ir/ir.c

2096 lines
52 KiB
C

/*
* IR - Lightweight JIT Compilation Framework
* (IR construction, folding, utilities)
* Copyright (C) 2022 Zend by Perforce.
* Authors: Dmitry Stogov <dmitry@php.net>
*
* The logical IR representation is based on Cliff Click's Sea of Nodes.
* See: C. Click, M. Paleczny. "A Simple Graph-Based Intermediate
* Representation" In ACM SIGPLAN Workshop on Intermediate Representations
* (IR '95), pages 35-49, Jan. 1995.
*
* The phisical IR representation is based on Mike Pall's LuaJIT IR.
* See: M. Pall. "LuaJIT 2.0 intellectual property disclosure and research
* opportunities" November 2009 http://lua-users.org/lists/lua-l/2009-11/msg00089.html
*/
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#ifndef _WIN32
# include <sys/mman.h>
#else
# define WIN32_LEAN_AND_MEAN
# include <windows.h>
#endif
#include "ir.h"
#include "ir_private.h"
#include <math.h>
#ifdef HAVE_VALGRIND
# include <valgrind/valgrind.h>
#endif
#define IR_TYPE_FLAGS(name, type, field, flags) ((flags)|sizeof(type)),
#define IR_TYPE_NAME(name, type, field, flags) #name,
#define IR_TYPE_CNAME(name, type, field, flags) #type,
#define IR_TYPE_SIZE(name, type, field, flags) sizeof(type),
#define IR_OP_NAME(name, flags, op1, op2, op3) #name,
const uint8_t ir_type_flags[IR_LAST_TYPE] = {
0,
IR_TYPES(IR_TYPE_FLAGS)
};
const char *ir_type_name[IR_LAST_TYPE] = {
"void",
IR_TYPES(IR_TYPE_NAME)
};
const uint8_t ir_type_size[IR_LAST_TYPE] = {
0,
IR_TYPES(IR_TYPE_SIZE)
};
const char *ir_type_cname[IR_LAST_TYPE] = {
"void",
IR_TYPES(IR_TYPE_CNAME)
};
const char *ir_op_name[IR_LAST_OP] = {
IR_OPS(IR_OP_NAME)
#ifdef IR_PHP
IR_PHP_OPS(IR_OP_NAME)
#endif
};
void ir_print_const(const ir_ctx *ctx, const ir_insn *insn, FILE *f)
{
if (insn->op == IR_FUNC) {
fprintf(f, "%s", ir_get_str(ctx, insn->val.i32));
return;
} else if (insn->op == IR_STR) {
fprintf(f, "\"%s\"", ir_get_str(ctx, insn->val.i32));
return;
}
IR_ASSERT(IR_IS_CONST_OP(insn->op) || insn->op == IR_FUNC_ADDR);
switch (insn->type) {
case IR_BOOL:
fprintf(f, "%u", insn->val.b);
break;
case IR_U8:
fprintf(f, "%u", insn->val.u8);
break;
case IR_U16:
fprintf(f, "%u", insn->val.u16);
break;
case IR_U32:
fprintf(f, "%u", insn->val.u32);
break;
case IR_U64:
fprintf(f, "%" PRIu64, insn->val.u64);
break;
case IR_ADDR:
if (insn->val.addr) {
fprintf(f, "0x%" PRIxPTR, insn->val.addr);
} else {
fprintf(f, "0");
}
break;
case IR_CHAR:
if (insn->val.c == '\\') {
fprintf(f, "'\\\\'");
} else if (insn->val.c >= ' ') {
fprintf(f, "'%c'", insn->val.c);
} else if (insn->val.c == '\t') {
fprintf(f, "'\\t'");
} else if (insn->val.c == '\r') {
fprintf(f, "'\\r'");
} else if (insn->val.c == '\n') {
fprintf(f, "'\\n'");
} else if (insn->val.c == '\0') {
fprintf(f, "'\\0'");
} else {
fprintf(f, "%u", insn->val.c);
}
break;
case IR_I8:
fprintf(f, "%d", insn->val.i8);
break;
case IR_I16:
fprintf(f, "%d", insn->val.i16);
break;
case IR_I32:
fprintf(f, "%d", insn->val.i32);
break;
case IR_I64:
fprintf(f, "%" PRIi64, insn->val.i64);
break;
case IR_DOUBLE:
fprintf(f, "%g", insn->val.d);
break;
case IR_FLOAT:
fprintf(f, "%f", insn->val.f);
break;
default:
IR_ASSERT(0);
break;
}
}
#define ir_op_flag_v 0
#define ir_op_flag_v0X3 (0 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d IR_OP_FLAG_DATA
#define ir_op_flag_d0 ir_op_flag_d
#define ir_op_flag_d1 (ir_op_flag_d | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d1X1 (ir_op_flag_d | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d2 (ir_op_flag_d | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d2C (ir_op_flag_d | IR_OP_FLAG_COMMUTATIVE | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_d3 (ir_op_flag_d | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_r IR_OP_FLAG_DATA // "d" and "r" are the same now
#define ir_op_flag_r0 ir_op_flag_r
#define ir_op_flag_p (IR_OP_FLAG_DATA | IR_OP_FLAG_PINNED)
#define ir_op_flag_p1 (ir_op_flag_p | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_p1X1 (ir_op_flag_p | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_p1X2 (ir_op_flag_p | 1 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_p2 (ir_op_flag_p | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_pN (ir_op_flag_p | IR_OP_FLAG_VAR_INPUTS)
#define ir_op_flag_c IR_OP_FLAG_CONTROL
#define ir_op_flag_c1X2 (ir_op_flag_c | 1 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_c3 (ir_op_flag_c | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_S (IR_OP_FLAG_CONTROL|IR_OP_FLAG_BB_START)
#define ir_op_flag_S0X1 (ir_op_flag_S | 0 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_S1 (ir_op_flag_S | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_S1X1 (ir_op_flag_S | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_S2 (ir_op_flag_S | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_S2X1 (ir_op_flag_S | 2 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_SN (ir_op_flag_S | IR_OP_FLAG_VAR_INPUTS)
#define ir_op_flag_E (IR_OP_FLAG_CONTROL|IR_OP_FLAG_BB_END)
#define ir_op_flag_E1 (ir_op_flag_E | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_E2 (ir_op_flag_E | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_T (IR_OP_FLAG_CONTROL|IR_OP_FLAG_BB_END|IR_OP_FLAG_TERMINATOR)
#define ir_op_flag_T2X1 (ir_op_flag_T | 2 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_T1X2 (ir_op_flag_T | 1 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_l (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_LOAD)
#define ir_op_flag_l0 ir_op_flag_l
#define ir_op_flag_l1 (ir_op_flag_l | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_l1X1 (ir_op_flag_l | 1 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_l1X2 (ir_op_flag_l | 1 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_l2 (ir_op_flag_l | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_l3 (ir_op_flag_l | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_s (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_STORE)
#define ir_op_flag_s0 ir_op_flag_s
#define ir_op_flag_s1 (ir_op_flag_s | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_s2 (ir_op_flag_s | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_s2X1 (ir_op_flag_s | 2 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_s3 (ir_op_flag_s | 3 | (3 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_x1 (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_CALL | 1 | (1 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_x2 (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_CALL | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_flag_xN (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_CALL | IR_OP_FLAG_VAR_INPUTS)
#define ir_op_flag_a2 (IR_OP_FLAG_CONTROL|IR_OP_FLAG_MEM|IR_OP_FLAG_MEM_ALLOC | 2 | (2 << IR_OP_FLAG_OPERANDS_SHIFT))
#define ir_op_kind____ IR_OPND_UNUSED
#define ir_op_kind_def IR_OPND_DATA
#define ir_op_kind_ref IR_OPND_DATA
#define ir_op_kind_src IR_OPND_CONTROL
#define ir_op_kind_reg IR_OPND_CONTROL_DEP
#define ir_op_kind_ret IR_OPND_CONTROL_REF
#define ir_op_kind_str IR_OPND_STR
#define ir_op_kind_num IR_OPND_NUM
#define ir_op_kind_fld IR_OPND_STR
#define ir_op_kind_var IR_OPND_VAR
#define ir_op_kind_prb IR_OPND_PROB
#define ir_op_kind_opt IR_OPND_PROB
#define _IR_OP_FLAGS(name, flags, op1, op2, op3) \
IR_OP_FLAGS(ir_op_flag_ ## flags, ir_op_kind_ ## op1, ir_op_kind_ ## op2, ir_op_kind_ ## op3),
const uint32_t ir_op_flags[IR_LAST_OP] = {
IR_OPS(_IR_OP_FLAGS)
#ifdef IR_PHP
IR_PHP_OPS(_IR_OP_FLAGS)
#endif
};
static void ir_grow_bottom(ir_ctx *ctx)
{
ir_insn *buf = ctx->ir_base - ctx->consts_limit;
ir_ref old_consts_limit = ctx->consts_limit;
if (ctx->consts_limit < 1024 * 4) {
ctx->consts_limit *= 2;
} else if (ctx->insns_limit < 1024 * 4 * 2) {
ctx->consts_limit = 1024 * 4 * 2;
} else {
ctx->consts_limit += 1024 * 4;
}
buf = ir_mem_realloc(buf, (ctx->consts_limit + ctx->insns_limit) * sizeof(ir_insn));
memmove(buf + ctx->consts_limit - ctx->consts_count,
buf + old_consts_limit - ctx->consts_count,
(old_consts_limit + ctx->insns_limit) * sizeof(ir_insn));
ctx->ir_base = buf + ctx->consts_limit;
}
static ir_ref ir_next_const(ir_ctx *ctx)
{
ir_ref ref = ctx->consts_count;
if (UNEXPECTED(ref >= ctx->consts_limit)) {
ir_grow_bottom(ctx);
}
ctx->consts_count = ref + 1;
return -ref;
}
static void ir_grow_top(ir_ctx *ctx)
{
ir_insn *buf = ctx->ir_base - ctx->consts_limit;
if (ctx->insns_limit < 1024 * 4) {
ctx->insns_limit *= 2;
} else if (ctx->insns_limit < 1024 * 4 * 2) {
ctx->insns_limit = 1024 * 4 * 2;
} else {
ctx->insns_limit += 1024 * 4;
}
buf = ir_mem_realloc(buf, (ctx->consts_limit + ctx->insns_limit) * sizeof(ir_insn));
ctx->ir_base = buf + ctx->consts_limit;
}
static ir_ref ir_next_insn(ir_ctx *ctx)
{
ir_ref ref = ctx->insns_count;
if (UNEXPECTED(ref >= ctx->insns_limit)) {
ir_grow_top(ctx);
}
ctx->insns_count = ref + 1;
return ref;
}
void ir_truncate(ir_ctx *ctx)
{
ir_insn *buf = ir_mem_malloc((ctx->consts_count + ctx->insns_count) * sizeof(ir_insn));
memcpy(buf, ctx->ir_base - ctx->consts_count, (ctx->consts_count + ctx->insns_count) * sizeof(ir_insn));
ir_mem_free(ctx->ir_base - ctx->consts_limit);
ctx->insns_limit = ctx->insns_count;
ctx->consts_limit = ctx->consts_count;
ctx->ir_base = buf + ctx->consts_limit;
}
void ir_init(ir_ctx *ctx, uint32_t flags, ir_ref consts_limit, ir_ref insns_limit)
{
ir_insn *buf;
IR_ASSERT(consts_limit >= IR_CONSTS_LIMIT_MIN);
IR_ASSERT(insns_limit >= IR_INSNS_LIMIT_MIN);
ctx->insns_count = IR_UNUSED + 1;
ctx->insns_limit = insns_limit;
ctx->consts_count = -(IR_TRUE - 1);
ctx->consts_limit = consts_limit;
ctx->fold_cse_limit = IR_UNUSED + 1;
ctx->flags = flags;
ctx->mflags = 0;
ctx->binding = NULL;
ctx->use_lists = NULL;
ctx->use_edges = NULL;
ctx->use_edges_count = 0;
ctx->cfg_blocks_count = 0;
ctx->cfg_edges_count = 0;
ctx->cfg_blocks = NULL;
ctx->cfg_edges = NULL;
ctx->cfg_map = NULL;
ctx->rules = NULL;
ctx->vregs = NULL;
ctx->vregs_count = 0;
ctx->spill_base = -1;
ctx->fixed_stack_red_zone = 0;
ctx->fixed_stack_frame_size = -1;
ctx->fixed_call_stack_size = 0;
ctx->fixed_regset = 0;
ctx->fixed_save_regset = 0;
ctx->live_intervals = NULL;
ctx->arena = NULL;
ctx->unused_ranges = NULL;
ctx->regs = NULL;
ctx->prev_ref = NULL;
ctx->data = NULL;
ctx->snapshot_create = NULL;
ctx->entries_count = 0;
ctx->entries = NULL;
ctx->osr_entry_loads = NULL;
ctx->code_buffer = NULL;
ctx->code_buffer_size = 0;
ctx->strtab.data = NULL;
buf = ir_mem_malloc((consts_limit + insns_limit) * sizeof(ir_insn));
ctx->ir_base = buf + consts_limit;
ctx->ir_base[IR_UNUSED].optx = IR_NOP;
ctx->ir_base[IR_NULL].optx = IR_OPT(IR_C_ADDR, IR_ADDR);
ctx->ir_base[IR_NULL].val.u64 = 0;
ctx->ir_base[IR_FALSE].optx = IR_OPT(IR_C_BOOL, IR_BOOL);
ctx->ir_base[IR_FALSE].val.u64 = 0;
ctx->ir_base[IR_TRUE].optx = IR_OPT(IR_C_BOOL, IR_BOOL);
ctx->ir_base[IR_TRUE].val.u64 = 1;
memset(ctx->prev_insn_chain, 0, sizeof(ctx->prev_insn_chain));
memset(ctx->prev_const_chain, 0, sizeof(ctx->prev_const_chain));
}
void ir_free(ir_ctx *ctx)
{
ir_insn *buf = ctx->ir_base - ctx->consts_limit;
ir_mem_free(buf);
if (ctx->strtab.data) {
ir_strtab_free(&ctx->strtab);
}
if (ctx->binding) {
ir_hashtab_free(ctx->binding);
ir_mem_free(ctx->binding);
}
if (ctx->use_lists) {
ir_mem_free(ctx->use_lists);
}
if (ctx->use_edges) {
ir_mem_free(ctx->use_edges);
}
if (ctx->cfg_blocks) {
ir_mem_free(ctx->cfg_blocks);
}
if (ctx->cfg_edges) {
ir_mem_free(ctx->cfg_edges);
}
if (ctx->cfg_map) {
ir_mem_free(ctx->cfg_map);
}
if (ctx->rules) {
ir_mem_free(ctx->rules);
}
if (ctx->vregs) {
ir_mem_free(ctx->vregs);
}
if (ctx->live_intervals) {
ir_mem_free(ctx->live_intervals);
}
if (ctx->arena) {
ir_arena_free(ctx->arena);
}
if (ctx->regs) {
ir_mem_free(ctx->regs);
}
if (ctx->prev_ref) {
ir_mem_free(ctx->prev_ref);
}
if (ctx->entries) {
ir_mem_free(ctx->entries);
}
if (ctx->osr_entry_loads) {
ir_list_free((ir_list*)ctx->osr_entry_loads);
ir_mem_free(ctx->osr_entry_loads);
}
}
ir_ref ir_unique_const_addr(ir_ctx *ctx, uintptr_t addr)
{
ir_ref ref = ir_next_const(ctx);
ir_insn *insn = &ctx->ir_base[ref];
insn->optx = IR_OPT(IR_ADDR, IR_ADDR);
insn->val.u64 = addr;
/* don't insert into constants chain */
insn->prev_const = IR_UNUSED;
#if 0
insn->prev_const = ctx->prev_const_chain[IR_ADDR];
ctx->prev_const_chain[IR_ADDR] = ref;
#endif
#if 0
ir_insn *prev_insn, *next_insn;
ir_ref next;
prev_insn = NULL;
next = ctx->prev_const_chain[IR_ADDR];
while (next) {
next_insn = &ctx->ir_base[next];
if (UNEXPECTED(next_insn->val.u64 >= addr)) {
break;
}
prev_insn = next_insn;
next = next_insn->prev_const;
}
if (prev_insn) {
insn->prev_const = prev_insn->prev_const;
prev_insn->prev_const = ref;
} else {
insn->prev_const = ctx->prev_const_chain[IR_ADDR];
ctx->prev_const_chain[IR_ADDR] = ref;
}
#endif
return ref;
}
IR_NEVER_INLINE ir_ref ir_const(ir_ctx *ctx, ir_val val, uint8_t type)
{
ir_insn *insn, *prev_insn;
ir_ref ref, prev;
if (type == IR_BOOL) {
return val.u64 ? IR_TRUE : IR_FALSE;
} else if (type == IR_ADDR && val.u64 == 0) {
return IR_NULL;
}
prev_insn = NULL;
ref = ctx->prev_const_chain[type];
while (ref) {
insn = &ctx->ir_base[ref];
if (UNEXPECTED(insn->val.u64 >= val.u64)) {
if (insn->val.u64 == val.u64) {
return ref;
} else {
break;
}
}
prev_insn = insn;
ref = insn->prev_const;
}
if (prev_insn) {
prev = prev_insn->prev_const;
prev_insn->prev_const = -ctx->consts_count;
} else {
prev = ctx->prev_const_chain[type];
ctx->prev_const_chain[type] = -ctx->consts_count;
}
ref = ir_next_const(ctx);
insn = &ctx->ir_base[ref];
insn->prev_const = prev;
insn->optx = IR_OPT(type, type);
insn->val.u64 = val.u64;
return ref;
}
ir_ref ir_const_i8(ir_ctx *ctx, int8_t c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_I8);
}
ir_ref ir_const_i16(ir_ctx *ctx, int16_t c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_I16);
}
ir_ref ir_const_i32(ir_ctx *ctx, int32_t c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_I32);
}
ir_ref ir_const_i64(ir_ctx *ctx, int64_t c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_I64);
}
ir_ref ir_const_u8(ir_ctx *ctx, uint8_t c)
{
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_U8);
}
ir_ref ir_const_u16(ir_ctx *ctx, uint16_t c)
{
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_U16);
}
ir_ref ir_const_u32(ir_ctx *ctx, uint32_t c)
{
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_U32);
}
ir_ref ir_const_u64(ir_ctx *ctx, uint64_t c)
{
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_U64);
}
ir_ref ir_const_bool(ir_ctx *ctx, bool c)
{
return (c) ? IR_TRUE : IR_FALSE;
}
ir_ref ir_const_char(ir_ctx *ctx, char c)
{
ir_val val;
val.i64 = c;
return ir_const(ctx, val, IR_CHAR);
}
ir_ref ir_const_float(ir_ctx *ctx, float c)
{
ir_val val;
val.u32_hi = 0;
val.f = c;
return ir_const(ctx, val, IR_FLOAT);
}
ir_ref ir_const_double(ir_ctx *ctx, double c)
{
ir_val val;
val.d = c;
return ir_const(ctx, val, IR_DOUBLE);
}
ir_ref ir_const_addr(ir_ctx *ctx, uintptr_t c)
{
if (c == 0) {
return IR_NULL;
}
ir_val val;
val.u64 = c;
return ir_const(ctx, val, IR_ADDR);
}
ir_ref ir_const_func_addr(ir_ctx *ctx, uintptr_t c, uint16_t flags)
{
ir_ref top = -ctx->consts_count;
ir_ref ref;
ir_insn *insn;
if (c == 0) {
return IR_NULL;
}
ir_val val;
val.u64 = c;
ref = ir_const(ctx, val, IR_ADDR);
if (ref == top) {
insn = &ctx->ir_base[ref];
insn->optx = IR_OPT(IR_FUNC_ADDR, IR_ADDR);
insn->const_flags = flags;
} else {
IR_ASSERT(ctx->ir_base[ref].opt == IR_OPT(IR_FUNC_ADDR, IR_ADDR) && ctx->ir_base[ref].const_flags == flags);
}
return ref;
}
ir_ref ir_const_func(ir_ctx *ctx, ir_ref str, uint16_t flags)
{
ir_ref ref = ir_next_const(ctx);
ir_insn *insn = &ctx->ir_base[ref];
insn->optx = IR_OPT(IR_FUNC, IR_ADDR);
insn->const_flags = flags;
insn->val.addr = str;
return ref;
}
ir_ref ir_const_str(ir_ctx *ctx, ir_ref str)
{
ir_ref ref = ir_next_const(ctx);
ir_insn *insn = &ctx->ir_base[ref];
insn->optx = IR_OPT(IR_STR, IR_ADDR);
insn->val.addr = str;
return ref;
}
ir_ref ir_str(ir_ctx *ctx, const char *s)
{
size_t len;
if (!ctx->strtab.data) {
ir_strtab_init(&ctx->strtab, 64, 4096);
}
len = strlen(s);
IR_ASSERT(len <= 0xffffffff);
return ir_strtab_lookup(&ctx->strtab, s, (uint32_t)len, ir_strtab_count(&ctx->strtab) + 1);
}
ir_ref ir_strl(ir_ctx *ctx, const char *s, size_t len)
{
if (!ctx->strtab.data) {
ir_strtab_init(&ctx->strtab, 64, 4096);
}
IR_ASSERT(len <= 0xffffffff);
return ir_strtab_lookup(&ctx->strtab, s, (uint32_t)len, ir_strtab_count(&ctx->strtab) + 1);
}
const char *ir_get_str(const ir_ctx *ctx, ir_ref idx)
{
IR_ASSERT(ctx->strtab.data);
return ir_strtab_str(&ctx->strtab, idx - 1);
}
/* IR construction */
ir_ref ir_emit(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
ir_ref ref = ir_next_insn(ctx);
ir_insn *insn = &ctx->ir_base[ref];
insn->optx = opt;
insn->op1 = op1;
insn->op2 = op2;
insn->op3 = op3;
return ref;
}
ir_ref ir_emit0(ir_ctx *ctx, uint32_t opt)
{
return ir_emit(ctx, opt, IR_UNUSED, IR_UNUSED, IR_UNUSED);
}
ir_ref ir_emit1(ir_ctx *ctx, uint32_t opt, ir_ref op1)
{
return ir_emit(ctx, opt, op1, IR_UNUSED, IR_UNUSED);
}
ir_ref ir_emit2(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2)
{
return ir_emit(ctx, opt, op1, op2, IR_UNUSED);
}
ir_ref ir_emit3(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
return ir_emit(ctx, opt, op1, op2, op3);
}
static ir_ref _ir_fold_cse(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
ir_ref ref = ctx->prev_insn_chain[opt & IR_OPT_OP_MASK];
ir_insn *insn;
if (ref) {
ir_ref limit = ctx->fold_cse_limit;
if (op1 > limit) {
limit = op1;
}
if (op2 > limit) {
limit = op2;
}
if (op3 > limit) {
limit = op3;
}
while (ref >= limit) {
insn = &ctx->ir_base[ref];
if (insn->opt == opt && insn->op1 == op1 && insn->op2 == op2 && insn->op3 == op3) {
return ref;
}
if (!insn->prev_insn_offset) {
break;
}
ref = ref - (ir_ref)(uint32_t)insn->prev_insn_offset;
}
}
return IR_UNUSED;
}
#define IR_FOLD(X) IR_FOLD1(X, __LINE__)
#define IR_FOLD1(X, Y) IR_FOLD2(X, Y)
#define IR_FOLD2(X, Y) case IR_RULE_ ## Y:
#define IR_FOLD_ERROR(msg) do { \
IR_ASSERT(0 && (msg)); \
goto ir_fold_emit; \
} while (0)
#define IR_FOLD_CONST_U(_val) do { \
val.u64 = (_val); \
goto ir_fold_const; \
} while (0)
#define IR_FOLD_CONST_I(_val) do { \
val.i64 = (_val); \
goto ir_fold_const; \
} while (0)
#define IR_FOLD_CONST_D(_val) do { \
val.d = (_val); \
goto ir_fold_const; \
} while (0)
#define IR_FOLD_CONST_F(_val) do { \
val.f = (_val); \
goto ir_fold_const; \
} while (0)
#define IR_FOLD_COPY(op) do { \
ref = (op); \
goto ir_fold_copy; \
} while (0)
#define IR_FOLD_BOOL(cond) \
IR_FOLD_COPY((cond) ? IR_TRUE : IR_FALSE)
#define IR_FOLD_NAMED(name) ir_fold_ ## name:
#define IR_FOLD_DO_NAMED(name) goto ir_fold_ ## name
#define IR_FOLD_RESTART goto ir_fold_restart
#define IR_FOLD_CSE goto ir_fold_cse
#define IR_FOLD_EMIT goto ir_fold_emit
#define IR_FOLD_NEXT break
#include "ir_fold_hash.h"
#define IR_FOLD_RULE(x) ((x) >> 21)
#define IR_FOLD_KEY(x) ((x) & 0x1fffff)
/*
* key = insn->op | (insn->op1->op << 7) | (insn->op1->op << 14)
*
* ANY and UNUSED ops are represented by 0
*/
ir_ref ir_folding(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3, ir_insn *op1_insn, ir_insn *op2_insn, ir_insn *op3_insn)
{
uint8_t op;
ir_ref ref;
ir_val val;
uint32_t key, any;
(void) op3_insn;
restart:
key = (opt & IR_OPT_OP_MASK) + ((uint32_t)op1_insn->op << 7) + ((uint32_t)op2_insn->op << 14);
any = 0x1fffff;
do {
uint32_t k = key & any;
uint32_t h = _ir_fold_hashkey(k);
uint32_t fh = _ir_fold_hash[h];
if (IR_FOLD_KEY(fh) == k /*|| (fh = _ir_fold_hash[h+1], (fh & 0x1fffff) == k)*/) {
switch (IR_FOLD_RULE(fh)) {
#include "ir_fold.h"
default:
break;
}
}
if (any == 0x7f) {
/* All parrerns ar checked. Pass on to CSE. */
goto ir_fold_cse;
}
/* op2/op1/op op2/_/op _/op1/op _/_/op
* 0x1fffff -> 0x1fc07f -> 0x003fff -> 0x00007f
* from masks to bis: 11 -> 10 -> 01 -> 00
*
* a b => x y
* 1 1 1 0
* 1 0 0 1
* 0 1 0 0
*
* x = a & b; y = !b
*/
any = ((any & (any << 7)) & 0x1fc000) | (~any & 0x3f80) | 0x7f;
} while (1);
ir_fold_restart:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
op1_insn = ctx->ir_base + op1;
op2_insn = ctx->ir_base + op2;
op3_insn = ctx->ir_base + op3;
goto restart;
} else {
ctx->fold_insn.optx = opt;
ctx->fold_insn.op1 = op1;
ctx->fold_insn.op2 = op2;
ctx->fold_insn.op3 = op3;
return IR_FOLD_DO_RESTART;
}
ir_fold_cse:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
/* Local CSE */
ref = _ir_fold_cse(ctx, opt, op1, op2, op3);
if (ref) {
return ref;
}
ref = ir_emit(ctx, opt, op1, op2, op3);
/* Update local CSE chain */
op = opt & IR_OPT_OP_MASK;
ir_ref prev = ctx->prev_insn_chain[op];
ir_insn *insn = ctx->ir_base + ref;
if (!prev || ref - prev > 0xffff) {
/* can't fit into 16-bit */
insn->prev_insn_offset = 0;
} else {
insn->prev_insn_offset = ref - prev;
}
ctx->prev_insn_chain[op] = ref;
return ref;
}
ir_fold_emit:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
return ir_emit(ctx, opt, op1, op2, op3);
} else {
ctx->fold_insn.optx = opt;
ctx->fold_insn.op1 = op1;
ctx->fold_insn.op2 = op2;
ctx->fold_insn.op3 = op3;
return IR_FOLD_DO_EMIT;
}
ir_fold_copy:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
return ref;
} else {
ctx->fold_insn.op1 = ref;
return IR_FOLD_DO_COPY;
}
ir_fold_const:
if (!(ctx->flags & IR_OPT_IN_SCCP)) {
return ir_const(ctx, val, IR_OPT_TYPE(opt));
} else {
ctx->fold_insn.type = IR_OPT_TYPE(opt);
ctx->fold_insn.val.u64 = val.u64;
return IR_FOLD_DO_CONST;
}
}
ir_ref ir_fold(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
if (UNEXPECTED(!(ctx->flags & IR_OPT_FOLDING))) {
if ((opt & IR_OPT_OP_MASK) == IR_PHI) {
opt |= (3 << IR_OPT_INPUTS_SHIFT);
}
return ir_emit(ctx, opt, op1, op2, op3);
}
return ir_folding(ctx, opt, op1, op2, op3, ctx->ir_base + op1, ctx->ir_base + op2, ctx->ir_base + op3);
}
ir_ref ir_fold0(ir_ctx *ctx, uint32_t opt)
{
return ir_fold(ctx, opt, IR_UNUSED, IR_UNUSED, IR_UNUSED);
}
ir_ref ir_fold1(ir_ctx *ctx, uint32_t opt, ir_ref op1)
{
return ir_fold(ctx, opt, op1, IR_UNUSED, IR_UNUSED);
}
ir_ref ir_fold2(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2)
{
return ir_fold(ctx, opt, op1, op2, IR_UNUSED);
}
ir_ref ir_fold3(ir_ctx *ctx, uint32_t opt, ir_ref op1, ir_ref op2, ir_ref op3)
{
return ir_fold(ctx, opt, op1, op2, op3);
}
ir_ref ir_emit_N(ir_ctx *ctx, uint32_t opt, int32_t count)
{
int i;
ir_ref *p, ref = ctx->insns_count;
ir_insn *insn;
IR_ASSERT(count >= 0);
while (UNEXPECTED(ref + count/4 >= ctx->insns_limit)) {
ir_grow_top(ctx);
}
ctx->insns_count = ref + 1 + count/4;
insn = &ctx->ir_base[ref];
insn->optx = opt | (count << IR_OPT_INPUTS_SHIFT);
for (i = 1, p = insn->ops + i; i <= (count|3); i++, p++) {
*p = IR_UNUSED;
}
return ref;
}
void ir_set_op(ir_ctx *ctx, ir_ref ref, int32_t n, ir_ref val)
{
ir_insn *insn = &ctx->ir_base[ref];
#ifdef IR_DEBUG
if (n > 3) {
int32_t count;
IR_ASSERT(IR_OP_HAS_VAR_INPUTS(ir_op_flags[insn->op]));
count = insn->inputs_count;
IR_ASSERT(n <= count);
}
#endif
ir_insn_set_op(insn, n, val);
}
ir_ref ir_param(ir_ctx *ctx, ir_type type, ir_ref region, const char *name, int pos)
{
return ir_emit(ctx, IR_OPT(IR_PARAM, type), region, ir_str(ctx, name), pos);
}
ir_ref ir_var(ir_ctx *ctx, ir_type type, ir_ref region, const char *name)
{
return ir_emit(ctx, IR_OPT(IR_VAR, type), region, ir_str(ctx, name), IR_UNUSED);
}
ir_ref ir_bind(ir_ctx *ctx, ir_ref var, ir_ref def)
{
if (IR_IS_CONST_REF(def)) {
return def;
}
if (!ctx->binding) {
ctx->binding = ir_mem_malloc(sizeof(ir_hashtab));;
ir_hashtab_init(ctx->binding, 16);
}
/* Node may be bound to some VAR node or to some special spill slot (using negative "var") */
IR_ASSERT(var < 0 || (var < ctx->insns_count && ctx->ir_base[var].op == IR_VAR));
if (!ir_hashtab_add(ctx->binding, def, var)) {
/* Add a copy with different binding */
def = ir_emit2(ctx, IR_OPT(IR_COPY, ctx->ir_base[def].type), def, 1);
ir_hashtab_add(ctx->binding, def, var);
}
return def;
}
/* Batch construction of def->use edges */
void ir_build_def_use_lists(ir_ctx *ctx)
{
ir_ref n, i, j, *p, def;
ir_insn *insn;
uint32_t edges_count;
ir_use_list *lists = ir_mem_calloc(ctx->insns_count, sizeof(ir_use_list));
ir_ref *edges;
ir_use_list *use_list;
for (i = IR_UNUSED + 1, insn = ctx->ir_base + i; i < ctx->insns_count;) {
n = ir_input_edges_count(ctx, insn);
for (j = n, p = insn->ops + 1; j > 0; j--, p++) {
def = *p;
if (def > 0) {
lists[def].count++;
}
}
n = ir_insn_inputs_to_len(n);
i += n;
insn += n;
}
edges_count = 0;
for (i = IR_UNUSED + 1, use_list = &lists[i]; i < ctx->insns_count; i++, use_list++) {
use_list->refs = edges_count;
edges_count += use_list->count;
use_list->count = 0;
}
edges = ir_mem_malloc(edges_count * sizeof(ir_ref));
for (i = IR_UNUSED + 1, insn = ctx->ir_base + i; i < ctx->insns_count;) {
n = ir_input_edges_count(ctx, insn);
for (j = n, p = insn->ops + 1; j > 0; j--, p++) {
def = *p;
if (def > 0) {
use_list = &lists[def];
edges[use_list->refs + use_list->count++] = i;
}
}
n = ir_insn_inputs_to_len(n);
i += n;
insn += n;
}
ctx->use_edges = edges;
ctx->use_edges_count = edges_count;
ctx->use_lists = lists;
}
/* Helper Data Types */
void ir_array_grow(ir_array *a, uint32_t size)
{
IR_ASSERT(size > a->size);
a->refs = ir_mem_realloc(a->refs, size * sizeof(ir_ref));
a->size = size;
}
void ir_array_insert(ir_array *a, uint32_t i, ir_ref val)
{
IR_ASSERT(i < a->size);
if (a->refs[a->size - 1]) {
ir_array_grow(a, a->size + 1);
}
memmove(a->refs + i + 1, a->refs + i, (a->size - i - 1) * sizeof(ir_ref));
a->refs[i] = val;
}
void ir_array_remove(ir_array *a, uint32_t i)
{
IR_ASSERT(i < a->size);
memmove(a->refs + i, a->refs + i + 1, (a->size - i - 1) * sizeof(ir_ref));
a->refs[a->size - 1] = IR_UNUSED;
}
void ir_list_insert(ir_list *l, uint32_t i, ir_ref val)
{
IR_ASSERT(i < l->len);
if (l->len >= l->a.size) {
ir_array_grow(&l->a, l->a.size + 1);
}
memmove(l->a.refs + i + 1, l->a.refs + i, (l->len - i) * sizeof(ir_ref));
l->a.refs[i] = val;
l->len++;
}
void ir_list_remove(ir_list *l, uint32_t i)
{
IR_ASSERT(i < l->len);
memmove(l->a.refs + i, l->a.refs + i + 1, (l->len - i) * sizeof(ir_ref));
l->len--;
}
bool ir_list_contains(const ir_list *l, ir_ref val)
{
uint32_t i;
for (i = 0; i < l->len; i++) {
if (ir_array_at(&l->a, i) == val) {
return 1;
}
}
return 0;
}
static uint32_t ir_hashtab_hash_size(uint32_t size)
{
size -= 1;
size |= (size >> 1);
size |= (size >> 2);
size |= (size >> 4);
size |= (size >> 8);
size |= (size >> 16);
return size + 1;
}
static void ir_hashtab_resize(ir_hashtab *tab)
{
uint32_t old_hash_size = (uint32_t)(-(int32_t)tab->mask);
char *old_data = tab->data;
uint32_t size = tab->size * 2;
uint32_t hash_size = ir_hashtab_hash_size(size);
char *data = ir_mem_malloc(hash_size * sizeof(uint32_t) + size * sizeof(ir_hashtab_bucket));
ir_hashtab_bucket *p;
uint32_t pos, i;
memset(data, -1, hash_size * sizeof(uint32_t));
tab->data = data + (hash_size * sizeof(uint32_t));
tab->mask = (uint32_t)(-(int32_t)hash_size);
tab->size = size;
memcpy(tab->data, old_data, tab->count * sizeof(ir_hashtab_bucket));
ir_mem_free(old_data - (old_hash_size * sizeof(uint32_t)));
i = tab->count;
pos = 0;
p = (ir_hashtab_bucket*)tab->data;
do {
uint32_t key = p->key | tab->mask;
p->next = ((uint32_t*)tab->data)[(int32_t)key];
((uint32_t*)tab->data)[(int32_t)key] = pos;
pos += sizeof(ir_hashtab_bucket);
p++;
} while (--i);
}
void ir_hashtab_init(ir_hashtab *tab, uint32_t size)
{
IR_ASSERT(size > 0);
uint32_t hash_size = ir_hashtab_hash_size(size);
char *data = ir_mem_malloc(hash_size * sizeof(uint32_t) + size * sizeof(ir_hashtab_bucket));
memset(data, -1, hash_size * sizeof(uint32_t));
tab->data = (data + (hash_size * sizeof(uint32_t)));
tab->mask = (uint32_t)(-(int32_t)hash_size);
tab->size = size;
tab->count = 0;
tab->pos = 0;
}
void ir_hashtab_free(ir_hashtab *tab)
{
uint32_t hash_size = (uint32_t)(-(int32_t)tab->mask);
char *data = (char*)tab->data - (hash_size * sizeof(uint32_t));
ir_mem_free(data);
tab->data = NULL;
}
ir_ref ir_hashtab_find(const ir_hashtab *tab, uint32_t key)
{
const char *data = (const char*)tab->data;
uint32_t pos = ((uint32_t*)data)[(int32_t)(key | tab->mask)];
ir_hashtab_bucket *p;
while (pos != IR_INVALID_IDX) {
p = (ir_hashtab_bucket*)(data + pos);
if (p->key == key) {
return p->val;
}
pos = p->next;
}
return IR_INVALID_VAL;
}
bool ir_hashtab_add(ir_hashtab *tab, uint32_t key, ir_ref val)
{
char *data = (char*)tab->data;
uint32_t pos = ((uint32_t*)data)[(int32_t)(key | tab->mask)];
ir_hashtab_bucket *p;
while (pos != IR_INVALID_IDX) {
p = (ir_hashtab_bucket*)(data + pos);
if (p->key == key) {
return p->val == val;
}
pos = p->next;
}
if (UNEXPECTED(tab->count >= tab->size)) {
ir_hashtab_resize(tab);
data = tab->data;
}
pos = tab->pos;
tab->pos += sizeof(ir_hashtab_bucket);
tab->count++;
p = (ir_hashtab_bucket*)(data + pos);
p->key = key;
p->val = val;
key |= tab->mask;
p->next = ((uint32_t*)data)[(int32_t)key];
((uint32_t*)data)[(int32_t)key] = pos;
return 1;
}
static int ir_hashtab_key_cmp(const void *b1, const void *b2)
{
return ((ir_hashtab_bucket*)b1)->key - ((ir_hashtab_bucket*)b2)->key;
}
void ir_hashtab_key_sort(ir_hashtab *tab)
{
ir_hashtab_bucket *p;
uint32_t hash_size, pos, i;
if (!tab->count) {
return;
}
qsort(tab->data, tab->count, sizeof(ir_hashtab_bucket), ir_hashtab_key_cmp);
hash_size = ir_hashtab_hash_size(tab->size);
memset((char*)tab->data - (hash_size * sizeof(uint32_t)), -1, hash_size * sizeof(uint32_t));
i = tab->count;
pos = 0;
p = (ir_hashtab_bucket*)tab->data;
do {
uint32_t key = p->key | tab->mask;
p->next = ((uint32_t*)tab->data)[(int32_t)key];
((uint32_t*)tab->data)[(int32_t)key] = pos;
pos += sizeof(ir_hashtab_bucket);
p++;
} while (--i);
}
/* Memory API */
#ifdef _WIN32
void *ir_mem_mmap(size_t size)
{
void *ret;
#ifdef _M_X64
DWORD size_hi = size >> 32, size_lo = size & 0xffffffff;
#else
DWORD size_hi = 0, size_lo = size;
#endif
HANDLE h = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_EXECUTE_READWRITE, size_hi, size_lo, NULL);
ret = MapViewOfFile(h, FILE_MAP_READ | FILE_MAP_WRITE | FILE_MAP_EXECUTE, 0, 0, size);
if (!ret) {
CloseHandle(h);
}
return ret;
}
int ir_mem_unmap(void *ptr, size_t size)
{
/* XXX file handle is leaked. */
UnmapViewOfFile(ptr);
return 1;
}
int ir_mem_protect(void *ptr, size_t size)
{
return 1;
}
int ir_mem_unprotect(void *ptr, size_t size)
{
return 1;
}
int ir_mem_flush(void *ptr, size_t size)
{
return 1;
}
#else
void *ir_mem_mmap(size_t size)
{
return mmap(NULL, size, PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
}
int ir_mem_unmap(void *ptr, size_t size)
{
munmap(ptr, size);
return 1;
}
int ir_mem_protect(void *ptr, size_t size)
{
mprotect(ptr, size, PROT_READ | PROT_EXEC);
return 1;
}
int ir_mem_unprotect(void *ptr, size_t size)
{
mprotect(ptr, size, PROT_READ | PROT_WRITE);
return 1;
}
int ir_mem_flush(void *ptr, size_t size)
{
#if ((defined(__GNUC__) && ZEND_GCC_VERSION >= 4003) || __has_builtin(__builtin___clear_cache))
__builtin___clear_cache((char*)(ptr), (char*)(ptr) + size);
#endif
#ifdef HAVE_VALGRIND
VALGRIND_DISCARD_TRANSLATIONS(ptr, size);
#endif
return 1;
}
#endif
/* Alias Analyses */
typedef enum _ir_alias {
IR_MAY_ALIAS = -1,
IR_NO_ALIAS = 0,
IR_MUST_ALIAS = 1,
} ir_alias;
#if 0
static ir_alias ir_check_aliasing(ir_ctx *ctx, ir_ref addr1, ir_ref addr2)
{
ir_insn *insn1, *insn2;
if (addr1 == addr2) {
return IR_MUST_ALIAS;
}
insn1 = &ctx->ir_base[addr1];
insn2 = &ctx->ir_base[addr2];
if (insn1->op == IR_ADD && IR_IS_CONST_REF(insn1->op2)) {
if (insn1->op1 == addr2) {
uintptr_t offset1 = ctx->ir_base[insn1->op2].val.u64;
return (offset1 != 0) ? IR_MUST_ALIAS : IR_NO_ALIAS;
} else if (insn2->op == IR_ADD && IR_IS_CONST_REF(insn1->op2) && insn1->op1 == insn2->op1) {
if (insn1->op2 == insn2->op2) {
return IR_MUST_ALIAS;
} else if (IR_IS_CONST_REF(insn1->op2) && IR_IS_CONST_REF(insn2->op2)) {
uintptr_t offset1 = ctx->ir_base[insn1->op2].val.u64;
uintptr_t offset2 = ctx->ir_base[insn2->op2].val.u64;
return (offset1 == offset2) ? IR_MUST_ALIAS : IR_NO_ALIAS;
}
}
} else if (insn2->op == IR_ADD && IR_IS_CONST_REF(insn2->op2)) {
if (insn2->op1 == addr1) {
uintptr_t offset2 = ctx->ir_base[insn2->op2].val.u64;
return (offset2 != 0) ? IR_MUST_ALIAS : IR_NO_ALIAS;
}
}
return IR_MAY_ALIAS;
}
#endif
static ir_alias ir_check_partial_aliasing(const ir_ctx *ctx, ir_ref addr1, ir_ref addr2, ir_type type1, ir_type type2)
{
ir_insn *insn1, *insn2;
/* this must be already check */
IR_ASSERT(addr1 != addr2);
insn1 = &ctx->ir_base[addr1];
insn2 = &ctx->ir_base[addr2];
if (insn1->op == IR_ADD && IR_IS_CONST_REF(insn1->op2)) {
if (insn1->op1 == addr2) {
uintptr_t offset1 = ctx->ir_base[insn1->op2].val.addr;
uintptr_t size2 = ir_type_size[type2];
return (offset1 < size2) ? IR_MUST_ALIAS : IR_NO_ALIAS;
} else if (insn2->op == IR_ADD && IR_IS_CONST_REF(insn1->op2) && insn1->op1 == insn2->op1) {
if (insn1->op2 == insn2->op2) {
return IR_MUST_ALIAS;
} else if (IR_IS_CONST_REF(insn1->op2) && IR_IS_CONST_REF(insn2->op2)) {
uintptr_t offset1 = ctx->ir_base[insn1->op2].val.addr;
uintptr_t offset2 = ctx->ir_base[insn2->op2].val.addr;
if (offset1 == offset2) {
return IR_MUST_ALIAS;
} else if (type1 == type2) {
return IR_NO_ALIAS;
} else {
/* check for partail intersection */
uintptr_t size1 = ir_type_size[type1];
uintptr_t size2 = ir_type_size[type2];
if (offset1 > offset2) {
return offset1 < offset2 + size2 ? IR_MUST_ALIAS : IR_NO_ALIAS;
} else {
return offset2 < offset1 + size1 ? IR_MUST_ALIAS : IR_NO_ALIAS;
}
}
}
}
} else if (insn2->op == IR_ADD && IR_IS_CONST_REF(insn2->op2)) {
if (insn2->op1 == addr1) {
uintptr_t offset2 = ctx->ir_base[insn2->op2].val.addr;
uintptr_t size1 = ir_type_size[type1];
return (offset2 < size1) ? IR_MUST_ALIAS : IR_NO_ALIAS;
}
}
return IR_MAY_ALIAS;
}
static ir_ref ir_find_aliasing_load(ir_ctx *ctx, ir_ref ref, ir_type type, ir_ref addr)
{
ir_ref limit = (addr > 0) ? addr : 1;
ir_insn *insn;
uint32_t modified_regset = 0;
while (ref > limit) {
insn = &ctx->ir_base[ref];
if (insn->op == IR_LOAD) {
if (insn->type == type && insn->op2 == addr) {
return ref; /* load forwarding (L2L) */
}
} else if (insn->op == IR_STORE) {
ir_type type2 = ctx->ir_base[insn->op3].type;
if (insn->op2 == addr) {
if (type2 == type) {
ref = insn->op3;
insn = &ctx->ir_base[ref];
if (insn->op == IR_RLOAD && (modified_regset & (1 << insn->op2))) {
/* anti-dependency */
return IR_UNUSED;
}
return ref; /* store forwarding (S2L) */
} else if (IR_IS_TYPE_INT(type) && ir_type_size[type2] > ir_type_size[type]) {
return ir_fold1(ctx, IR_OPT(IR_TRUNC, type), insn->op3); /* partial store forwarding (S2L) */
} else {
return IR_UNUSED;
}
} else if (ir_check_partial_aliasing(ctx, addr, insn->op2, type, type2) != IR_NO_ALIAS) {
return IR_UNUSED;
}
} else if (insn->op == IR_RSTORE) {
modified_regset |= (1 << insn->op3);
} else if (insn->op >= IR_START || insn->op == IR_CALL) {
return IR_UNUSED;
}
ref = insn->op1;
}
return IR_UNUSED;
}
/* IR Construction API */
ir_ref _ir_PARAM(ir_ctx *ctx, ir_type type, const char* name, ir_ref num)
{
IR_ASSERT(ctx->control);
IR_ASSERT(ctx->ir_base[ctx->control].op == IR_START);
IR_ASSERT(ctx->insns_count == num + 1);
return ir_param(ctx, type, ctx->control, name, num);
}
ir_ref _ir_VAR(ir_ctx *ctx, ir_type type, const char* name)
{
IR_ASSERT(ctx->control);
IR_ASSERT(IR_IS_BB_START(ctx->ir_base[ctx->control].op));
return ir_var(ctx, type, ctx->control, name);
}
ir_ref _ir_PHI_2(ir_ctx *ctx, ir_ref src1, ir_ref src2)
{
ir_type type = ctx->ir_base[src1].type;
IR_ASSERT(ctx->control);
IR_ASSERT(ctx->ir_base[ctx->control].op == IR_MERGE || ctx->ir_base[ctx->control].op == IR_LOOP_BEGIN);
return ir_emit3(ctx, IR_OPTX(IR_PHI, type, 3), ctx->control, src1, src2);
}
ir_ref _ir_PHI_N(ir_ctx *ctx, ir_ref n, ir_ref *inputs)
{
IR_ASSERT(ctx->control);
IR_ASSERT(n > 0);
if (n == 1) {
return inputs[0];
} else {
ir_ref i;
ir_ref ref = inputs[0];
IR_ASSERT(ctx->ir_base[ctx->control].op == IR_MERGE || ctx->ir_base[ctx->control].op == IR_LOOP_BEGIN);
for (i = 1; i < n; i++) {
if (inputs[i] != ref) {
break;
}
}
if (i == n) {
/* all the same */
return ref;
}
ref = ir_emit_N(ctx, IR_OPT(IR_PHI, ctx->ir_base[inputs[0]].type), n + 1);
ir_set_op(ctx, ref, 1, ctx->control);
for (i = 0; i < n; i++) {
ir_set_op(ctx, ref, i + 2, inputs[i]);
}
return ref;
}
}
void _ir_PHI_SET_OP(ir_ctx *ctx, ir_ref phi, ir_ref pos, ir_ref src)
{
ir_insn *insn = &ctx->ir_base[phi];
ir_ref *ops = insn->ops;
IR_ASSERT(insn->op == IR_PHI);
IR_ASSERT(ctx->ir_base[insn->op1].op == IR_MERGE || ctx->ir_base[insn->op1].op == IR_LOOP_BEGIN);
IR_ASSERT(pos > 0 && pos < insn->inputs_count);
pos++; /* op1 is used for control */
ops[pos] = src;
}
void _ir_START(ir_ctx *ctx)
{
IR_ASSERT(!ctx->control);
IR_ASSERT(ctx->insns_count == 1);
ctx->control = ir_emit0(ctx, IR_START);
}
void _ir_ENTRY(ir_ctx *ctx, ir_ref src, ir_ref num)
{
IR_ASSERT(!ctx->control);
/* fake control edge */
IR_ASSERT((ir_op_flags[ctx->ir_base[src].op] & IR_OP_FLAG_TERMINATOR)
|| ctx->ir_base[src].op == IR_END
|| ctx->ir_base[src].op == IR_LOOP_END); /* return from a recursive call */
ctx->control = ir_emit2(ctx, IR_ENTRY, src, num);
}
void _ir_BEGIN(ir_ctx *ctx, ir_ref src)
{
IR_ASSERT(!ctx->control);
if (src
&& src + 1 == ctx->insns_count
&& ctx->ir_base[src].op == IR_END) {
/* merge with the last END */
ctx->control = ctx->ir_base[src].op1;
ctx->insns_count--;
} else {
ctx->control = ir_emit1(ctx, IR_BEGIN, src);
}
}
ir_ref _ir_IF(ir_ctx *ctx, ir_ref condition)
{
ir_ref if_ref;
IR_ASSERT(ctx->control);
if_ref = ir_emit2(ctx, IR_IF, ctx->control, condition);
ctx->control = IR_UNUSED;
return if_ref;
}
void _ir_IF_TRUE(ir_ctx *ctx, ir_ref if_ref)
{
IR_ASSERT(!ctx->control);
IR_ASSERT(if_ref);
IR_ASSERT(ctx->ir_base[if_ref].op == IR_IF);
ctx->control = ir_emit1(ctx, IR_IF_TRUE, if_ref);
}
void _ir_IF_TRUE_cold(ir_ctx *ctx, ir_ref if_ref)
{
IR_ASSERT(!ctx->control);
IR_ASSERT(if_ref);
IR_ASSERT(ctx->ir_base[if_ref].op == IR_IF);
/* op2 is used as an indicator of low-probability branch */
ctx->control = ir_emit2(ctx, IR_IF_TRUE, if_ref, 1);
}
void _ir_IF_FALSE(ir_ctx *ctx, ir_ref if_ref)
{
IR_ASSERT(!ctx->control);
IR_ASSERT(if_ref);
IR_ASSERT(ctx->ir_base[if_ref].op == IR_IF);
ctx->control = ir_emit1(ctx, IR_IF_FALSE, if_ref);
}
void _ir_IF_FALSE_cold(ir_ctx *ctx, ir_ref if_ref)
{
IR_ASSERT(!ctx->control);
IR_ASSERT(if_ref);
IR_ASSERT(ctx->ir_base[if_ref].op == IR_IF);
/* op2 is used as an indicator of low-probability branch */
ctx->control = ir_emit2(ctx, IR_IF_FALSE, if_ref, 1);
}
ir_ref _ir_END(ir_ctx *ctx)
{
ir_ref ref;
IR_ASSERT(ctx->control);
ref = ir_emit1(ctx, IR_END, ctx->control);
ctx->control = IR_UNUSED;
return ref;
}
void _ir_MERGE_2(ir_ctx *ctx, ir_ref src1, ir_ref src2)
{
IR_ASSERT(!ctx->control);
ctx->control = ir_emit2(ctx, IR_OPTX(IR_MERGE, IR_VOID, 2), src1, src2);
}
void _ir_MERGE_N(ir_ctx *ctx, ir_ref n, ir_ref *inputs)
{
IR_ASSERT(!ctx->control);
IR_ASSERT(n > 0);
if (n == 1) {
_ir_BEGIN(ctx, inputs[0]);
} else {
ir_ref *ops;
ctx->control = ir_emit_N(ctx, IR_MERGE, n);
ops = ctx->ir_base[ctx->control].ops;
while (n) {
n--;
ops[n + 1] = inputs[n];
}
}
}
void _ir_MERGE_SET_OP(ir_ctx *ctx, ir_ref merge, ir_ref pos, ir_ref src)
{
ir_insn *insn = &ctx->ir_base[merge];
ir_ref *ops = insn->ops;
IR_ASSERT(insn->op == IR_MERGE || insn->op == IR_LOOP_BEGIN);
IR_ASSERT(pos > 0 && pos <= insn->inputs_count);
ops[pos] = src;
}
ir_ref _ir_END_LIST(ir_ctx *ctx, ir_ref list)
{
ir_ref ref;
IR_ASSERT(ctx->control);
IR_ASSERT(!list || ctx->ir_base[list].op == IR_END);
/* create a liked list of END nodes with the same destination through END.op2 */
ref = ir_emit2(ctx, IR_END, ctx->control, list);
ctx->control = IR_UNUSED;
return ref;
}
void _ir_MERGE_LIST(ir_ctx *ctx, ir_ref list)
{
ir_ref ref = list;
if (list != IR_UNUSED) {
uint32_t n = 0;
IR_ASSERT(!ctx->control);
/* count inputs count */
do {
ir_insn *insn = &ctx->ir_base[ref];
IR_ASSERT(insn->op == IR_END);
ref = insn->op2;
n++;
} while (ref != IR_UNUSED);
/* create MERGE node */
IR_ASSERT(n > 0);
if (n == 1) {
ctx->ir_base[list].op2 = IR_UNUSED;
_ir_BEGIN(ctx, list);
} else {
ctx->control = ir_emit_N(ctx, IR_MERGE, n);
ref = list;
while (n) {
ir_insn *insn = &ctx->ir_base[ref];
ir_set_op(ctx, ctx->control, n, ref);
ref = insn->op2;
insn->op2 = IR_UNUSED;
n--;
}
}
}
}
ir_ref _ir_LOOP_BEGIN(ir_ctx *ctx, ir_ref src1)
{
IR_ASSERT(!ctx->control);
ctx->control = ir_emit2(ctx, IR_OPTX(IR_LOOP_BEGIN, IR_VOID, 2), src1, IR_UNUSED);
return ctx->control;
}
ir_ref _ir_LOOP_END(ir_ctx *ctx)
{
ir_ref ref;
IR_ASSERT(ctx->control);
ref = ir_emit1(ctx, IR_LOOP_END, ctx->control);
ctx->control = IR_UNUSED;
return ref;
}
ir_ref _ir_CALL(ir_ctx *ctx, ir_type type, ir_ref func)
{
IR_ASSERT(ctx->control);
return ctx->control = ir_emit2(ctx, IR_OPTX(IR_CALL, type, 2), ctx->control, func);
}
ir_ref _ir_CALL_1(ir_ctx *ctx, ir_type type, ir_ref func, ir_ref arg1)
{
IR_ASSERT(ctx->control);
return ctx->control = ir_emit3(ctx, IR_OPTX(IR_CALL, type, 3), ctx->control, func, arg1);
}
ir_ref _ir_CALL_2(ir_ctx *ctx, ir_type type, ir_ref func, ir_ref arg1, ir_ref arg2)
{
ir_ref call;
IR_ASSERT(ctx->control);
call = ir_emit_N(ctx, IR_OPT(IR_CALL, type), 4);
ir_set_op(ctx, call, 1, ctx->control);
ir_set_op(ctx, call, 2, func);
ir_set_op(ctx, call, 3, arg1);
ir_set_op(ctx, call, 4, arg2);
ctx->control = call;
return call;
}
ir_ref _ir_CALL_3(ir_ctx *ctx, ir_type type, ir_ref func, ir_ref arg1, ir_ref arg2, ir_ref arg3)
{
ir_ref call;
IR_ASSERT(ctx->control);
call = ir_emit_N(ctx, IR_OPT(IR_CALL, type), 5);
ir_set_op(ctx, call, 1, ctx->control);
ir_set_op(ctx, call, 2, func);
ir_set_op(ctx, call, 3, arg1);
ir_set_op(ctx, call, 4, arg2);
ir_set_op(ctx, call, 5, arg3);
ctx->control = call;
return call;
}
ir_ref _ir_CALL_4(ir_ctx *ctx, ir_type type, ir_ref func, ir_ref arg1, ir_ref arg2, ir_ref arg3, ir_ref arg4)
{
ir_ref call;
IR_ASSERT(ctx->control);
call = ir_emit_N(ctx, IR_OPT(IR_CALL, type), 6);
ir_set_op(ctx, call, 1, ctx->control);
ir_set_op(ctx, call, 2, func);
ir_set_op(ctx, call, 3, arg1);
ir_set_op(ctx, call, 4, arg2);
ir_set_op(ctx, call, 5, arg3);
ir_set_op(ctx, call, 6, arg4);
ctx->control = call;
return call;
}
ir_ref _ir_CALL_5(ir_ctx *ctx, ir_type type, ir_ref func, ir_ref arg1, ir_ref arg2, ir_ref arg3, ir_ref arg4, ir_ref arg5)
{
ir_ref call;
IR_ASSERT(ctx->control);
call = ir_emit_N(ctx, IR_OPT(IR_CALL, type), 7);
ir_set_op(ctx, call, 1, ctx->control);
ir_set_op(ctx, call, 2, func);
ir_set_op(ctx, call, 3, arg1);
ir_set_op(ctx, call, 4, arg2);
ir_set_op(ctx, call, 5, arg3);
ir_set_op(ctx, call, 6, arg4);
ir_set_op(ctx, call, 7, arg5);
ctx->control = call;
return call;
}
void _ir_UNREACHABLE(ir_ctx *ctx)
{
IR_ASSERT(ctx->control);
ctx->control = ir_emit3(ctx, IR_UNREACHABLE, ctx->control, IR_UNUSED, ctx->ir_base[1].op1);
ctx->ir_base[1].op1 = ctx->control;
ctx->control = IR_UNUSED;
}
void _ir_TAILCALL(ir_ctx *ctx, ir_ref func)
{
IR_ASSERT(ctx->control);
ctx->control = ir_emit2(ctx, IR_OPTX(IR_TAILCALL, IR_VOID, 2), ctx->control, func);
_ir_UNREACHABLE(ctx);
}
void _ir_TAILCALL_1(ir_ctx *ctx, ir_ref func, ir_ref arg1)
{
IR_ASSERT(ctx->control);
ctx->control = ir_emit3(ctx, IR_OPTX(IR_TAILCALL, IR_VOID, 3), ctx->control, func, arg1);
_ir_UNREACHABLE(ctx);
}
void _ir_TAILCALL_2(ir_ctx *ctx, ir_ref func, ir_ref arg1, ir_ref arg2)
{
ir_ref call;
IR_ASSERT(ctx->control);
call = ir_emit_N(ctx, IR_TAILCALL, 4);
ir_set_op(ctx, call, 1, ctx->control);
ir_set_op(ctx, call, 2, func);
ir_set_op(ctx, call, 3, arg1);
ir_set_op(ctx, call, 4, arg2);
ctx->control = call;
_ir_UNREACHABLE(ctx);
}
void _ir_TAILCALL_3(ir_ctx *ctx, ir_ref func, ir_ref arg1, ir_ref arg2, ir_ref arg3)
{
ir_ref call;
IR_ASSERT(ctx->control);
call = ir_emit_N(ctx, IR_TAILCALL, 5);
ir_set_op(ctx, call, 1, ctx->control);
ir_set_op(ctx, call, 2, func);
ir_set_op(ctx, call, 3, arg1);
ir_set_op(ctx, call, 4, arg2);
ir_set_op(ctx, call, 5, arg3);
ctx->control = call;
_ir_UNREACHABLE(ctx);
}
void _ir_TAILCALL_4(ir_ctx *ctx, ir_ref func, ir_ref arg1, ir_ref arg2, ir_ref arg3, ir_ref arg4)
{
ir_ref call;
IR_ASSERT(ctx->control);
call = ir_emit_N(ctx, IR_TAILCALL, 6);
ir_set_op(ctx, call, 1, ctx->control);
ir_set_op(ctx, call, 2, func);
ir_set_op(ctx, call, 3, arg1);
ir_set_op(ctx, call, 4, arg2);
ir_set_op(ctx, call, 5, arg3);
ir_set_op(ctx, call, 6, arg4);
ctx->control = call;
_ir_UNREACHABLE(ctx);
}
void _ir_TAILCALL_5(ir_ctx *ctx, ir_ref func, ir_ref arg1, ir_ref arg2, ir_ref arg3, ir_ref arg4, ir_ref arg5)
{
ir_ref call;
IR_ASSERT(ctx->control);
call = ir_emit_N(ctx, IR_TAILCALL, 7);
ir_set_op(ctx, call, 1, ctx->control);
ir_set_op(ctx, call, 2, func);
ir_set_op(ctx, call, 3, arg1);
ir_set_op(ctx, call, 4, arg2);
ir_set_op(ctx, call, 5, arg3);
ir_set_op(ctx, call, 6, arg4);
ir_set_op(ctx, call, 7, arg5);
ctx->control = call;
_ir_UNREACHABLE(ctx);
}
ir_ref _ir_SWITCH(ir_ctx *ctx, ir_ref val)
{
ir_ref ref;
IR_ASSERT(ctx->control);
ref = ir_emit2(ctx, IR_SWITCH, ctx->control, val);
ctx->control = IR_UNUSED;
return ref;
}
void _ir_CASE_VAL(ir_ctx *ctx, ir_ref switch_ref, ir_ref val)
{
IR_ASSERT(!ctx->control);
ctx->control = ir_emit2(ctx, IR_CASE_VAL, switch_ref, val);
}
void _ir_CASE_DEFAULT(ir_ctx *ctx, ir_ref switch_ref)
{
IR_ASSERT(!ctx->control);
ctx->control = ir_emit1(ctx, IR_CASE_DEFAULT, switch_ref);
}
void _ir_RETURN(ir_ctx *ctx, ir_ref val)
{
IR_ASSERT(ctx->control);
ctx->control = ir_emit3(ctx, IR_RETURN, ctx->control, val, ctx->ir_base[1].op1);
ctx->ir_base[1].op1 = ctx->control;
ctx->control = IR_UNUSED;
}
void _ir_IJMP(ir_ctx *ctx, ir_ref addr)
{
IR_ASSERT(ctx->control);
ctx->control = ir_emit3(ctx, IR_IJMP, ctx->control, addr, ctx->ir_base[1].op1);
ctx->ir_base[1].op1 = ctx->control;
ctx->control = IR_UNUSED;
}
ir_ref _ir_ADD_OFFSET(ir_ctx *ctx, ir_ref addr, uintptr_t offset)
{
if (offset) {
addr = ir_fold2(ctx, IR_OPT(IR_ADD, IR_ADDR), addr, ir_const_addr(ctx, offset));
}
return addr;
}
void _ir_GUARD(ir_ctx *ctx, ir_ref condition, ir_ref addr)
{
IR_ASSERT(ctx->control);
if (condition == IR_TRUE) {
return;
} else {
ir_ref ref = ctx->control;
ir_insn *insn;
while (ref > condition) {
insn = &ctx->ir_base[ref];
if (insn->op == IR_GUARD) {
if (insn->op2 == condition) {
return;
}
} else if (insn->op == IR_GUARD_NOT) {
if (insn->op2 == condition) {
condition = IR_FALSE;
break;
}
} else if (insn->op >= IR_START) {
break;
}
ref = insn->op1;
}
}
if (ctx->snapshot_create) {
ctx->snapshot_create(ctx, addr);
}
ctx->control = ir_emit3(ctx, IR_GUARD, ctx->control, condition, addr);
}
void _ir_GUARD_NOT(ir_ctx *ctx, ir_ref condition, ir_ref addr)
{
IR_ASSERT(ctx->control);
if (condition == IR_FALSE) {
return;
} else {
ir_ref ref = ctx->control;
ir_insn *insn;
while (ref > condition) {
insn = &ctx->ir_base[ref];
if (insn->op == IR_GUARD_NOT) {
if (insn->op2 == condition) {
return;
}
} else if (insn->op == IR_GUARD) {
if (insn->op2 == condition) {
condition = IR_TRUE;
break;
}
} else if (insn->op >= IR_START) {
break;
}
ref = insn->op1;
}
}
if (ctx->snapshot_create) {
ctx->snapshot_create(ctx, addr);
}
ctx->control = ir_emit3(ctx, IR_GUARD_NOT, ctx->control, condition, addr);
}
ir_ref _ir_SNAPSHOT(ir_ctx *ctx, ir_ref n)
{
ir_ref snapshot;
IR_ASSERT(ctx->control);
snapshot = ir_emit_N(ctx, IR_SNAPSHOT, 1 + n); /* op1 is used for control */
ctx->ir_base[snapshot].op1 = ctx->control;
ctx->control = snapshot;
return snapshot;
}
void _ir_SNAPSHOT_SET_OP(ir_ctx *ctx, ir_ref snapshot, ir_ref pos, ir_ref val)
{
ir_insn *insn = &ctx->ir_base[snapshot];
ir_ref *ops = insn->ops;
IR_ASSERT(val < snapshot);
IR_ASSERT(insn->op == IR_SNAPSHOT);
pos++; /* op1 is used for control */
IR_ASSERT(pos > 1 && pos <= insn->inputs_count);
ops[pos] = val;
}
ir_ref _ir_EXITCALL(ir_ctx *ctx, ir_ref func)
{
IR_ASSERT(ctx->control);
return ctx->control = ir_emit2(ctx, IR_OPT(IR_EXITCALL, IR_I32), ctx->control, func);
}
ir_ref _ir_ALLOCA(ir_ctx *ctx, ir_ref size)
{
IR_ASSERT(ctx->control);
return ctx->control = ir_emit2(ctx, IR_OPT(IR_ALLOCA, IR_ADDR), ctx->control, size);
}
void _ir_AFREE(ir_ctx *ctx, ir_ref size)
{
IR_ASSERT(ctx->control);
ctx->control = ir_emit2(ctx, IR_AFREE, ctx->control, size);
}
ir_ref _ir_VLOAD(ir_ctx *ctx, ir_type type, ir_ref var)
{
IR_ASSERT(ctx->control);
return ctx->control = ir_emit2(ctx, IR_OPT(IR_VLOAD, type), ctx->control, var);
}
void _ir_VSTORE(ir_ctx *ctx, ir_ref var, ir_ref val)
{
IR_ASSERT(ctx->control);
ctx->control = ir_emit3(ctx, IR_VSTORE, ctx->control, var, val);
}
ir_ref _ir_TLS(ir_ctx *ctx, ir_ref index, ir_ref offset)
{
IR_ASSERT(ctx->control);
return ctx->control = ir_emit3(ctx, IR_OPT(IR_TLS, IR_ADDR), ctx->control, index, offset);
}
ir_ref _ir_RLOAD(ir_ctx *ctx, ir_type type, ir_ref reg)
{
IR_ASSERT(ctx->control);
return ctx->control = ir_emit2(ctx, IR_OPT(IR_RLOAD, type), ctx->control, reg);
}
void _ir_RSTORE(ir_ctx *ctx, ir_ref reg, ir_ref val)
{
IR_ASSERT(ctx->control);
ctx->control = ir_emit3(ctx, IR_RSTORE, ctx->control, val, reg);
}
ir_ref _ir_LOAD(ir_ctx *ctx, ir_type type, ir_ref addr)
{
ir_ref ref = ir_find_aliasing_load(ctx, ctx->control, type, addr);
IR_ASSERT(ctx->control);
if (!ref) {
ctx->control = ref = ir_emit2(ctx, IR_OPT(IR_LOAD, type), ctx->control, addr);
}
return ref;
}
void _ir_STORE(ir_ctx *ctx, ir_ref addr, ir_ref val)
{
ir_ref limit = (addr > 0) ? addr : 1;
ir_ref ref = ctx->control;
ir_ref prev = IR_UNUSED;
ir_insn *insn;
ir_type type = ctx->ir_base[val].type;
ir_type type2;
bool guarded = 0;
IR_ASSERT(ctx->control);
while (ref > limit) {
insn = &ctx->ir_base[ref];
if (insn->op == IR_STORE) {
if (insn->op2 == addr) {
if (ctx->ir_base[insn->op3].type == type) {
if (insn->op3 == val) {
return;
} else {
if (!guarded) {
if (prev) {
ctx->ir_base[prev].op1 = insn->op1;
} else {
ctx->control = insn->op1;
}
insn->optx = IR_NOP;
insn->op1 = IR_NOP;
insn->op2 = IR_NOP;
insn->op3 = IR_NOP;
}
break;
}
} else {
break;
}
} else {
type2 = ctx->ir_base[insn->op3].type;
goto check_aliasing;
}
} else if (insn->op == IR_LOAD) {
if (insn->op2 == addr) {
break;
}
type2 = insn->type;
check_aliasing:
if (ir_check_partial_aliasing(ctx, addr, insn->op2, type, type2) != IR_NO_ALIAS) {
break;
}
} else if (insn->op == IR_GUARD || insn->op == IR_GUARD_NOT) {
guarded = 1;
} else if (insn->op >= IR_START || insn->op == IR_CALL) {
break;
}
prev = ref;
ref = insn->op1;
}
ctx->control = ir_emit3(ctx, IR_STORE, ctx->control, addr, val);
}