/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef MODULES_AUDIO_PROCESSING_AGC2_INTERPOLATED_GAIN_CURVE_H_ #define MODULES_AUDIO_PROCESSING_AGC2_INTERPOLATED_GAIN_CURVE_H_ #include #include #include "modules/audio_processing/agc2/agc2_common.h" #include "rtc_base/constructormagic.h" #include "rtc_base/gtest_prod_util.h" #include "system_wrappers/include/metrics.h" namespace webrtc { class ApmDataDumper; constexpr float kInputLevelScalingFactor = 32768.0f; // Defined as DbfsToLinear(kLimiterMaxInputLevelDbFs) constexpr float kMaxInputLevelLinear = static_cast(36766.300710566735); // Interpolated gain curve using under-approximation to avoid saturation. // // The goal of this class is allowing fast look ups to get an accurate // estimates of the gain to apply given an estimated input level. class InterpolatedGainCurve { public: enum class GainCurveRegion { kIdentity = 0, kKnee = 1, kLimiter = 2, kSaturation = 3 }; struct Stats { // Region in which the output level equals the input one. size_t look_ups_identity_region = 0; // Smoothing between the identity and the limiter regions. size_t look_ups_knee_region = 0; // Limiter region in which the output and input levels are linearly related. size_t look_ups_limiter_region = 0; // Region in which saturation may occur since the input level is beyond the // maximum expected by the limiter. size_t look_ups_saturation_region = 0; // True if stats have been populated. bool available = false; // The current region, and for how many frames the level has been // in that region. GainCurveRegion region = GainCurveRegion::kIdentity; int64_t region_duration_frames = 0; }; InterpolatedGainCurve(ApmDataDumper* apm_data_dumper, std::string histogram_name_prefix); ~InterpolatedGainCurve(); Stats get_stats() const { return stats_; } // Given a non-negative input level (linear scale), a scalar factor to apply // to a sub-frame is returned. // Levels above kLimiterMaxInputLevelDbFs will be reduced to 0 dBFS // after applying this gain float LookUpGainToApply(float input_level) const; private: // For comparing 'approximation_params_*_' with ones computed by // ComputeInterpolatedGainCurve. FRIEND_TEST_ALL_PREFIXES(AutomaticGainController2InterpolatedGainCurve, CheckApproximationParams); struct RegionLogger { metrics::Histogram* identity_histogram; metrics::Histogram* knee_histogram; metrics::Histogram* limiter_histogram; metrics::Histogram* saturation_histogram; RegionLogger(std::string identity_histogram_name, std::string knee_histogram_name, std::string limiter_histogram_name, std::string saturation_histogram_name); ~RegionLogger(); void LogRegionStats(const InterpolatedGainCurve::Stats& stats) const; } region_logger_; void UpdateStats(float input_level) const; ApmDataDumper* const apm_data_dumper_; static constexpr std::array approximation_params_x_ = { {30057.296875, 30148.986328125, 30240.67578125, 30424.052734375, 30607.4296875, 30790.806640625, 30974.18359375, 31157.560546875, 31340.939453125, 31524.31640625, 31707.693359375, 31891.0703125, 32074.447265625, 32257.82421875, 32441.201171875, 32624.580078125, 32807.95703125, 32991.33203125, 33174.7109375, 33358.08984375, 33541.46484375, 33724.84375, 33819.53515625, 34009.5390625, 34200.05859375, 34389.81640625, 34674.48828125, 35054.375, 35434.86328125, 35814.81640625, 36195.16796875, 36575.03125}}; static constexpr std::array approximation_params_m_ = { {-3.515235675877192989e-07, -1.050251626111275982e-06, -2.085213736791047268e-06, -3.443004743530764244e-06, -4.773849468620028347e-06, -6.077375928725814447e-06, -7.353257842623861507e-06, -8.601219633419532329e-06, -9.821013009059242904e-06, -1.101243378798244521e-05, -1.217532644659513608e-05, -1.330956911260727793e-05, -1.441507538402220234e-05, -1.549179251014720649e-05, -1.653970684856176376e-05, -1.755882840370759368e-05, -1.854918446042574942e-05, -1.951086778717581183e-05, -2.044398024736437947e-05, -2.1348627342376858e-05, -2.222496914328075945e-05, -2.265374678245279938e-05, -2.242570917587727308e-05, -2.220122041762806475e-05, -2.19802095671184361e-05, -2.176260204578284174e-05, -2.133731686626560986e-05, -2.092481918225530535e-05, -2.052459603874012828e-05, -2.013615448959171772e-05, -1.975903069251216948e-05, -1.939277899509761482e-05}}; static constexpr std::array approximation_params_q_ = { {1.010565876960754395, 1.031631827354431152, 1.062929749488830566, 1.104239225387573242, 1.144973039627075195, 1.185109615325927734, 1.224629044532775879, 1.263512492179870605, 1.301741957664489746, 1.339300632476806641, 1.376173257827758789, 1.412345528602600098, 1.447803974151611328, 1.482536554336547852, 1.516532182693481445, 1.549780607223510742, 1.582272171974182129, 1.613999366760253906, 1.644955039024353027, 1.675132393836975098, 1.704526185989379883, 1.718986630439758301, 1.711274504661560059, 1.703639745712280273, 1.696081161499023438, 1.688597679138183594, 1.673851132392883301, 1.659391283988952637, 1.645209431648254395, 1.631297469139099121, 1.617647409439086914, 1.604251742362976074}}; // Stats. mutable Stats stats_; RTC_DISALLOW_COPY_AND_ASSIGN(InterpolatedGainCurve); }; } // namespace webrtc #endif // MODULES_AUDIO_PROCESSING_AGC2_INTERPOLATED_GAIN_CURVE_H_