1
0
mirror of https://github.com/danog/libtgvoip.git synced 2024-12-03 10:07:45 +01:00
libtgvoip/webrtc_dsp/modules/audio_processing/audio_buffer.cc

463 lines
15 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/audio_buffer.h"
#include <string.h>
#include <cstdint>
#include "common_audio/channel_buffer.h"
#include "common_audio/include/audio_util.h"
#include "common_audio/resampler/push_sinc_resampler.h"
#include "modules/audio_processing/splitting_filter.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
const size_t kSamplesPer16kHzChannel = 160;
const size_t kSamplesPer32kHzChannel = 320;
const size_t kSamplesPer48kHzChannel = 480;
int KeyboardChannelIndex(const StreamConfig& stream_config) {
if (!stream_config.has_keyboard()) {
RTC_NOTREACHED();
return 0;
}
return stream_config.num_channels();
}
size_t NumBandsFromSamplesPerChannel(size_t num_frames) {
size_t num_bands = 1;
if (num_frames == kSamplesPer32kHzChannel ||
num_frames == kSamplesPer48kHzChannel) {
num_bands = rtc::CheckedDivExact(num_frames, kSamplesPer16kHzChannel);
}
return num_bands;
}
} // namespace
AudioBuffer::AudioBuffer(size_t input_num_frames,
size_t num_input_channels,
size_t process_num_frames,
size_t num_process_channels,
size_t output_num_frames)
: input_num_frames_(input_num_frames),
num_input_channels_(num_input_channels),
proc_num_frames_(process_num_frames),
num_proc_channels_(num_process_channels),
output_num_frames_(output_num_frames),
num_channels_(num_process_channels),
num_bands_(NumBandsFromSamplesPerChannel(proc_num_frames_)),
num_split_frames_(rtc::CheckedDivExact(proc_num_frames_, num_bands_)),
mixed_low_pass_valid_(false),
reference_copied_(false),
activity_(AudioFrame::kVadUnknown),
keyboard_data_(NULL),
data_(new IFChannelBuffer(proc_num_frames_, num_proc_channels_)),
output_buffer_(new IFChannelBuffer(output_num_frames_, num_channels_)) {
RTC_DCHECK_GT(input_num_frames_, 0);
RTC_DCHECK_GT(proc_num_frames_, 0);
RTC_DCHECK_GT(output_num_frames_, 0);
RTC_DCHECK_GT(num_input_channels_, 0);
RTC_DCHECK_GT(num_proc_channels_, 0);
RTC_DCHECK_LE(num_proc_channels_, num_input_channels_);
if (input_num_frames_ != proc_num_frames_ ||
output_num_frames_ != proc_num_frames_) {
// Create an intermediate buffer for resampling.
process_buffer_.reset(
new ChannelBuffer<float>(proc_num_frames_, num_proc_channels_));
if (input_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_proc_channels_; ++i) {
input_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
new PushSincResampler(input_num_frames_, proc_num_frames_)));
}
}
if (output_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_proc_channels_; ++i) {
output_resamplers_.push_back(std::unique_ptr<PushSincResampler>(
new PushSincResampler(proc_num_frames_, output_num_frames_)));
}
}
}
if (num_bands_ > 1) {
split_data_.reset(
new IFChannelBuffer(proc_num_frames_, num_proc_channels_, num_bands_));
splitting_filter_.reset(
new SplittingFilter(num_proc_channels_, num_bands_, proc_num_frames_));
}
}
AudioBuffer::~AudioBuffer() {}
void AudioBuffer::CopyFrom(const float* const* data,
const StreamConfig& stream_config) {
RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_);
RTC_DCHECK_EQ(stream_config.num_channels(), num_input_channels_);
InitForNewData();
// Initialized lazily because there's a different condition in
// DeinterleaveFrom.
const bool need_to_downmix =
num_input_channels_ > 1 && num_proc_channels_ == 1;
if (need_to_downmix && !input_buffer_) {
input_buffer_.reset(
new IFChannelBuffer(input_num_frames_, num_proc_channels_));
}
if (stream_config.has_keyboard()) {
keyboard_data_ = data[KeyboardChannelIndex(stream_config)];
}
// Downmix.
const float* const* data_ptr = data;
if (need_to_downmix) {
DownmixToMono<float, float>(data, input_num_frames_, num_input_channels_,
input_buffer_->fbuf()->channels()[0]);
data_ptr = input_buffer_->fbuf_const()->channels();
}
// Resample.
if (input_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_proc_channels_; ++i) {
input_resamplers_[i]->Resample(data_ptr[i], input_num_frames_,
process_buffer_->channels()[i],
proc_num_frames_);
}
data_ptr = process_buffer_->channels();
}
// Convert to the S16 range.
for (size_t i = 0; i < num_proc_channels_; ++i) {
FloatToFloatS16(data_ptr[i], proc_num_frames_,
data_->fbuf()->channels()[i]);
}
}
void AudioBuffer::CopyTo(const StreamConfig& stream_config,
float* const* data) {
RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_);
RTC_DCHECK(stream_config.num_channels() == num_channels_ ||
num_channels_ == 1);
// Convert to the float range.
float* const* data_ptr = data;
if (output_num_frames_ != proc_num_frames_) {
// Convert to an intermediate buffer for subsequent resampling.
data_ptr = process_buffer_->channels();
}
for (size_t i = 0; i < num_channels_; ++i) {
FloatS16ToFloat(data_->fbuf()->channels()[i], proc_num_frames_,
data_ptr[i]);
}
// Resample.
if (output_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(data_ptr[i], proc_num_frames_, data[i],
output_num_frames_);
}
}
// Upmix.
for (size_t i = num_channels_; i < stream_config.num_channels(); ++i) {
memcpy(data[i], data[0], output_num_frames_ * sizeof(**data));
}
}
void AudioBuffer::InitForNewData() {
keyboard_data_ = NULL;
mixed_low_pass_valid_ = false;
reference_copied_ = false;
activity_ = AudioFrame::kVadUnknown;
num_channels_ = num_proc_channels_;
data_->set_num_channels(num_proc_channels_);
if (split_data_.get()) {
split_data_->set_num_channels(num_proc_channels_);
}
}
const int16_t* const* AudioBuffer::channels_const() const {
return data_->ibuf_const()->channels();
}
int16_t* const* AudioBuffer::channels() {
mixed_low_pass_valid_ = false;
return data_->ibuf()->channels();
}
const int16_t* const* AudioBuffer::split_bands_const(size_t channel) const {
return split_data_.get() ? split_data_->ibuf_const()->bands(channel)
: data_->ibuf_const()->bands(channel);
}
int16_t* const* AudioBuffer::split_bands(size_t channel) {
mixed_low_pass_valid_ = false;
return split_data_.get() ? split_data_->ibuf()->bands(channel)
: data_->ibuf()->bands(channel);
}
const int16_t* const* AudioBuffer::split_channels_const(Band band) const {
if (split_data_.get()) {
return split_data_->ibuf_const()->channels(band);
} else {
return band == kBand0To8kHz ? data_->ibuf_const()->channels() : nullptr;
}
}
int16_t* const* AudioBuffer::split_channels(Band band) {
mixed_low_pass_valid_ = false;
if (split_data_.get()) {
return split_data_->ibuf()->channels(band);
} else {
return band == kBand0To8kHz ? data_->ibuf()->channels() : nullptr;
}
}
ChannelBuffer<int16_t>* AudioBuffer::data() {
mixed_low_pass_valid_ = false;
return data_->ibuf();
}
const ChannelBuffer<int16_t>* AudioBuffer::data() const {
return data_->ibuf_const();
}
ChannelBuffer<int16_t>* AudioBuffer::split_data() {
mixed_low_pass_valid_ = false;
return split_data_.get() ? split_data_->ibuf() : data_->ibuf();
}
const ChannelBuffer<int16_t>* AudioBuffer::split_data() const {
return split_data_.get() ? split_data_->ibuf_const() : data_->ibuf_const();
}
const float* const* AudioBuffer::channels_const_f() const {
return data_->fbuf_const()->channels();
}
float* const* AudioBuffer::channels_f() {
mixed_low_pass_valid_ = false;
return data_->fbuf()->channels();
}
const float* const* AudioBuffer::split_bands_const_f(size_t channel) const {
return split_data_.get() ? split_data_->fbuf_const()->bands(channel)
: data_->fbuf_const()->bands(channel);
}
float* const* AudioBuffer::split_bands_f(size_t channel) {
mixed_low_pass_valid_ = false;
return split_data_.get() ? split_data_->fbuf()->bands(channel)
: data_->fbuf()->bands(channel);
}
const float* const* AudioBuffer::split_channels_const_f(Band band) const {
if (split_data_.get()) {
return split_data_->fbuf_const()->channels(band);
} else {
return band == kBand0To8kHz ? data_->fbuf_const()->channels() : nullptr;
}
}
float* const* AudioBuffer::split_channels_f(Band band) {
mixed_low_pass_valid_ = false;
if (split_data_.get()) {
return split_data_->fbuf()->channels(band);
} else {
return band == kBand0To8kHz ? data_->fbuf()->channels() : nullptr;
}
}
ChannelBuffer<float>* AudioBuffer::data_f() {
mixed_low_pass_valid_ = false;
return data_->fbuf();
}
const ChannelBuffer<float>* AudioBuffer::data_f() const {
return data_->fbuf_const();
}
ChannelBuffer<float>* AudioBuffer::split_data_f() {
mixed_low_pass_valid_ = false;
return split_data_.get() ? split_data_->fbuf() : data_->fbuf();
}
const ChannelBuffer<float>* AudioBuffer::split_data_f() const {
return split_data_.get() ? split_data_->fbuf_const() : data_->fbuf_const();
}
const int16_t* AudioBuffer::mixed_low_pass_data() {
if (num_proc_channels_ == 1) {
return split_bands_const(0)[kBand0To8kHz];
}
if (!mixed_low_pass_valid_) {
if (!mixed_low_pass_channels_.get()) {
mixed_low_pass_channels_.reset(
new ChannelBuffer<int16_t>(num_split_frames_, 1));
}
DownmixToMono<int16_t, int32_t>(split_channels_const(kBand0To8kHz),
num_split_frames_, num_channels_,
mixed_low_pass_channels_->channels()[0]);
mixed_low_pass_valid_ = true;
}
return mixed_low_pass_channels_->channels()[0];
}
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
if (!reference_copied_) {
return NULL;
}
return low_pass_reference_channels_->channels()[channel];
}
const float* AudioBuffer::keyboard_data() const {
return keyboard_data_;
}
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
activity_ = activity;
}
AudioFrame::VADActivity AudioBuffer::activity() const {
return activity_;
}
size_t AudioBuffer::num_channels() const {
return num_channels_;
}
void AudioBuffer::set_num_channels(size_t num_channels) {
num_channels_ = num_channels;
data_->set_num_channels(num_channels);
if (split_data_.get()) {
split_data_->set_num_channels(num_channels);
}
}
size_t AudioBuffer::num_frames() const {
return proc_num_frames_;
}
size_t AudioBuffer::num_frames_per_band() const {
return num_split_frames_;
}
size_t AudioBuffer::num_keyboard_frames() const {
// We don't resample the keyboard channel.
return input_num_frames_;
}
size_t AudioBuffer::num_bands() const {
return num_bands_;
}
// The resampler is only for supporting 48kHz to 16kHz in the reverse stream.
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
RTC_DCHECK_EQ(frame->num_channels_, num_input_channels_);
RTC_DCHECK_EQ(frame->samples_per_channel_, input_num_frames_);
InitForNewData();
// Initialized lazily because there's a different condition in CopyFrom.
if ((input_num_frames_ != proc_num_frames_) && !input_buffer_) {
input_buffer_.reset(
new IFChannelBuffer(input_num_frames_, num_proc_channels_));
}
activity_ = frame->vad_activity_;
int16_t* const* deinterleaved;
if (input_num_frames_ == proc_num_frames_) {
deinterleaved = data_->ibuf()->channels();
} else {
deinterleaved = input_buffer_->ibuf()->channels();
}
// TODO(yujo): handle muted frames more efficiently.
if (num_proc_channels_ == 1) {
// Downmix and deinterleave simultaneously.
DownmixInterleavedToMono(frame->data(), input_num_frames_,
num_input_channels_, deinterleaved[0]);
} else {
RTC_DCHECK_EQ(num_proc_channels_, num_input_channels_);
Deinterleave(frame->data(), input_num_frames_, num_proc_channels_,
deinterleaved);
}
// Resample.
if (input_num_frames_ != proc_num_frames_) {
for (size_t i = 0; i < num_proc_channels_; ++i) {
input_resamplers_[i]->Resample(
input_buffer_->fbuf_const()->channels()[i], input_num_frames_,
data_->fbuf()->channels()[i], proc_num_frames_);
}
}
}
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
frame->vad_activity_ = activity_;
if (!data_changed) {
return;
}
RTC_DCHECK(frame->num_channels_ == num_channels_ || num_channels_ == 1);
RTC_DCHECK_EQ(frame->samples_per_channel_, output_num_frames_);
// Resample if necessary.
IFChannelBuffer* data_ptr = data_.get();
if (proc_num_frames_ != output_num_frames_) {
for (size_t i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(
data_->fbuf()->channels()[i], proc_num_frames_,
output_buffer_->fbuf()->channels()[i], output_num_frames_);
}
data_ptr = output_buffer_.get();
}
// TODO(yujo): handle muted frames more efficiently.
if (frame->num_channels_ == num_channels_) {
Interleave(data_ptr->ibuf()->channels(), output_num_frames_, num_channels_,
frame->mutable_data());
} else {
UpmixMonoToInterleaved(data_ptr->ibuf()->channels()[0], output_num_frames_,
frame->num_channels_, frame->mutable_data());
}
}
void AudioBuffer::CopyLowPassToReference() {
reference_copied_ = true;
if (!low_pass_reference_channels_.get() ||
low_pass_reference_channels_->num_channels() != num_channels_) {
low_pass_reference_channels_.reset(
new ChannelBuffer<int16_t>(num_split_frames_, num_proc_channels_));
}
for (size_t i = 0; i < num_proc_channels_; i++) {
memcpy(low_pass_reference_channels_->channels()[i],
split_bands_const(i)[kBand0To8kHz],
low_pass_reference_channels_->num_frames_per_band() *
sizeof(split_bands_const(i)[kBand0To8kHz][0]));
}
}
void AudioBuffer::SplitIntoFrequencyBands() {
splitting_filter_->Analysis(data_.get(), split_data_.get());
}
void AudioBuffer::MergeFrequencyBands() {
splitting_filter_->Synthesis(split_data_.get(), data_.get());
}
} // namespace webrtc