/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * Contains the API functions for the AEC. */ #include "webrtc/modules/audio_processing/aec/echo_cancellation.h" #include #include #include extern "C" { #include "webrtc/common_audio/ring_buffer.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" } #include "webrtc/modules/audio_processing/aec/aec_core.h" #include "webrtc/modules/audio_processing/aec/aec_resampler.h" #include "webrtc/modules/audio_processing/logging/apm_data_dumper.h" #include "webrtc/typedefs.h" namespace webrtc { Aec::Aec() = default; Aec::~Aec() = default; // Measured delays [ms] // Device Chrome GTP // MacBook Air 10 // MacBook Retina 10 100 // MacPro 30? // // Win7 Desktop 70 80? // Win7 T430s 110 // Win8 T420s 70 // // Daisy 50 // Pixel (w/ preproc?) 240 // Pixel (w/o preproc?) 110 110 // The extended filter mode gives us the flexibility to ignore the system's // reported delays. We do this for platforms which we believe provide results // which are incompatible with the AEC's expectations. Based on measurements // (some provided above) we set a conservative (i.e. lower than measured) // fixed delay. // // WEBRTC_UNTRUSTED_DELAY will only have an impact when |extended_filter_mode| // is enabled. See the note along with |DelayCorrection| in // echo_cancellation_impl.h for more details on the mode. // // Justification: // Chromium/Mac: Here, the true latency is so low (~10-20 ms), that it plays // havoc with the AEC's buffering. To avoid this, we set a fixed delay of 20 ms // and then compensate by rewinding by 10 ms (in wideband) through // kDelayDiffOffsetSamples. This trick does not seem to work for larger rewind // values, but fortunately this is sufficient. // // Chromium/Linux(ChromeOS): The values we get on this platform don't correspond // well to reality. The variance doesn't match the AEC's buffer changes, and the // bulk values tend to be too low. However, the range across different hardware // appears to be too large to choose a single value. // // GTP/Linux(ChromeOS): TBD, but for the moment we will trust the values. #if defined(WEBRTC_CHROMIUM_BUILD) && defined(WEBRTC_MAC) #define WEBRTC_UNTRUSTED_DELAY #endif #if defined(WEBRTC_UNTRUSTED_DELAY) && defined(WEBRTC_MAC) static const int kDelayDiffOffsetSamples = -160; #else // Not enabled for now. static const int kDelayDiffOffsetSamples = 0; #endif #if defined(WEBRTC_MAC) static const int kFixedDelayMs = 20; #else static const int kFixedDelayMs = 50; #endif #if !defined(WEBRTC_UNTRUSTED_DELAY) static const int kMinTrustedDelayMs = 20; #endif static const int kMaxTrustedDelayMs = 500; // Maximum length of resampled signal. Must be an integer multiple of frames // (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN // The factor of 2 handles wb, and the + 1 is as a safety margin // TODO(bjornv): Replace with kResamplerBufferSize #define MAX_RESAMP_LEN (5 * FRAME_LEN) static const int kMaxBufSizeStart = 62; // In partitions static const int sampMsNb = 8; // samples per ms in nb static const int initCheck = 42; int Aec::instance_count = 0; // Estimates delay to set the position of the far-end buffer read pointer // (controlled by knownDelay) static void EstBufDelayNormal(Aec* aecInst); static void EstBufDelayExtended(Aec* aecInst); static int ProcessNormal(Aec* self, const float* const* near, size_t num_bands, float* const* out, size_t num_samples, int16_t reported_delay_ms, int32_t skew); static void ProcessExtended(Aec* self, const float* const* near, size_t num_bands, float* const* out, size_t num_samples, int16_t reported_delay_ms, int32_t skew); void* WebRtcAec_Create() { Aec* aecpc = new Aec(); if (!aecpc) { return NULL; } aecpc->data_dumper.reset(new ApmDataDumper(aecpc->instance_count)); aecpc->aec = WebRtcAec_CreateAec(aecpc->instance_count); if (!aecpc->aec) { WebRtcAec_Free(aecpc); return NULL; } aecpc->resampler = WebRtcAec_CreateResampler(); if (!aecpc->resampler) { WebRtcAec_Free(aecpc); return NULL; } // Create far-end pre-buffer. The buffer size has to be large enough for // largest possible drift compensation (kResamplerBufferSize) + "almost" an // FFT buffer (PART_LEN2 - 1). aecpc->far_pre_buf = WebRtc_CreateBuffer(PART_LEN2 + kResamplerBufferSize, sizeof(float)); if (!aecpc->far_pre_buf) { WebRtcAec_Free(aecpc); return NULL; } aecpc->initFlag = 0; aecpc->instance_count++; return aecpc; } void WebRtcAec_Free(void* aecInst) { Aec* aecpc = reinterpret_cast(aecInst); if (aecpc == NULL) { return; } WebRtc_FreeBuffer(aecpc->far_pre_buf); WebRtcAec_FreeAec(aecpc->aec); WebRtcAec_FreeResampler(aecpc->resampler); delete aecpc; } int32_t WebRtcAec_Init(void* aecInst, int32_t sampFreq, int32_t scSampFreq) { Aec* aecpc = reinterpret_cast(aecInst); aecpc->data_dumper->InitiateNewSetOfRecordings(); AecConfig aecConfig; if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000 && sampFreq != 48000) { return AEC_BAD_PARAMETER_ERROR; } aecpc->sampFreq = sampFreq; if (scSampFreq < 1 || scSampFreq > 96000) { return AEC_BAD_PARAMETER_ERROR; } aecpc->scSampFreq = scSampFreq; // Initialize echo canceller core if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) { return AEC_UNSPECIFIED_ERROR; } if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) { return AEC_UNSPECIFIED_ERROR; } WebRtc_InitBuffer(aecpc->far_pre_buf); WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); // Start overlap. aecpc->initFlag = initCheck; // indicates that initialization has been done if (aecpc->sampFreq == 32000 || aecpc->sampFreq == 48000) { aecpc->splitSampFreq = 16000; } else { aecpc->splitSampFreq = sampFreq; } aecpc->delayCtr = 0; aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq; // Sampling frequency multiplier (SWB is processed as 160 frame size). aecpc->rate_factor = aecpc->splitSampFreq / 8000; aecpc->sum = 0; aecpc->counter = 0; aecpc->checkBuffSize = 1; aecpc->firstVal = 0; // We skip the startup_phase completely (setting to 0) if DA-AEC is enabled, // but not extended_filter mode. aecpc->startup_phase = WebRtcAec_extended_filter_enabled(aecpc->aec) || !WebRtcAec_delay_agnostic_enabled(aecpc->aec); aecpc->bufSizeStart = 0; aecpc->checkBufSizeCtr = 0; aecpc->msInSndCardBuf = 0; aecpc->filtDelay = -1; // -1 indicates an initialized state. aecpc->timeForDelayChange = 0; aecpc->knownDelay = 0; aecpc->lastDelayDiff = 0; aecpc->skewFrCtr = 0; aecpc->resample = kAecFalse; aecpc->highSkewCtr = 0; aecpc->skew = 0; aecpc->farend_started = 0; // Default settings. aecConfig.nlpMode = kAecNlpModerate; aecConfig.skewMode = kAecFalse; aecConfig.metricsMode = kAecFalse; aecConfig.delay_logging = kAecFalse; if (WebRtcAec_set_config(aecpc, aecConfig) == -1) { return AEC_UNSPECIFIED_ERROR; } return 0; } // Returns any error that is caused when buffering the // far-end signal. int32_t WebRtcAec_GetBufferFarendError(void* aecInst, const float* farend, size_t nrOfSamples) { Aec* aecpc = reinterpret_cast(aecInst); if (!farend) return AEC_NULL_POINTER_ERROR; if (aecpc->initFlag != initCheck) return AEC_UNINITIALIZED_ERROR; // number of samples == 160 for SWB input if (nrOfSamples != 80 && nrOfSamples != 160) return AEC_BAD_PARAMETER_ERROR; return 0; } // only buffer L band for farend int32_t WebRtcAec_BufferFarend(void* aecInst, const float* farend, size_t nrOfSamples) { Aec* aecpc = reinterpret_cast(aecInst); size_t newNrOfSamples = nrOfSamples; float new_farend[MAX_RESAMP_LEN]; const float* farend_ptr = farend; // Get any error caused by buffering the farend signal. int32_t error_code = WebRtcAec_GetBufferFarendError(aecInst, farend, nrOfSamples); if (error_code != 0) return error_code; if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { // Resample and get a new number of samples WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, aecpc->skew, new_farend, &newNrOfSamples); farend_ptr = new_farend; } aecpc->farend_started = 1; WebRtcAec_SetSystemDelay(aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + static_cast(newNrOfSamples)); // Write the time-domain data to |far_pre_buf|. WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples); // TODO(minyue): reduce to |PART_LEN| samples for each buffering. while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) { // We have enough data to pass to the FFT, hence read PART_LEN2 samples. { float* ptmp = NULL; float tmp[PART_LEN2]; WebRtc_ReadBuffer(aecpc->far_pre_buf, reinterpret_cast(&ptmp), tmp, PART_LEN2); WebRtcAec_BufferFarendBlock(aecpc->aec, &ptmp[PART_LEN]); } // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing. WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); } return 0; } int32_t WebRtcAec_Process(void* aecInst, const float* const* nearend, size_t num_bands, float* const* out, size_t nrOfSamples, int16_t msInSndCardBuf, int32_t skew) { Aec* aecpc = reinterpret_cast(aecInst); int32_t retVal = 0; if (out == NULL) { return AEC_NULL_POINTER_ERROR; } if (aecpc->initFlag != initCheck) { return AEC_UNINITIALIZED_ERROR; } // number of samples == 160 for SWB input if (nrOfSamples != 80 && nrOfSamples != 160) { return AEC_BAD_PARAMETER_ERROR; } if (msInSndCardBuf < 0) { msInSndCardBuf = 0; retVal = AEC_BAD_PARAMETER_WARNING; } else if (msInSndCardBuf > kMaxTrustedDelayMs) { // The clamping is now done in ProcessExtended/Normal(). retVal = AEC_BAD_PARAMETER_WARNING; } // This returns the value of aec->extended_filter_enabled. if (WebRtcAec_extended_filter_enabled(aecpc->aec)) { ProcessExtended(aecpc, nearend, num_bands, out, nrOfSamples, msInSndCardBuf, skew); } else { retVal = ProcessNormal(aecpc, nearend, num_bands, out, nrOfSamples, msInSndCardBuf, skew); } int far_buf_size_samples = WebRtcAec_system_delay(aecpc->aec); aecpc->data_dumper->DumpRaw("aec_system_delay", 1, &far_buf_size_samples); aecpc->data_dumper->DumpRaw("aec_known_delay", 1, &aecpc->knownDelay); return retVal; } int WebRtcAec_set_config(void* handle, AecConfig config) { Aec* self = reinterpret_cast(handle); if (self->initFlag != initCheck) { return AEC_UNINITIALIZED_ERROR; } if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) { return AEC_BAD_PARAMETER_ERROR; } self->skewMode = config.skewMode; if (config.nlpMode != kAecNlpConservative && config.nlpMode != kAecNlpModerate && config.nlpMode != kAecNlpAggressive) { return AEC_BAD_PARAMETER_ERROR; } if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) { return AEC_BAD_PARAMETER_ERROR; } if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) { return AEC_BAD_PARAMETER_ERROR; } WebRtcAec_SetConfigCore(self->aec, config.nlpMode, config.metricsMode, config.delay_logging); return 0; } int WebRtcAec_get_echo_status(void* handle, int* status) { Aec* self = reinterpret_cast(handle); if (status == NULL) { return AEC_NULL_POINTER_ERROR; } if (self->initFlag != initCheck) { return AEC_UNINITIALIZED_ERROR; } *status = WebRtcAec_echo_state(self->aec); return 0; } int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics) { const float kUpWeight = 0.7f; float dtmp; int stmp; Aec* self = reinterpret_cast(handle); Stats erl; Stats erle; Stats a_nlp; if (handle == NULL) { return -1; } if (metrics == NULL) { return AEC_NULL_POINTER_ERROR; } if (self->initFlag != initCheck) { return AEC_UNINITIALIZED_ERROR; } WebRtcAec_GetEchoStats(self->aec, &erl, &erle, &a_nlp, &metrics->divergent_filter_fraction); // ERL metrics->erl.instant = static_cast(erl.instant); if ((erl.himean > kOffsetLevel) && (erl.average > kOffsetLevel)) { // Use a mix between regular average and upper part average. dtmp = kUpWeight * erl.himean + (1 - kUpWeight) * erl.average; metrics->erl.average = static_cast(dtmp); } else { metrics->erl.average = kOffsetLevel; } metrics->erl.max = static_cast(erl.max); if (erl.min < (kOffsetLevel * (-1))) { metrics->erl.min = static_cast(erl.min); } else { metrics->erl.min = kOffsetLevel; } // ERLE metrics->erle.instant = static_cast(erle.instant); if ((erle.himean > kOffsetLevel) && (erle.average > kOffsetLevel)) { // Use a mix between regular average and upper part average. dtmp = kUpWeight * erle.himean + (1 - kUpWeight) * erle.average; metrics->erle.average = static_cast(dtmp); } else { metrics->erle.average = kOffsetLevel; } metrics->erle.max = static_cast(erle.max); if (erle.min < (kOffsetLevel * (-1))) { metrics->erle.min = static_cast(erle.min); } else { metrics->erle.min = kOffsetLevel; } // RERL if ((metrics->erl.average > kOffsetLevel) && (metrics->erle.average > kOffsetLevel)) { stmp = metrics->erl.average + metrics->erle.average; } else { stmp = kOffsetLevel; } metrics->rerl.average = stmp; // No other statistics needed, but returned for completeness. metrics->rerl.instant = stmp; metrics->rerl.max = stmp; metrics->rerl.min = stmp; // A_NLP metrics->aNlp.instant = static_cast(a_nlp.instant); if ((a_nlp.himean > kOffsetLevel) && (a_nlp.average > kOffsetLevel)) { // Use a mix between regular average and upper part average. dtmp = kUpWeight * a_nlp.himean + (1 - kUpWeight) * a_nlp.average; metrics->aNlp.average = static_cast(dtmp); } else { metrics->aNlp.average = kOffsetLevel; } metrics->aNlp.max = static_cast(a_nlp.max); if (a_nlp.min < (kOffsetLevel * (-1))) { metrics->aNlp.min = static_cast(a_nlp.min); } else { metrics->aNlp.min = kOffsetLevel; } return 0; } int WebRtcAec_GetDelayMetrics(void* handle, int* median, int* std, float* fraction_poor_delays) { Aec* self = reinterpret_cast(handle); if (median == NULL) { return AEC_NULL_POINTER_ERROR; } if (std == NULL) { return AEC_NULL_POINTER_ERROR; } if (self->initFlag != initCheck) { return AEC_UNINITIALIZED_ERROR; } if (WebRtcAec_GetDelayMetricsCore(self->aec, median, std, fraction_poor_delays) == -1) { // Logging disabled. return AEC_UNSUPPORTED_FUNCTION_ERROR; } return 0; } AecCore* WebRtcAec_aec_core(void* handle) { if (!handle) { return NULL; } return reinterpret_cast(handle)->aec; } static int ProcessNormal(Aec* aecpc, const float* const* nearend, size_t num_bands, float* const* out, size_t nrOfSamples, int16_t msInSndCardBuf, int32_t skew) { int retVal = 0; size_t i; size_t nBlocks10ms; // Limit resampling to doubling/halving of signal const float minSkewEst = -0.5f; const float maxSkewEst = 1.0f; msInSndCardBuf = msInSndCardBuf > kMaxTrustedDelayMs ? kMaxTrustedDelayMs : msInSndCardBuf; // TODO(andrew): we need to investigate if this +10 is really wanted. msInSndCardBuf += 10; aecpc->msInSndCardBuf = msInSndCardBuf; if (aecpc->skewMode == kAecTrue) { if (aecpc->skewFrCtr < 25) { aecpc->skewFrCtr++; } else { retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew); if (retVal == -1) { aecpc->skew = 0; retVal = AEC_BAD_PARAMETER_WARNING; } aecpc->skew /= aecpc->sampFactor * nrOfSamples; if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) { aecpc->resample = kAecFalse; } else { aecpc->resample = kAecTrue; } if (aecpc->skew < minSkewEst) { aecpc->skew = minSkewEst; } else if (aecpc->skew > maxSkewEst) { aecpc->skew = maxSkewEst; } aecpc->data_dumper->DumpRaw("aec_skew", 1, &aecpc->skew); } } nBlocks10ms = nrOfSamples / (FRAME_LEN * aecpc->rate_factor); if (aecpc->startup_phase) { for (i = 0; i < num_bands; ++i) { // Only needed if they don't already point to the same place. if (nearend[i] != out[i]) { memcpy(out[i], nearend[i], sizeof(nearend[i][0]) * nrOfSamples); } } // The AEC is in the start up mode // AEC is disabled until the system delay is OK // Mechanism to ensure that the system delay is reasonably stable. if (aecpc->checkBuffSize) { aecpc->checkBufSizeCtr++; // Before we fill up the far-end buffer we require the system delay // to be stable (+/-8 ms) compared to the first value. This // comparison is made during the following 6 consecutive 10 ms // blocks. If it seems to be stable then we start to fill up the // far-end buffer. if (aecpc->counter == 0) { aecpc->firstVal = aecpc->msInSndCardBuf; aecpc->sum = 0; } if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) < WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) { aecpc->sum += aecpc->msInSndCardBuf; aecpc->counter++; } else { aecpc->counter = 0; } if (aecpc->counter * nBlocks10ms >= 6) { // The far-end buffer size is determined in partitions of // PART_LEN samples. Use 75% of the average value of the system // delay as buffer size to start with. aecpc->bufSizeStart = WEBRTC_SPL_MIN((3 * aecpc->sum * aecpc->rate_factor * 8) / (4 * aecpc->counter * PART_LEN), kMaxBufSizeStart); // Buffer size has now been determined. aecpc->checkBuffSize = 0; } if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) { // For really bad systems, don't disable the echo canceller for // more than 0.5 sec. aecpc->bufSizeStart = WEBRTC_SPL_MIN( (aecpc->msInSndCardBuf * aecpc->rate_factor * 3) / 40, kMaxBufSizeStart); aecpc->checkBuffSize = 0; } } // If |checkBuffSize| changed in the if-statement above. if (!aecpc->checkBuffSize) { // The system delay is now reasonably stable (or has been unstable // for too long). When the far-end buffer is filled with // approximately the same amount of data as reported by the system // we end the startup phase. int overhead_elements = WebRtcAec_system_delay(aecpc->aec) / PART_LEN - aecpc->bufSizeStart; if (overhead_elements == 0) { // Enable the AEC aecpc->startup_phase = 0; } else if (overhead_elements > 0) { // TODO(bjornv): Do we need a check on how much we actually // moved the read pointer? It should always be possible to move // the pointer |overhead_elements| since we have only added data // to the buffer and no delay compensation nor AEC processing // has been done. WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aecpc->aec, overhead_elements); // Enable the AEC aecpc->startup_phase = 0; } } } else { // AEC is enabled. EstBufDelayNormal(aecpc); // Call the AEC. // TODO(bjornv): Re-structure such that we don't have to pass // |aecpc->knownDelay| as input. Change name to something like // |system_buffer_diff|. WebRtcAec_ProcessFrames(aecpc->aec, nearend, num_bands, nrOfSamples, aecpc->knownDelay, out); } return retVal; } static void ProcessExtended(Aec* self, const float* const* near, size_t num_bands, float* const* out, size_t num_samples, int16_t reported_delay_ms, int32_t skew) { size_t i; const int delay_diff_offset = kDelayDiffOffsetSamples; RTC_DCHECK(num_samples == 80 || num_samples == 160); #if defined(WEBRTC_UNTRUSTED_DELAY) reported_delay_ms = kFixedDelayMs; #else // This is the usual mode where we trust the reported system delay values. // Due to the longer filter, we no longer add 10 ms to the reported delay // to reduce chance of non-causality. Instead we apply a minimum here to avoid // issues with the read pointer jumping around needlessly. reported_delay_ms = reported_delay_ms < kMinTrustedDelayMs ? kMinTrustedDelayMs : reported_delay_ms; // If the reported delay appears to be bogus, we attempt to recover by using // the measured fixed delay values. We use >= here because higher layers // may already clamp to this maximum value, and we would otherwise not // detect it here. reported_delay_ms = reported_delay_ms >= kMaxTrustedDelayMs ? kFixedDelayMs : reported_delay_ms; #endif self->msInSndCardBuf = reported_delay_ms; if (!self->farend_started) { for (i = 0; i < num_bands; ++i) { // Only needed if they don't already point to the same place. if (near[i] != out[i]) { memcpy(out[i], near[i], sizeof(near[i][0]) * num_samples); } } return; } if (self->startup_phase) { // In the extended mode, there isn't a startup "phase", just a special // action on the first frame. In the trusted delay case, we'll take the // current reported delay, unless it's less then our conservative // measurement. int startup_size_ms = reported_delay_ms < kFixedDelayMs ? kFixedDelayMs : reported_delay_ms; #if defined(WEBRTC_ANDROID) int target_delay = startup_size_ms * self->rate_factor * 8; #else // To avoid putting the AEC in a non-causal state we're being slightly // conservative and scale by 2. On Android we use a fixed delay and // therefore there is no need to scale the target_delay. int target_delay = startup_size_ms * self->rate_factor * 8 / 2; #endif int overhead_elements = (WebRtcAec_system_delay(self->aec) - target_delay) / PART_LEN; WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(self->aec, overhead_elements); self->startup_phase = 0; } EstBufDelayExtended(self); { // |delay_diff_offset| gives us the option to manually rewind the delay on // very low delay platforms which can't be expressed purely through // |reported_delay_ms|. const int adjusted_known_delay = WEBRTC_SPL_MAX(0, self->knownDelay + delay_diff_offset); WebRtcAec_ProcessFrames(self->aec, near, num_bands, num_samples, adjusted_known_delay, out); } } static void EstBufDelayNormal(Aec* aecpc) { int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->rate_factor; int current_delay = nSampSndCard - WebRtcAec_system_delay(aecpc->aec); int delay_difference = 0; // Before we proceed with the delay estimate filtering we: // 1) Compensate for the frame that will be read. // 2) Compensate for drift resampling. // 3) Compensate for non-causality if needed, since the estimated delay can't // be negative. // 1) Compensating for the frame(s) that will be read/processed. current_delay += FRAME_LEN * aecpc->rate_factor; // 2) Account for resampling frame delay. if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { current_delay -= kResamplingDelay; } // 3) Compensate for non-causality, if needed, by flushing one block. if (current_delay < PART_LEN) { current_delay += WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aecpc->aec, 1) * PART_LEN; } // We use -1 to signal an initialized state in the "extended" implementation; // compensate for that. aecpc->filtDelay = aecpc->filtDelay < 0 ? 0 : aecpc->filtDelay; aecpc->filtDelay = WEBRTC_SPL_MAX(0, static_cast(0.8 * aecpc->filtDelay + 0.2 * current_delay)); delay_difference = aecpc->filtDelay - aecpc->knownDelay; if (delay_difference > 224) { if (aecpc->lastDelayDiff < 96) { aecpc->timeForDelayChange = 0; } else { aecpc->timeForDelayChange++; } } else if (delay_difference < 96 && aecpc->knownDelay > 0) { if (aecpc->lastDelayDiff > 224) { aecpc->timeForDelayChange = 0; } else { aecpc->timeForDelayChange++; } } else { aecpc->timeForDelayChange = 0; } aecpc->lastDelayDiff = delay_difference; if (aecpc->timeForDelayChange > 25) { aecpc->knownDelay = WEBRTC_SPL_MAX((int)aecpc->filtDelay - 160, 0); } } static void EstBufDelayExtended(Aec* self) { int reported_delay = self->msInSndCardBuf * sampMsNb * self->rate_factor; int current_delay = reported_delay - WebRtcAec_system_delay(self->aec); int delay_difference = 0; // Before we proceed with the delay estimate filtering we: // 1) Compensate for the frame that will be read. // 2) Compensate for drift resampling. // 3) Compensate for non-causality if needed, since the estimated delay can't // be negative. // 1) Compensating for the frame(s) that will be read/processed. current_delay += FRAME_LEN * self->rate_factor; // 2) Account for resampling frame delay. if (self->skewMode == kAecTrue && self->resample == kAecTrue) { current_delay -= kResamplingDelay; } // 3) Compensate for non-causality, if needed, by flushing two blocks. if (current_delay < PART_LEN) { current_delay += WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(self->aec, 2) * PART_LEN; } if (self->filtDelay == -1) { self->filtDelay = WEBRTC_SPL_MAX(0, 0.5 * current_delay); } else { self->filtDelay = WEBRTC_SPL_MAX( 0, static_cast(0.95 * self->filtDelay + 0.05 * current_delay)); } delay_difference = self->filtDelay - self->knownDelay; if (delay_difference > 384) { if (self->lastDelayDiff < 128) { self->timeForDelayChange = 0; } else { self->timeForDelayChange++; } } else if (delay_difference < 128 && self->knownDelay > 0) { if (self->lastDelayDiff > 384) { self->timeForDelayChange = 0; } else { self->timeForDelayChange++; } } else { self->timeForDelayChange = 0; } self->lastDelayDiff = delay_difference; if (self->timeForDelayChange > 25) { self->knownDelay = WEBRTC_SPL_MAX((int)self->filtDelay - 256, 0); } } } // namespace webrtc