/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/reverb_frequency_response.h" #include #include #include #include #include "api/array_view.h" #include "modules/audio_processing/aec3/aec3_common.h" #include "rtc_base/checks.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { bool EnableSmoothUpdatesTailFreqResp() { return !field_trial::IsEnabled( "WebRTC-Aec3SmoothUpdatesTailFreqRespKillSwitch"); } // Computes the ratio of the energies between the direct path and the tail. The // energy is computed in the power spectrum domain discarding the DC // contributions. float AverageDecayWithinFilter( rtc::ArrayView freq_resp_direct_path, rtc::ArrayView freq_resp_tail) { // Skipping the DC for the ratio computation constexpr size_t kSkipBins = 1; RTC_CHECK_EQ(freq_resp_direct_path.size(), freq_resp_tail.size()); float direct_path_energy = std::accumulate(freq_resp_direct_path.begin() + kSkipBins, freq_resp_direct_path.end(), 0.f); if (direct_path_energy == 0.f) { return 0.f; } float tail_energy = std::accumulate(freq_resp_tail.begin() + kSkipBins, freq_resp_tail.end(), 0.f); return tail_energy / direct_path_energy; } } // namespace ReverbFrequencyResponse::ReverbFrequencyResponse() : enable_smooth_tail_response_updates_(EnableSmoothUpdatesTailFreqResp()) { tail_response_.fill(0.f); } ReverbFrequencyResponse::~ReverbFrequencyResponse() = default; void ReverbFrequencyResponse::Update( const std::vector>& frequency_response, int filter_delay_blocks, const absl::optional& linear_filter_quality, bool stationary_block) { if (!enable_smooth_tail_response_updates_) { Update(frequency_response, filter_delay_blocks, 0.5f); return; } if (stationary_block || !linear_filter_quality) { return; } Update(frequency_response, filter_delay_blocks, *linear_filter_quality); } void ReverbFrequencyResponse::Update( const std::vector>& frequency_response, int filter_delay_blocks, float linear_filter_quality) { rtc::ArrayView freq_resp_tail( frequency_response[frequency_response.size() - 1]); rtc::ArrayView freq_resp_direct_path( frequency_response[filter_delay_blocks]); float average_decay = AverageDecayWithinFilter(freq_resp_direct_path, freq_resp_tail); const float smoothing = 0.2f * linear_filter_quality; average_decay_ += smoothing * (average_decay - average_decay_); for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { tail_response_[k] = freq_resp_direct_path[k] * average_decay_; } for (size_t k = 1; k < kFftLengthBy2; ++k) { const float avg_neighbour = 0.5f * (tail_response_[k - 1] + tail_response_[k + 1]); tail_response_[k] = std::max(tail_response_[k], avg_neighbour); } } } // namespace webrtc