mirror of
https://github.com/danog/libtgvoip.git
synced 2025-01-09 14:18:24 +01:00
194 lines
7.2 KiB
C++
194 lines
7.2 KiB
C++
|
/*
|
||
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
|
||
|
#include "modules/audio_processing/agc2/interpolated_gain_curve.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <iterator>
|
||
|
|
||
|
#include "modules/audio_processing/agc2/agc2_common.h"
|
||
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
||
|
#include "rtc_base/checks.h"
|
||
|
|
||
|
namespace webrtc {
|
||
|
|
||
|
constexpr std::array<float, kInterpolatedGainCurveTotalPoints>
|
||
|
InterpolatedGainCurve::approximation_params_x_;
|
||
|
|
||
|
constexpr std::array<float, kInterpolatedGainCurveTotalPoints>
|
||
|
InterpolatedGainCurve::approximation_params_m_;
|
||
|
|
||
|
constexpr std::array<float, kInterpolatedGainCurveTotalPoints>
|
||
|
InterpolatedGainCurve::approximation_params_q_;
|
||
|
|
||
|
InterpolatedGainCurve::InterpolatedGainCurve(ApmDataDumper* apm_data_dumper,
|
||
|
std::string histogram_name_prefix)
|
||
|
: region_logger_("WebRTC.Audio." + histogram_name_prefix +
|
||
|
".FixedDigitalGainCurveRegion.Identity",
|
||
|
"WebRTC.Audio." + histogram_name_prefix +
|
||
|
".FixedDigitalGainCurveRegion.Knee",
|
||
|
"WebRTC.Audio." + histogram_name_prefix +
|
||
|
".FixedDigitalGainCurveRegion.Limiter",
|
||
|
"WebRTC.Audio." + histogram_name_prefix +
|
||
|
".FixedDigitalGainCurveRegion.Saturation"),
|
||
|
apm_data_dumper_(apm_data_dumper) {}
|
||
|
|
||
|
InterpolatedGainCurve::~InterpolatedGainCurve() {
|
||
|
if (stats_.available) {
|
||
|
RTC_DCHECK(apm_data_dumper_);
|
||
|
apm_data_dumper_->DumpRaw("agc2_interp_gain_curve_lookups_identity",
|
||
|
stats_.look_ups_identity_region);
|
||
|
apm_data_dumper_->DumpRaw("agc2_interp_gain_curve_lookups_knee",
|
||
|
stats_.look_ups_knee_region);
|
||
|
apm_data_dumper_->DumpRaw("agc2_interp_gain_curve_lookups_limiter",
|
||
|
stats_.look_ups_limiter_region);
|
||
|
apm_data_dumper_->DumpRaw("agc2_interp_gain_curve_lookups_saturation",
|
||
|
stats_.look_ups_saturation_region);
|
||
|
region_logger_.LogRegionStats(stats_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
InterpolatedGainCurve::RegionLogger::RegionLogger(
|
||
|
std::string identity_histogram_name,
|
||
|
std::string knee_histogram_name,
|
||
|
std::string limiter_histogram_name,
|
||
|
std::string saturation_histogram_name)
|
||
|
: identity_histogram(
|
||
|
metrics::HistogramFactoryGetCounts(identity_histogram_name,
|
||
|
1,
|
||
|
10000,
|
||
|
50)),
|
||
|
knee_histogram(metrics::HistogramFactoryGetCounts(knee_histogram_name,
|
||
|
1,
|
||
|
10000,
|
||
|
50)),
|
||
|
limiter_histogram(
|
||
|
metrics::HistogramFactoryGetCounts(limiter_histogram_name,
|
||
|
1,
|
||
|
10000,
|
||
|
50)),
|
||
|
saturation_histogram(
|
||
|
metrics::HistogramFactoryGetCounts(saturation_histogram_name,
|
||
|
1,
|
||
|
10000,
|
||
|
50)) {}
|
||
|
|
||
|
InterpolatedGainCurve::RegionLogger::~RegionLogger() = default;
|
||
|
|
||
|
void InterpolatedGainCurve::RegionLogger::LogRegionStats(
|
||
|
const InterpolatedGainCurve::Stats& stats) const {
|
||
|
using Region = InterpolatedGainCurve::GainCurveRegion;
|
||
|
const int duration_s =
|
||
|
stats.region_duration_frames / (1000 / kFrameDurationMs);
|
||
|
|
||
|
switch (stats.region) {
|
||
|
case Region::kIdentity: {
|
||
|
if (identity_histogram) {
|
||
|
metrics::HistogramAdd(identity_histogram, duration_s);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case Region::kKnee: {
|
||
|
if (knee_histogram) {
|
||
|
metrics::HistogramAdd(knee_histogram, duration_s);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case Region::kLimiter: {
|
||
|
if (limiter_histogram) {
|
||
|
metrics::HistogramAdd(limiter_histogram, duration_s);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case Region::kSaturation: {
|
||
|
if (saturation_histogram) {
|
||
|
metrics::HistogramAdd(saturation_histogram, duration_s);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
default: { RTC_NOTREACHED(); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void InterpolatedGainCurve::UpdateStats(float input_level) const {
|
||
|
stats_.available = true;
|
||
|
|
||
|
GainCurveRegion region;
|
||
|
|
||
|
if (input_level < approximation_params_x_[0]) {
|
||
|
stats_.look_ups_identity_region++;
|
||
|
region = GainCurveRegion::kIdentity;
|
||
|
} else if (input_level <
|
||
|
approximation_params_x_[kInterpolatedGainCurveKneePoints - 1]) {
|
||
|
stats_.look_ups_knee_region++;
|
||
|
region = GainCurveRegion::kKnee;
|
||
|
} else if (input_level < kMaxInputLevelLinear) {
|
||
|
stats_.look_ups_limiter_region++;
|
||
|
region = GainCurveRegion::kLimiter;
|
||
|
} else {
|
||
|
stats_.look_ups_saturation_region++;
|
||
|
region = GainCurveRegion::kSaturation;
|
||
|
}
|
||
|
|
||
|
if (region == stats_.region) {
|
||
|
++stats_.region_duration_frames;
|
||
|
} else {
|
||
|
region_logger_.LogRegionStats(stats_);
|
||
|
|
||
|
stats_.region_duration_frames = 0;
|
||
|
stats_.region = region;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Looks up a gain to apply given a non-negative input level.
|
||
|
// The cost of this operation depends on the region in which |input_level|
|
||
|
// falls.
|
||
|
// For the identity and the saturation regions the cost is O(1).
|
||
|
// For the other regions, namely knee and limiter, the cost is
|
||
|
// O(2 + log2(|LightkInterpolatedGainCurveTotalPoints|), plus O(1) for the
|
||
|
// linear interpolation (one product and one sum).
|
||
|
float InterpolatedGainCurve::LookUpGainToApply(float input_level) const {
|
||
|
UpdateStats(input_level);
|
||
|
|
||
|
if (input_level <= approximation_params_x_[0]) {
|
||
|
// Identity region.
|
||
|
return 1.0f;
|
||
|
}
|
||
|
|
||
|
if (input_level >= kMaxInputLevelLinear) {
|
||
|
// Saturating lower bound. The saturing samples exactly hit the clipping
|
||
|
// level. This method achieves has the lowest harmonic distorsion, but it
|
||
|
// may reduce the amplitude of the non-saturating samples too much.
|
||
|
return 32768.f / input_level;
|
||
|
}
|
||
|
|
||
|
// Knee and limiter regions; find the linear piece index. Spelling
|
||
|
// out the complete type was the only way to silence both the clang
|
||
|
// plugin and the windows compilers.
|
||
|
std::array<float, kInterpolatedGainCurveTotalPoints>::const_iterator it =
|
||
|
std::lower_bound(approximation_params_x_.begin(),
|
||
|
approximation_params_x_.end(), input_level);
|
||
|
const size_t index = std::distance(approximation_params_x_.begin(), it) - 1;
|
||
|
RTC_DCHECK_LE(0, index);
|
||
|
RTC_DCHECK_LT(index, approximation_params_m_.size());
|
||
|
RTC_DCHECK_LE(approximation_params_x_[index], input_level);
|
||
|
if (index < approximation_params_m_.size() - 1) {
|
||
|
RTC_DCHECK_LE(input_level, approximation_params_x_[index + 1]);
|
||
|
}
|
||
|
|
||
|
// Piece-wise linear interploation.
|
||
|
const float gain = approximation_params_m_[index] * input_level +
|
||
|
approximation_params_q_[index];
|
||
|
RTC_DCHECK_LE(0.f, gain);
|
||
|
return gain;
|
||
|
}
|
||
|
|
||
|
} // namespace webrtc
|