/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/render_signal_analyzer.h" #include #include #include #include #include "api/array_view.h" #include "rtc_base/checks.h" namespace webrtc { namespace { constexpr size_t kCounterThreshold = 5; // Identifies local bands with narrow characteristics. void IdentifySmallNarrowBandRegions( const RenderBuffer& render_buffer, const absl::optional& delay_partitions, std::array* narrow_band_counters) { if (!delay_partitions) { narrow_band_counters->fill(0); return; } rtc::ArrayView X2 = render_buffer.Spectrum(*delay_partitions); RTC_DCHECK_EQ(kFftLengthBy2Plus1, X2.size()); for (size_t k = 1; k < (X2.size() - 1); ++k) { (*narrow_band_counters)[k - 1] = X2[k] > 3 * std::max(X2[k - 1], X2[k + 1]) ? (*narrow_band_counters)[k - 1] + 1 : 0; } } // Identifies whether the signal has a single strong narrow-band component. void IdentifyStrongNarrowBandComponent(const RenderBuffer& render_buffer, int strong_peak_freeze_duration, absl::optional* narrow_peak_band, size_t* narrow_peak_counter) { const auto X2_latest = render_buffer.Spectrum(0); // Identify the spectral peak. const int peak_bin = static_cast( std::max_element(X2_latest.begin(), X2_latest.end()) - X2_latest.begin()); // Compute the level around the peak. float non_peak_power = 0.f; for (int k = std::max(0, peak_bin - 14); k < peak_bin - 4; ++k) { non_peak_power = std::max(X2_latest[k], non_peak_power); } for (int k = peak_bin + 5; k < std::min(peak_bin + 15, static_cast(kFftLengthBy2Plus1)); ++k) { non_peak_power = std::max(X2_latest[k], non_peak_power); } // Assess the render signal strength. const std::vector>& x_latest = render_buffer.Block(0); auto result0 = std::minmax_element(x_latest[0].begin(), x_latest[0].end()); float max_abs = std::max(fabs(*result0.first), fabs(*result0.second)); if (x_latest.size() > 1) { const auto result1 = std::minmax_element(x_latest[1].begin(), x_latest[1].end()); max_abs = std::max(max_abs, static_cast(std::max(fabs(*result1.first), fabs(*result1.second)))); } // Detect whether the spectal peak has as strong narrowband nature. if (peak_bin > 0 && max_abs > 100 && X2_latest[peak_bin] > 100 * non_peak_power) { *narrow_peak_band = peak_bin; *narrow_peak_counter = 0; } else { if (*narrow_peak_band && ++(*narrow_peak_counter) > static_cast(strong_peak_freeze_duration)) { *narrow_peak_band = absl::nullopt; } } } } // namespace RenderSignalAnalyzer::RenderSignalAnalyzer(const EchoCanceller3Config& config) : strong_peak_freeze_duration_(config.filter.main.length_blocks) { narrow_band_counters_.fill(0); } RenderSignalAnalyzer::~RenderSignalAnalyzer() = default; void RenderSignalAnalyzer::Update( const RenderBuffer& render_buffer, const absl::optional& delay_partitions) { // Identify bands of narrow nature. IdentifySmallNarrowBandRegions(render_buffer, delay_partitions, &narrow_band_counters_); // Identify the presence of a strong narrow band. IdentifyStrongNarrowBandComponent(render_buffer, strong_peak_freeze_duration_, &narrow_peak_band_, &narrow_peak_counter_); } void RenderSignalAnalyzer::MaskRegionsAroundNarrowBands( std::array* v) const { RTC_DCHECK(v); // Set v to zero around narrow band signal regions. if (narrow_band_counters_[0] > kCounterThreshold) { (*v)[1] = (*v)[0] = 0.f; } for (size_t k = 2; k < kFftLengthBy2 - 1; ++k) { if (narrow_band_counters_[k - 1] > kCounterThreshold) { (*v)[k - 2] = (*v)[k - 1] = (*v)[k] = (*v)[k + 1] = (*v)[k + 2] = 0.f; } } if (narrow_band_counters_[kFftLengthBy2 - 2] > kCounterThreshold) { (*v)[kFftLengthBy2] = (*v)[kFftLengthBy2 - 1] = 0.f; } } } // namespace webrtc