ctx.consts_count == new_ctx.consts_limit);
IR_ASSERT(new_ctx.insns_count == new_ctx.insns_limit);
memcpy(ctx, &new_ctx, sizeof(ir_ctx));
ctx->flags |= IR_LINEAR;
ir_mem_free(_next);
return 1;
}
void ir_build_prev_refs(ir_ctx *ctx)
{
uint32_t b;
ir_block *bb;
ir_ref i, n, prev;
ir_insn *insn;
ctx->prev_ref = ir_mem_malloc(ctx->insns_count * sizeof(ir_ref));
prev = 0;
for (b = 1, bb = ctx->cfg_blocks + b; b <= ctx->cfg_blocks_count; b++, bb++) {
IR_ASSERT(!(bb->flags & IR_BB_UNREACHABLE));
for (i = bb->start, insn = ctx->ir_base + i; i < bb->end;) {
ctx->prev_ref[i] = prev;
n = ir_operands_count(ctx, insn);
n = 1 + (n >> 2); // support for multi-word instructions like MERGE and PHI
prev = i;
i += n;
insn += n;
}
ctx->prev_ref[i] = prev;
}
}