/* * Copyright 2015 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WEBRTC_BASE_ARRAY_VIEW_H_ #define WEBRTC_BASE_ARRAY_VIEW_H_ #include "webrtc/base/checks.h" #include "webrtc/base/type_traits.h" namespace rtc { // Many functions read from or write to arrays. The obvious way to do this is // to use two arguments, a pointer to the first element and an element count: // // bool Contains17(const int* arr, size_t size) { // for (size_t i = 0; i < size; ++i) { // if (arr[i] == 17) // return true; // } // return false; // } // // This is flexible, since it doesn't matter how the array is stored (C array, // std::vector, rtc::Buffer, ...), but it's error-prone because the caller has // to correctly specify the array length: // // Contains17(arr, arraysize(arr)); // C array // Contains17(&arr[0], arr.size()); // std::vector // Contains17(arr, size); // pointer + size // ... // // It's also kind of messy to have two separate arguments for what is // conceptually a single thing. // // Enter rtc::ArrayView. It contains a T pointer (to an array it doesn't // own) and a count, and supports the basic things you'd expect, such as // indexing and iteration. It allows us to write our function like this: // // bool Contains17(rtc::ArrayView arr) { // for (auto e : arr) { // if (e == 17) // return true; // } // return false; // } // // And even better, because a bunch of things will implicitly convert to // ArrayView, we can call it like this: // // Contains17(arr); // C array // Contains17(arr); // std::vector // Contains17(rtc::ArrayView(arr, size)); // pointer + size // Contains17(nullptr); // nullptr -> empty ArrayView // ... // // One important point is that ArrayView and ArrayView are // different types, which allow and don't allow mutation of the array elements, // respectively. The implicit conversions work just like you'd hope, so that // e.g. vector will convert to either ArrayView or ArrayView, but const vector will convert only to ArrayView. // (ArrayView itself can be the source type in such conversions, so // ArrayView will convert to ArrayView.) // // Note: ArrayView is tiny (just a pointer and a count) and trivially copyable, // so it's probably cheaper to pass it by value than by const reference. template class ArrayView final { public: using value_type = T; using const_iterator = const T*; // Construct an empty ArrayView. ArrayView() : ArrayView(static_cast(nullptr), 0) {} ArrayView(std::nullptr_t) : ArrayView() {} // Construct an ArrayView for a (pointer,size) pair. template ArrayView(U* data, size_t size) : data_(size == 0 ? nullptr : data), size_(size) { CheckInvariant(); } // Construct an ArrayView for an array. template ArrayView(U (&array)[N]) : ArrayView(&array[0], N) {} // Construct an ArrayView for any type U that has a size() method whose // return value converts implicitly to size_t, and a data() method whose // return value converts implicitly to T*. In particular, this means we allow // conversion from ArrayView to ArrayView, but not the other way // around. Other allowed conversions include std::vector to ArrayView // or ArrayView, const std::vector to ArrayView, and // rtc::Buffer to ArrayView (with the same const behavior as // std::vector). template < typename U, typename std::enable_if::value>::type* = nullptr> ArrayView(U& u) : ArrayView(u.data(), u.size()) {} // Indexing, size, and iteration. These allow mutation even if the ArrayView // is const, because the ArrayView doesn't own the array. (To prevent // mutation, use ArrayView.) size_t size() const { return size_; } bool empty() const { return size_ == 0; } T* data() const { return data_; } T& operator[](size_t idx) const { RTC_DCHECK_LT(idx, size_); RTC_DCHECK(data_); // Follows from size_ > idx and the class invariant. return data_[idx]; } T* begin() const { return data_; } T* end() const { return data_ + size_; } const T* cbegin() const { return data_; } const T* cend() const { return data_ + size_; } ArrayView subview(size_t offset, size_t size) const { if (offset >= size_) return ArrayView(); return ArrayView(data_ + offset, std::min(size, size_ - offset)); } ArrayView subview(size_t offset) const { return subview(offset, size_); } // Comparing two ArrayViews compares their (pointer,size) pairs; it does // *not* dereference the pointers. friend bool operator==(const ArrayView& a, const ArrayView& b) { return a.data_ == b.data_ && a.size_ == b.size_; } friend bool operator!=(const ArrayView& a, const ArrayView& b) { return !(a == b); } private: // Invariant: !data_ iff size_ == 0. void CheckInvariant() const { RTC_DCHECK_EQ(!data_, size_ == 0); } T* data_; size_t size_; }; template inline ArrayView MakeArrayView(T* data, size_t size) { return ArrayView(data, size); } } // namespace rtc #endif // WEBRTC_BASE_ARRAY_VIEW_H_