/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #if defined(__arm__) || defined(_M_ARM) || defined(__aarch64__) #include "common_audio/signal_processing/include/signal_processing_library.h" #include // NEON intrinsics version of WebRtcSpl_DownsampleFast() // for ARM 32-bit/64-bit platforms. int WebRtcSpl_DownsampleFastNeon(const int16_t* data_in, size_t data_in_length, int16_t* data_out, size_t data_out_length, const int16_t* __restrict coefficients, size_t coefficients_length, int factor, size_t delay) { size_t i = 0; size_t j = 0; int32_t out_s32 = 0; size_t endpos = delay + factor * (data_out_length - 1) + 1; size_t res = data_out_length & 0x7; size_t endpos1 = endpos - factor * res; // Return error if any of the running conditions doesn't meet. if (data_out_length == 0 || coefficients_length == 0 || data_in_length < endpos) { return -1; } // First part, unroll the loop 8 times, with 3 subcases // (factor == 2, 4, others). switch (factor) { case 2: { for (i = delay; i < endpos1; i += 16) { // Round value, 0.5 in Q12. int32x4_t out32x4_0 = vdupq_n_s32(2048); int32x4_t out32x4_1 = vdupq_n_s32(2048); #if defined(WEBRTC_ARCH_ARM64) // Unroll the loop 2 times. for (j = 0; j < coefficients_length - 1; j += 2) { int32x2_t coeff32 = vld1_dup_s32((int32_t*)&coefficients[j]); int16x4_t coeff16x4 = vreinterpret_s16_s32(coeff32); int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j - 1]); // Mul and accumulate low 64-bit data. int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]); int16x4_t in16x4_1 = vget_low_s16(in16x8x2.val[1]); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 1); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_1, coeff16x4, 0); // Mul and accumulate high 64-bit data. // TODO: vget_high_s16 need extra cost on ARM64. This could be // replaced by vmlal_high_lane_s16. But for the interface of // vmlal_high_lane_s16, there is a bug in gcc 4.9. // This issue need to be tracked in the future. int16x4_t in16x4_2 = vget_high_s16(in16x8x2.val[0]); int16x4_t in16x4_3 = vget_high_s16(in16x8x2.val[1]); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_2, coeff16x4, 1); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_3, coeff16x4, 0); } for (; j < coefficients_length; j++) { int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j]); // Mul and accumulate low 64-bit data. int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0); // Mul and accumulate high 64-bit data. // TODO: vget_high_s16 need extra cost on ARM64. This could be // replaced by vmlal_high_lane_s16. But for the interface of // vmlal_high_lane_s16, there is a bug in gcc 4.9. // This issue need to be tracked in the future. int16x4_t in16x4_1 = vget_high_s16(in16x8x2.val[0]); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0); } #else // On ARMv7, the loop unrolling 2 times results in performance // regression. for (j = 0; j < coefficients_length; j++) { int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j]); // Mul and accumulate. int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]); int16x4_t in16x4_1 = vget_high_s16(in16x8x2.val[0]); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0); } #endif // Saturate and store the output. int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12); int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12); vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1)); data_out += 8; } break; } case 4: { for (i = delay; i < endpos1; i += 32) { // Round value, 0.5 in Q12. int32x4_t out32x4_0 = vdupq_n_s32(2048); int32x4_t out32x4_1 = vdupq_n_s32(2048); // Unroll the loop 4 times. for (j = 0; j < coefficients_length - 3; j += 4) { int16x4_t coeff16x4 = vld1_s16(&coefficients[j]); int16x8x4_t in16x8x4 = vld4q_s16(&data_in[i - j - 3]); // Mul and accumulate low 64-bit data. int16x4_t in16x4_0 = vget_low_s16(in16x8x4.val[0]); int16x4_t in16x4_2 = vget_low_s16(in16x8x4.val[1]); int16x4_t in16x4_4 = vget_low_s16(in16x8x4.val[2]); int16x4_t in16x4_6 = vget_low_s16(in16x8x4.val[3]); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 3); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_2, coeff16x4, 2); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_4, coeff16x4, 1); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_6, coeff16x4, 0); // Mul and accumulate high 64-bit data. // TODO: vget_high_s16 need extra cost on ARM64. This could be // replaced by vmlal_high_lane_s16. But for the interface of // vmlal_high_lane_s16, there is a bug in gcc 4.9. // This issue need to be tracked in the future. int16x4_t in16x4_1 = vget_high_s16(in16x8x4.val[0]); int16x4_t in16x4_3 = vget_high_s16(in16x8x4.val[1]); int16x4_t in16x4_5 = vget_high_s16(in16x8x4.val[2]); int16x4_t in16x4_7 = vget_high_s16(in16x8x4.val[3]); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 3); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_3, coeff16x4, 2); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_5, coeff16x4, 1); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_7, coeff16x4, 0); } for (; j < coefficients_length; j++) { int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); int16x8x4_t in16x8x4 = vld4q_s16(&data_in[i - j]); // Mul and accumulate low 64-bit data. int16x4_t in16x4_0 = vget_low_s16(in16x8x4.val[0]); out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0); // Mul and accumulate high 64-bit data. // TODO: vget_high_s16 need extra cost on ARM64. This could be // replaced by vmlal_high_lane_s16. But for the interface of // vmlal_high_lane_s16, there is a bug in gcc 4.9. // This issue need to be tracked in the future. int16x4_t in16x4_1 = vget_high_s16(in16x8x4.val[0]); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0); } // Saturate and store the output. int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12); int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12); vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1)); data_out += 8; } break; } default: { for (i = delay; i < endpos1; i += factor * 8) { // Round value, 0.5 in Q12. int32x4_t out32x4_0 = vdupq_n_s32(2048); int32x4_t out32x4_1 = vdupq_n_s32(2048); for (j = 0; j < coefficients_length; j++) { int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); int16x4_t in16x4_0 = vld1_dup_s16(&data_in[i - j]); in16x4_0 = vld1_lane_s16(&data_in[i + factor - j], in16x4_0, 1); in16x4_0 = vld1_lane_s16(&data_in[i + factor * 2 - j], in16x4_0, 2); in16x4_0 = vld1_lane_s16(&data_in[i + factor * 3 - j], in16x4_0, 3); int16x4_t in16x4_1 = vld1_dup_s16(&data_in[i + factor * 4 - j]); in16x4_1 = vld1_lane_s16(&data_in[i + factor * 5 - j], in16x4_1, 1); in16x4_1 = vld1_lane_s16(&data_in[i + factor * 6 - j], in16x4_1, 2); in16x4_1 = vld1_lane_s16(&data_in[i + factor * 7 - j], in16x4_1, 3); // Mul and accumulate. out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0); out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0); } // Saturate and store the output. int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12); int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12); vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1)); data_out += 8; } break; } } // Second part, do the rest iterations (if any). for (; i < endpos; i += factor) { out_s32 = 2048; // Round value, 0.5 in Q12. for (j = 0; j < coefficients_length; j++) { out_s32 = WebRtc_MulAccumW16(coefficients[j], data_in[i - j], out_s32); } // Saturate and store the output. out_s32 >>= 12; *data_out++ = WebRtcSpl_SatW32ToW16(out_s32); } return 0; } #endif