mirror of
https://github.com/danog/ir.git
synced 2024-11-30 04:39:43 +01:00
706 lines
18 KiB
C
706 lines
18 KiB
C
#include "ir.h"
|
|
#include "ir_private.h"
|
|
|
|
int ir_build_cfg(ir_ctx *ctx)
|
|
{
|
|
ir_ref n, j, *p, ref, b;
|
|
ir_insn *insn;
|
|
uint32_t flags;
|
|
ir_worklist worklist;
|
|
uint32_t bb_count = 0;
|
|
uint32_t edges_count = 0;
|
|
ir_block *blocks, *bb;
|
|
uint32_t *_blocks, *edges;
|
|
ir_use_list *use_list;
|
|
|
|
_blocks = ir_mem_calloc(ctx->insns_count, sizeof(uint32_t));
|
|
memset(_blocks, 0, ctx->insns_count * sizeof(uint32_t));
|
|
ir_worklist_init(&worklist, ctx->insns_count);
|
|
|
|
/* Add START node */
|
|
ir_worklist_push(&worklist, 1);
|
|
|
|
/* Add all ENTRY nodes */
|
|
ref = ctx->ir_base[1].op2;
|
|
while (ref) {
|
|
ir_worklist_push(&worklist, ref);
|
|
ref = ctx->ir_base[ref].op2;
|
|
}
|
|
|
|
/* Add all "stop" nodes */
|
|
ref = ctx->ir_base[1].op1;
|
|
while (ref) {
|
|
ir_worklist_push(&worklist, ref);
|
|
ref = ctx->ir_base[ref].op3;
|
|
}
|
|
|
|
while (ir_worklist_len(&worklist)) {
|
|
ref = ir_worklist_pop(&worklist);
|
|
insn = &ctx->ir_base[ref];
|
|
|
|
if (_blocks[ref]) {
|
|
/* alredy processed */
|
|
} else if (IR_IS_BB_END(insn->op)) {
|
|
/* Mark BB end */
|
|
bb_count++;
|
|
_blocks[ref] = bb_count;
|
|
/* Add successors */
|
|
use_list = &ctx->use_lists[ref];
|
|
n = use_list->count;
|
|
for (j = 0, p = &ctx->use_edges[use_list->refs]; j < n; j++, p++) {
|
|
ir_ref ref = *p;
|
|
insn = &ctx->ir_base[ref];
|
|
if (ir_op_flags[insn->op] & IR_OP_FLAG_CONTROL) {
|
|
ir_worklist_push(&worklist, ref);
|
|
}
|
|
}
|
|
/* Skip control nodes untill BB start */
|
|
while (1) {
|
|
insn = &ctx->ir_base[ref];
|
|
if (IR_IS_BB_START(insn->op)) {
|
|
break;
|
|
}
|
|
ref = insn->op1; // follow connected control blocks untill BB start
|
|
}
|
|
/* Mark BB start */
|
|
ir_bitset_incl(worklist.visited, ref);
|
|
_blocks[ref] = bb_count;
|
|
/* Add predecessors */
|
|
flags = ir_op_flags[insn->op];
|
|
n = ir_input_edges_count(ctx, insn);
|
|
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
|
|
ir_ref ref = *p;
|
|
if (ref && IR_OPND_KIND(flags, j) == IR_OPND_CONTROL) {
|
|
ir_worklist_push(&worklist, ref);
|
|
}
|
|
}
|
|
} else {
|
|
IR_ASSERT(IR_IS_BB_START(insn->op));
|
|
/* Mark BB start */
|
|
bb_count++;
|
|
_blocks[ref] = bb_count;
|
|
/* Add predecessors */
|
|
flags = ir_op_flags[insn->op];
|
|
n = ir_input_edges_count(ctx, insn);
|
|
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
|
|
ir_ref ref = *p;
|
|
if (ref && IR_OPND_KIND(flags, j) == IR_OPND_CONTROL) {
|
|
ir_worklist_push(&worklist, ref);
|
|
}
|
|
}
|
|
/* Skip control nodes untill BB end */
|
|
while (1) {
|
|
use_list = &ctx->use_lists[ref];
|
|
n = use_list->count;
|
|
ref = IR_UNUSED;
|
|
for (j = 0, p = &ctx->use_edges[use_list->refs]; j < n; j++, p++) {
|
|
ref = *p;
|
|
insn = &ctx->ir_base[ref];
|
|
if (ir_op_flags[insn->op] & IR_OP_FLAG_CONTROL) {
|
|
break;
|
|
}
|
|
}
|
|
IR_ASSERT(ref != IR_UNUSED);
|
|
if (IR_IS_BB_END(insn->op)) {
|
|
break;
|
|
}
|
|
}
|
|
/* Mark BB end */
|
|
_blocks[ref] = bb_count;
|
|
ir_bitset_incl(worklist.visited, ref);
|
|
/* Add successors */
|
|
use_list = &ctx->use_lists[ref];
|
|
n = use_list->count;
|
|
for (j = 0, p = &ctx->use_edges[use_list->refs]; j < n; j++, p++) {
|
|
ir_ref ref = *p;
|
|
insn = &ctx->ir_base[ref];
|
|
if (ir_op_flags[insn->op] & IR_OP_FLAG_CONTROL) {
|
|
ir_worklist_push(&worklist, ref);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bb_count == 0) {
|
|
IR_ASSERT(bb_count > 0);
|
|
return 0;
|
|
}
|
|
|
|
/* Create array of basic blocks and count succcessor edges for each BB */
|
|
blocks = ir_mem_malloc((bb_count + 1) * sizeof(ir_block));
|
|
memset(blocks, 0, (bb_count + 1) * sizeof(ir_block));
|
|
uint32_t *_xlat = ir_mem_malloc((bb_count + 1) * sizeof(uint32_t));
|
|
memset(_xlat, 0, (bb_count + 1) * sizeof(uint32_t));
|
|
b = 0;
|
|
IR_BITSET_FOREACH(worklist.visited, ir_bitset_len(ctx->insns_count), ref) {
|
|
/* reorder blocks to reflect the original control flow (START - 1) */
|
|
j = _blocks[ref];
|
|
n = _xlat[j];
|
|
if (n == 0) {
|
|
_xlat[j] = n = ++b;
|
|
}
|
|
_blocks[ref] = n;
|
|
bb = &blocks[n];
|
|
insn = &ctx->ir_base[ref];
|
|
if (IR_IS_BB_START(insn->op)) {
|
|
bb->start = ref;
|
|
} else {
|
|
bb->end = ref;
|
|
}
|
|
} IR_BITSET_FOREACH_END();
|
|
ir_mem_free(_xlat);
|
|
ir_worklist_free(&worklist);
|
|
|
|
ir_worklist_init(&worklist, bb_count + 1);
|
|
for (b = 1, bb = blocks + 1; b <= bb_count; b++, bb++) {
|
|
insn = &ctx->ir_base[bb->start];
|
|
if (insn->op == IR_START) {
|
|
bb->flags |= IR_BB_START;
|
|
ir_worklist_push(&worklist, b);
|
|
} else if (insn->op == IR_ENTRY) {
|
|
bb->flags |= IR_BB_ENTRY;
|
|
ir_worklist_push(&worklist, b);
|
|
} else {
|
|
bb->flags |= IR_BB_UNREACHABLE; /* all blocks are marked as UNREACHABLE first */
|
|
}
|
|
flags = ir_op_flags[insn->op];
|
|
n = ir_input_edges_count(ctx, insn);
|
|
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
|
|
ir_ref pred_ref = *p;
|
|
if (pred_ref) {
|
|
if (IR_OPND_KIND(flags, j) == IR_OPND_CONTROL) {
|
|
bb->predecessors_count++;
|
|
blocks[_blocks[pred_ref]].successors_count++;
|
|
edges_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bb = blocks + 1;
|
|
n = 0;
|
|
for (b = 1; b <= bb_count; b++, bb++) {
|
|
bb->successors = n;
|
|
n += bb->successors_count;
|
|
bb->successors_count = 0;
|
|
bb->predecessors = n;
|
|
n += bb->predecessors_count;
|
|
bb->predecessors_count = 0;
|
|
}
|
|
IR_ASSERT(n == edges_count * 2);
|
|
|
|
/* Create an array of successor control edges */
|
|
edges = ir_mem_malloc(edges_count * 2 * sizeof(uint32_t));
|
|
bb = blocks + 1;
|
|
for (b = 1; b <= bb_count; b++, bb++) {
|
|
insn = &ctx->ir_base[bb->start];
|
|
flags = ir_op_flags[insn->op];
|
|
n = ir_input_edges_count(ctx, insn);
|
|
for (j = 1, p = insn->ops + 1; j <= n; j++, p++) {
|
|
ref = *p;
|
|
if (ref) {
|
|
if (IR_OPND_KIND(flags, j) == IR_OPND_CONTROL) {
|
|
ir_ref pred_b = _blocks[ref];
|
|
ir_block *pred_bb = &blocks[pred_b];
|
|
edges[bb->predecessors + bb->predecessors_count] = pred_b;
|
|
bb->predecessors_count++;
|
|
pred_bb->end = ref;
|
|
edges[pred_bb->successors + pred_bb->successors_count] = b;
|
|
pred_bb->successors_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ir_mem_free(_blocks);
|
|
|
|
ctx->cfg_blocks_count = bb_count;
|
|
ctx->cfg_edges_count = edges_count * 2;
|
|
ctx->cfg_blocks = blocks;
|
|
ctx->cfg_edges = edges;
|
|
|
|
/* Mark reachable blocks */
|
|
while (ir_worklist_len(&worklist) != 0) {
|
|
uint32_t *p, succ_b;
|
|
ir_block *succ_bb;
|
|
|
|
b = ir_worklist_pop(&worklist);
|
|
bb = &blocks[b];
|
|
n = bb->successors_count;
|
|
for (p = ctx->cfg_edges + bb->successors; n > 0; p++, n--) {
|
|
succ_b = *p;
|
|
succ_bb = &blocks[succ_b];
|
|
if (succ_bb->flags & IR_BB_UNREACHABLE) {
|
|
succ_bb->flags &= ~IR_BB_UNREACHABLE;
|
|
ir_worklist_push(&worklist, succ_b);
|
|
}
|
|
}
|
|
}
|
|
ir_worklist_free(&worklist);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void compute_postnum(const ir_ctx *ctx, uint32_t *cur, uint32_t b)
|
|
{
|
|
uint32_t i, *p;
|
|
ir_block *bb = &ctx->cfg_blocks[b];
|
|
|
|
if (bb->postnum != 0) {
|
|
return;
|
|
}
|
|
|
|
if (bb->successors_count) {
|
|
bb->postnum = -1; /* Marker for "currently visiting" */
|
|
p = ctx->cfg_edges + bb->successors;
|
|
i = bb->successors_count;
|
|
do {
|
|
compute_postnum(ctx, cur, *p);
|
|
p++;
|
|
} while (--i);
|
|
}
|
|
bb->postnum = (*cur)++;
|
|
}
|
|
|
|
/* Computes dominator tree using algorithm from "A Simple, Fast Dominance Algorithm" by
|
|
* Cooper, Harvey and Kennedy. */
|
|
int ir_build_dominators_tree(ir_ctx *ctx)
|
|
{
|
|
uint32_t blocks_count, b;
|
|
ir_block *blocks, *bb;
|
|
uint32_t *edges;
|
|
bool changed;
|
|
|
|
b = 1;
|
|
compute_postnum(ctx, &b, 1);
|
|
|
|
/* Find immediate dominators */
|
|
blocks = ctx->cfg_blocks;
|
|
edges = ctx->cfg_edges;
|
|
blocks_count = ctx->cfg_blocks_count;
|
|
blocks[1].idom = 1;
|
|
do {
|
|
changed = 0;
|
|
/* Iterating in Reverse Post Oorder */
|
|
for (b = 2, bb = &blocks[2]; b <= blocks_count; b++, bb++) {
|
|
if (bb->flags & IR_BB_UNREACHABLE) {
|
|
continue;
|
|
}
|
|
if (bb->predecessors_count) {
|
|
int idom = 0;
|
|
uint32_t k = bb->predecessors_count;
|
|
uint32_t *p = edges + bb->predecessors;
|
|
do {
|
|
uint32_t pred_b = *p;
|
|
ir_block *pred_bb = &blocks[pred_b];
|
|
|
|
if (pred_bb->idom > 0) {
|
|
if (idom == 0) {
|
|
idom = pred_b;
|
|
} else if (idom != pred_b) {
|
|
ir_block *idom_bb = &blocks[idom];
|
|
|
|
do {
|
|
while (pred_bb->postnum < idom_bb->postnum) {
|
|
pred_b = pred_bb->idom;
|
|
pred_bb = &blocks[pred_b];
|
|
}
|
|
while (idom_bb->postnum < pred_bb->postnum) {
|
|
idom = idom_bb->idom;
|
|
idom_bb = &blocks[idom];
|
|
}
|
|
} while (idom != pred_b);
|
|
}
|
|
}
|
|
p++;
|
|
} while (--k > 0);
|
|
|
|
if (idom > 0 && bb->idom != idom) {
|
|
bb->idom = idom;
|
|
changed = 1;
|
|
}
|
|
}
|
|
}
|
|
} while (changed);
|
|
blocks[1].idom = 0;
|
|
blocks[1].dom_depth = 0;
|
|
|
|
/* Construct dominators tree */
|
|
for (b = 2, bb = &blocks[2]; b <= blocks_count; b++, bb++) {
|
|
if (bb->flags & IR_BB_UNREACHABLE) {
|
|
continue;
|
|
}
|
|
if (bb->idom > 0) {
|
|
ir_block *idom_bb = &blocks[bb->idom];
|
|
|
|
bb->dom_depth = idom_bb->dom_depth + 1;
|
|
/* Sort by block number to traverse children in pre-order */
|
|
if (idom_bb->dom_child == 0) {
|
|
idom_bb->dom_child = b;
|
|
} else if (b < idom_bb->dom_child) {
|
|
bb->dom_next_child = idom_bb->dom_child;
|
|
idom_bb->dom_child = b;
|
|
} else {
|
|
int child = idom_bb->dom_child;
|
|
ir_block *child_bb = &blocks[child];
|
|
|
|
while (child_bb->dom_next_child > 0 && b > child_bb->dom_next_child) {
|
|
child = child_bb->dom_next_child;
|
|
child_bb = &blocks[child];
|
|
}
|
|
bb->dom_next_child = child_bb->dom_next_child;
|
|
child_bb->dom_next_child = b;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bool ir_dominates(ir_block *blocks, uint32_t b1, uint32_t b2)
|
|
{
|
|
uint32_t b1_depth = blocks[b1].dom_depth;
|
|
ir_block *bb2 = &blocks[b2];
|
|
|
|
while (bb2->dom_depth > b1_depth) {
|
|
b2 = bb2->dom_parent;
|
|
bb2 = &blocks[b2];
|
|
}
|
|
return b1 == b2;
|
|
}
|
|
|
|
int ir_find_loops(ir_ctx *ctx)
|
|
{
|
|
uint32_t i, j, n, count;
|
|
uint32_t *entry_times, *exit_times, *sorted_blocks, time = 1;
|
|
ir_block *blocks = ctx->cfg_blocks;
|
|
uint32_t *edges = ctx->cfg_edges;
|
|
ir_worklist work;
|
|
|
|
/* We don't materialize the DJ spanning tree explicitly, as we are only interested in ancestor
|
|
* queries. These are implemented by checking entry/exit times of the DFS search. */
|
|
ir_worklist_init(&work, ctx->cfg_blocks_count + 1);
|
|
entry_times = ir_mem_calloc((ctx->cfg_blocks_count + 1) * 3, sizeof(uint32_t));
|
|
exit_times = entry_times + ctx->cfg_blocks_count + 1;
|
|
sorted_blocks = exit_times + ctx->cfg_blocks_count + 1;
|
|
|
|
ir_worklist_push(&work, 1);
|
|
while (ir_worklist_len(&work)) {
|
|
ir_block *bb;
|
|
int child;
|
|
|
|
next:
|
|
i = ir_worklist_peek(&work);
|
|
if (!entry_times[i]) {
|
|
entry_times[i] = time++;
|
|
}
|
|
|
|
/* Visit blocks immediately dominated by i. */
|
|
bb = &blocks[i];
|
|
for (child = bb->dom_child; child > 0; child = blocks[child].dom_next_child) {
|
|
if (ir_worklist_push(&work, child)) {
|
|
goto next;
|
|
}
|
|
}
|
|
|
|
/* Visit join edges. */
|
|
if (bb->successors_count) {
|
|
uint32_t *p = edges + bb->successors;
|
|
for (j = 0; j < bb->successors_count; j++,p++) {
|
|
uint32_t succ = *p;
|
|
|
|
if (blocks[succ].idom == i) {
|
|
continue;
|
|
} else if (ir_worklist_push(&work, succ)) {
|
|
goto next;
|
|
}
|
|
}
|
|
}
|
|
exit_times[i] = time++;
|
|
ir_worklist_pop(&work);
|
|
}
|
|
|
|
/* Sort blocks by level, which is the opposite order in which we want to process them */
|
|
sorted_blocks[1] = 1;
|
|
j = 1;
|
|
n = 2;
|
|
while (j != n) {
|
|
i = j;
|
|
j = n;
|
|
for (; i < j; i++) {
|
|
int child;
|
|
for (child = blocks[sorted_blocks[i]].dom_child; child > 0; child = blocks[child].dom_next_child) {
|
|
sorted_blocks[n++] = child;
|
|
}
|
|
}
|
|
}
|
|
count = n;
|
|
|
|
/* Identify loops. See Sreedhar et al, "Identifying Loops Using DJ Graphs". */
|
|
while (n > 1) {
|
|
i = sorted_blocks[--n];
|
|
ir_block *bb = &blocks[i];
|
|
|
|
if (bb->predecessors_count > 1) {
|
|
bool irreducible = 0;
|
|
uint32_t *p = &edges[bb->predecessors];
|
|
|
|
j = bb->predecessors_count;
|
|
do {
|
|
uint32_t pred = *p;
|
|
|
|
/* A join edge is one for which the predecessor does not
|
|
immediately dominate the successor. */
|
|
if (bb->idom != pred) {
|
|
/* In a loop back-edge (back-join edge), the successor dominates
|
|
the predecessor. */
|
|
if (ir_dominates(blocks, i, pred)) {
|
|
if (!ir_worklist_len(&work)) {
|
|
ir_bitset_clear(work.visited, ir_bitset_len(ir_worklist_capasity(&work)));
|
|
}
|
|
ir_worklist_push(&work, pred);
|
|
} else {
|
|
/* Otherwise it's a cross-join edge. See if it's a branch
|
|
to an ancestor on the DJ spanning tree. */
|
|
irreducible = (entry_times[pred] > entry_times[i] && exit_times[pred] < exit_times[i]);
|
|
}
|
|
}
|
|
p++;
|
|
} while (--j);
|
|
|
|
if (UNEXPECTED(irreducible)) {
|
|
// TODO: Support for irreducible loops ???
|
|
bb->flags |= IR_BB_IRREDUCIBLE_LOOP;
|
|
ctx->flags |= IR_IRREDUCIBLE_CFG;
|
|
while (ir_worklist_len(&work)) {
|
|
ir_worklist_pop(&work);
|
|
}
|
|
} else if (ir_worklist_len(&work)) {
|
|
bb->flags |= IR_BB_LOOP_HEADER;
|
|
while (ir_worklist_len(&work)) {
|
|
j = ir_worklist_pop(&work);
|
|
while (blocks[j].loop_header > 0) {
|
|
j = blocks[j].loop_header;
|
|
}
|
|
if (j != i) {
|
|
ir_block *bb = &blocks[j];
|
|
if (bb->idom < 0 && j != 1) {
|
|
/* Ignore blocks that are unreachable or only abnormally reachable. */
|
|
continue;
|
|
}
|
|
bb->loop_header = i;
|
|
if (bb->predecessors_count) {
|
|
uint32_t *p = &edges[bb->predecessors];
|
|
j = bb->predecessors_count;
|
|
do {
|
|
ir_worklist_push(&work, *p);
|
|
p++;
|
|
} while (--j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (n = 1; n < count; n++) {
|
|
i = sorted_blocks[n];
|
|
ir_block *bb = &blocks[i];
|
|
if (bb->loop_header > 0) {
|
|
bb->loop_depth = blocks[bb->loop_header].loop_depth;
|
|
}
|
|
if (bb->flags & IR_BB_LOOP_HEADER) {
|
|
bb->loop_depth++;
|
|
}
|
|
}
|
|
|
|
ir_mem_free(entry_times);
|
|
ir_worklist_free(&work);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* A variation of "Top-down Positioning" algorithm described by
|
|
* Karl Pettis and Robert C. Hansen "Profile Guided Code Positioning"
|
|
*
|
|
* TODO: Switch to "Bottom-up Positioning" algorithm
|
|
*/
|
|
int ir_schedule_blocks(ir_ctx *ctx)
|
|
{
|
|
uint32_t len = ir_bitset_len(ctx->cfg_blocks_count + 1);
|
|
ir_bitset blocks = ir_bitset_malloc(ctx->cfg_blocks_count + 1);
|
|
uint32_t b, *p, successor, best_successor, j;
|
|
ir_block *bb, *successor_bb, *best_successor_bb;
|
|
ir_insn *insn;
|
|
uint32_t *list, *map, pos;
|
|
uint32_t prob, best_successor_prob;
|
|
uint32_t count = 0;
|
|
bool reorder = 0;
|
|
|
|
list = ir_mem_malloc(sizeof(uint32_t) * (ctx->cfg_blocks_count + 1) * 2);
|
|
map = list + (ctx->cfg_blocks_count + 1);
|
|
for (b = 1; b <= ctx->cfg_blocks_count; b++) {
|
|
ir_bitset_incl(blocks, b);
|
|
}
|
|
|
|
pos = 0;
|
|
while ((b = ir_bitset_pop_first_ex(blocks, len, &pos)) != (uint32_t)-1) {
|
|
bb = &ctx->cfg_blocks[b];
|
|
do {
|
|
if (bb->predecessors_count == 2) {
|
|
uint32_t predecessor = ctx->cfg_edges[bb->predecessors];
|
|
|
|
if (!ir_bitset_in(blocks, predecessor)) {
|
|
predecessor = ctx->cfg_edges[bb->predecessors + 1];
|
|
}
|
|
if (ir_bitset_in(blocks, predecessor)) {
|
|
ir_block *predecessor_bb = &ctx->cfg_blocks[predecessor];
|
|
|
|
if (predecessor_bb->successors_count == 1
|
|
&& predecessor_bb->predecessors_count == 1
|
|
&& predecessor_bb->end == predecessor_bb->start + 1
|
|
&& !(predecessor_bb->flags & IR_BB_DESSA_MOVES)) {
|
|
ir_bitset_excl(blocks, predecessor);
|
|
count++;
|
|
list[count] = predecessor;
|
|
map[predecessor] = count;
|
|
if (predecessor != count) {
|
|
reorder = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
count++;
|
|
list[count] = b;
|
|
map[b] = count;
|
|
if (b != count) {
|
|
reorder = 1;
|
|
}
|
|
if (!bb->successors_count) {
|
|
break;
|
|
}
|
|
best_successor_bb = NULL;
|
|
for (b = 0, p = &ctx->cfg_edges[bb->successors]; b < bb->successors_count; b++, p++) {
|
|
successor = *p;
|
|
if (ir_bitset_in(blocks, successor)) {
|
|
successor_bb = &ctx->cfg_blocks[successor];
|
|
insn = &ctx->ir_base[successor_bb->start];
|
|
if (insn->op == IR_IF_TRUE || insn->op == IR_IF_FALSE || insn->op == IR_CASE_DEFAULT) {
|
|
prob = insn->op2;
|
|
} else if (insn->op == IR_CASE_VAL) {
|
|
prob = insn->op3;
|
|
} else {
|
|
prob = 0;
|
|
}
|
|
if (!best_successor_bb
|
|
|| successor_bb->loop_depth > best_successor_bb->loop_depth) {
|
|
// TODO: use block frequency
|
|
best_successor = successor;
|
|
best_successor_bb = successor_bb;
|
|
best_successor_prob = prob;
|
|
} else if ((best_successor_prob && prob && prob > best_successor_prob)
|
|
|| (!best_successor_prob && prob && prob > 100 / bb->successors_count)
|
|
|| (best_successor_prob && !prob && best_successor_prob < 100 / bb->successors_count)) {
|
|
best_successor = successor;
|
|
best_successor_bb = successor_bb;
|
|
best_successor_prob = prob;
|
|
}
|
|
}
|
|
}
|
|
if (!best_successor_bb) {
|
|
if (bb->successors_count == 1
|
|
&& bb->predecessors_count == 1
|
|
&& bb->end == bb->start + 1
|
|
&& !(bb->flags & IR_BB_DESSA_MOVES)) {
|
|
uint32_t predecessor = ctx->cfg_edges[bb->predecessors];
|
|
ir_block *predecessor_bb = &ctx->cfg_blocks[predecessor];
|
|
|
|
if (predecessor_bb->successors_count == 2) {
|
|
b = ctx->cfg_edges[predecessor_bb->successors];
|
|
|
|
if (!ir_bitset_in(blocks, b)) {
|
|
b = ctx->cfg_edges[predecessor_bb->successors + 1];
|
|
}
|
|
if (ir_bitset_in(blocks, b)) {
|
|
bb = &ctx->cfg_blocks[b];
|
|
ir_bitset_excl(blocks, b);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
b = best_successor;
|
|
bb = best_successor_bb;
|
|
ir_bitset_excl(blocks, b);
|
|
} while (1);
|
|
}
|
|
|
|
if (reorder) {
|
|
ir_block *cfg_blocks = ir_mem_calloc(sizeof(ir_block), ctx->cfg_blocks_count + 1);
|
|
|
|
for (b = 1, bb = cfg_blocks + 1; b <= count; b++, bb++) {
|
|
*bb = ctx->cfg_blocks[list[b]];
|
|
if (bb->dom_parent > 0) {
|
|
bb->dom_parent = map[bb->dom_parent];
|
|
}
|
|
if (bb->dom_child > 0) {
|
|
bb->dom_child = map[bb->dom_child];
|
|
}
|
|
if (bb->dom_next_child > 0) {
|
|
bb->dom_next_child = map[bb->dom_next_child];
|
|
}
|
|
if (bb->loop_header > 0) {
|
|
bb->loop_header = map[bb->loop_header];
|
|
}
|
|
}
|
|
for (j = 0; j < ctx->cfg_edges_count; j++) {
|
|
if (ctx->cfg_edges[j] > 0) {
|
|
ctx->cfg_edges[j] = map[ctx->cfg_edges[j]];
|
|
}
|
|
}
|
|
ir_mem_free(ctx->cfg_blocks);
|
|
ctx->cfg_blocks = cfg_blocks;
|
|
}
|
|
|
|
ir_mem_free(list);
|
|
ir_mem_free(blocks);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* JMP target optimisation */
|
|
int ir_skip_empty_blocks(ir_ctx *ctx, int b)
|
|
{
|
|
while (ctx->cfg_blocks[b].flags & IR_BB_MAY_SKIP) {
|
|
b++;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
void ir_get_true_false_blocks(ir_ctx *ctx, int b, int *true_block, int *false_block, int *next_block)
|
|
{
|
|
ir_block *bb;
|
|
uint32_t n, *p, use_block;
|
|
ir_insn *use_insn;
|
|
|
|
*true_block = 0;
|
|
*false_block = 0;
|
|
bb = &ctx->cfg_blocks[b];
|
|
IR_ASSERT(ctx->ir_base[bb->end].op == IR_IF);
|
|
IR_ASSERT(bb->successors_count == 2);
|
|
p = &ctx->cfg_edges[bb->successors];
|
|
for (n = 2; n != 0; p++, n--) {
|
|
use_block = *p;
|
|
use_insn = &ctx->ir_base[ctx->cfg_blocks[use_block].start];
|
|
if (use_insn->op == IR_IF_TRUE) {
|
|
*true_block = ir_skip_empty_blocks(ctx, use_block);
|
|
} else if (use_insn->op == IR_IF_FALSE) {
|
|
*false_block = ir_skip_empty_blocks(ctx, use_block);
|
|
} else {
|
|
IR_ASSERT(0);
|
|
}
|
|
}
|
|
IR_ASSERT(*true_block && *false_block);
|
|
*next_block = b == ctx->cfg_blocks_count ? 0 : ir_skip_empty_blocks(ctx, b + 1);
|
|
}
|