/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/utility/delay_estimator.h" #include #include #include #include "rtc_base/checks.h" // Number of right shifts for scaling is linearly depending on number of bits in // the far-end binary spectrum. static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum. static const int kShiftsLinearSlope = 3; static const int32_t kProbabilityOffset = 1024; // 2 in Q9. static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9. static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9. // Robust validation settings static const float kHistogramMax = 3000.f; static const float kLastHistogramMax = 250.f; static const float kMinHistogramThreshold = 1.5f; static const int kMinRequiredHits = 10; static const int kMaxHitsWhenPossiblyNonCausal = 10; static const int kMaxHitsWhenPossiblyCausal = 1000; static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0. static const float kFractionSlope = 0.05f; static const float kMinFractionWhenPossiblyCausal = 0.5f; static const float kMinFractionWhenPossiblyNonCausal = 0.25f; // Counts and returns number of bits of a 32-bit word. static int BitCount(uint32_t u32) { uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) - ((u32 >> 2) & 011111111111); tmp = ((tmp + (tmp >> 3)) & 030707070707); tmp = (tmp + (tmp >> 6)); tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077; return ((int)tmp); } // Compares the |binary_vector| with all rows of the |binary_matrix| and counts // per row the number of times they have the same value. // // Inputs: // - binary_vector : binary "vector" stored in a long // - binary_matrix : binary "matrix" stored as a vector of long // - matrix_size : size of binary "matrix" // // Output: // - bit_counts : "Vector" stored as a long, containing for each // row the number of times the matrix row and the // input vector have the same value // static void BitCountComparison(uint32_t binary_vector, const uint32_t* binary_matrix, int matrix_size, int32_t* bit_counts) { int n = 0; // Compare |binary_vector| with all rows of the |binary_matrix| for (; n < matrix_size; n++) { bit_counts[n] = (int32_t)BitCount(binary_vector ^ binary_matrix[n]); } } // Collects necessary statistics for the HistogramBasedValidation(). This // function has to be called prior to calling HistogramBasedValidation(). The // statistics updated and used by the HistogramBasedValidation() are: // 1. the number of |candidate_hits|, which states for how long we have had the // same |candidate_delay| // 2. the |histogram| of candidate delays over time. This histogram is // weighted with respect to a reliability measure and time-varying to cope // with possible delay shifts. // For further description see commented code. // // Inputs: // - candidate_delay : The delay to validate. // - valley_depth_q14 : The cost function has a valley/minimum at the // |candidate_delay| location. |valley_depth_q14| is the // cost function difference between the minimum and // maximum locations. The value is in the Q14 domain. // - valley_level_q14 : Is the cost function value at the minimum, in Q14. static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self, int candidate_delay, int32_t valley_depth_q14, int32_t valley_level_q14) { const float valley_depth = valley_depth_q14 * kQ14Scaling; float decrease_in_last_set = valley_depth; const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ? kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal; int i = 0; RTC_DCHECK_EQ(self->history_size, self->farend->history_size); // Reset |candidate_hits| if we have a new candidate. if (candidate_delay != self->last_candidate_delay) { self->candidate_hits = 0; self->last_candidate_delay = candidate_delay; } self->candidate_hits++; // The |histogram| is updated differently across the bins. // 1. The |candidate_delay| histogram bin is increased with the // |valley_depth|, which is a simple measure of how reliable the // |candidate_delay| is. The histogram is not increased above // |kHistogramMax|. self->histogram[candidate_delay] += valley_depth; if (self->histogram[candidate_delay] > kHistogramMax) { self->histogram[candidate_delay] = kHistogramMax; } // 2. The histogram bins in the neighborhood of |candidate_delay| are // unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}. // 3. The histogram bins in the neighborhood of |last_delay| are decreased // with |decrease_in_last_set|. This value equals the difference between // the cost function values at the locations |candidate_delay| and // |last_delay| until we reach |max_hits_for_slow_change| consecutive hits // at the |candidate_delay|. If we exceed this amount of hits the // |candidate_delay| is a "potential" candidate and we start decreasing // these histogram bins more rapidly with |valley_depth|. if (self->candidate_hits < max_hits_for_slow_change) { decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] - valley_level_q14) * kQ14Scaling; } // 4. All other bins are decreased with |valley_depth|. // TODO(bjornv): Investigate how to make this loop more efficient. Split up // the loop? Remove parts that doesn't add too much. for (i = 0; i < self->history_size; ++i) { int is_in_last_set = (i >= self->last_delay - 2) && (i <= self->last_delay + 1) && (i != candidate_delay); int is_in_candidate_set = (i >= candidate_delay - 2) && (i <= candidate_delay + 1); self->histogram[i] -= decrease_in_last_set * is_in_last_set + valley_depth * (!is_in_last_set && !is_in_candidate_set); // 5. No histogram bin can go below 0. if (self->histogram[i] < 0) { self->histogram[i] = 0; } } } // Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(), // based on a mix of counting concurring hits with a modified histogram // of recent delay estimates. In brief a candidate is valid (returns 1) if it // is the most likely according to the histogram. There are a couple of // exceptions that are worth mentioning: // 1. If the |candidate_delay| < |last_delay| it can be that we are in a // non-causal state, breaking a possible echo control algorithm. Hence, we // open up for a quicker change by allowing the change even if the // |candidate_delay| is not the most likely one according to the histogram. // 2. There's a minimum number of hits (kMinRequiredHits) and the histogram // value has to reached a minimum (kMinHistogramThreshold) to be valid. // 3. The action is also depending on the filter length used for echo control. // If the delay difference is larger than what the filter can capture, we // also move quicker towards a change. // For further description see commented code. // // Input: // - candidate_delay : The delay to validate. // // Return value: // - is_histogram_valid : 1 - The |candidate_delay| is valid. // 0 - Otherwise. static int HistogramBasedValidation(const BinaryDelayEstimator* self, int candidate_delay) { float fraction = 1.f; float histogram_threshold = self->histogram[self->compare_delay]; const int delay_difference = candidate_delay - self->last_delay; int is_histogram_valid = 0; // The histogram based validation of |candidate_delay| is done by comparing // the |histogram| at bin |candidate_delay| with a |histogram_threshold|. // This |histogram_threshold| equals a |fraction| of the |histogram| at bin // |last_delay|. The |fraction| is a piecewise linear function of the // |delay_difference| between the |candidate_delay| and the |last_delay| // allowing for a quicker move if // i) a potential echo control filter can not handle these large differences. // ii) keeping |last_delay| instead of updating to |candidate_delay| could // force an echo control into a non-causal state. // We further require the histogram to have reached a minimum value of // |kMinHistogramThreshold|. In addition, we also require the number of // |candidate_hits| to be more than |kMinRequiredHits| to remove spurious // values. // Calculate a comparison histogram value (|histogram_threshold|) that is // depending on the distance between the |candidate_delay| and |last_delay|. // TODO(bjornv): How much can we gain by turning the fraction calculation // into tables? if (delay_difference > self->allowed_offset) { fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset); fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction : kMinFractionWhenPossiblyCausal); } else if (delay_difference < 0) { fraction = kMinFractionWhenPossiblyNonCausal - kFractionSlope * delay_difference; fraction = (fraction > 1.f ? 1.f : fraction); } histogram_threshold *= fraction; histogram_threshold = (histogram_threshold > kMinHistogramThreshold ? histogram_threshold : kMinHistogramThreshold); is_histogram_valid = (self->histogram[candidate_delay] >= histogram_threshold) && (self->candidate_hits > kMinRequiredHits); return is_histogram_valid; } // Performs a robust validation of the |candidate_delay| estimated in // WebRtc_ProcessBinarySpectrum(). The algorithm takes the // |is_instantaneous_valid| and the |is_histogram_valid| and combines them // into a robust validation. The HistogramBasedValidation() has to be called // prior to this call. // For further description on how the combination is done, see commented code. // // Inputs: // - candidate_delay : The delay to validate. // - is_instantaneous_valid : The instantaneous validation performed in // WebRtc_ProcessBinarySpectrum(). // - is_histogram_valid : The histogram based validation. // // Return value: // - is_robust : 1 - The candidate_delay is valid according to a // combination of the two inputs. // : 0 - Otherwise. static int RobustValidation(const BinaryDelayEstimator* self, int candidate_delay, int is_instantaneous_valid, int is_histogram_valid) { int is_robust = 0; // The final robust validation is based on the two algorithms; 1) the // |is_instantaneous_valid| and 2) the histogram based with result stored in // |is_histogram_valid|. // i) Before we actually have a valid estimate (|last_delay| == -2), we say // a candidate is valid if either algorithm states so // (|is_instantaneous_valid| OR |is_histogram_valid|). is_robust = (self->last_delay < 0) && (is_instantaneous_valid || is_histogram_valid); // ii) Otherwise, we need both algorithms to be certain // (|is_instantaneous_valid| AND |is_histogram_valid|) is_robust |= is_instantaneous_valid && is_histogram_valid; // iii) With one exception, i.e., the histogram based algorithm can overrule // the instantaneous one if |is_histogram_valid| = 1 and the histogram // is significantly strong. is_robust |= is_histogram_valid && (self->histogram[candidate_delay] > self->last_delay_histogram); return is_robust; } void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { if (self == NULL) { return; } free(self->binary_far_history); self->binary_far_history = NULL; free(self->far_bit_counts); self->far_bit_counts = NULL; free(self); } BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend( int history_size) { BinaryDelayEstimatorFarend* self = NULL; if (history_size > 1) { // Sanity conditions fulfilled. self = static_cast( malloc(sizeof(BinaryDelayEstimatorFarend))); } if (self == NULL) { return NULL; } self->history_size = 0; self->binary_far_history = NULL; self->far_bit_counts = NULL; if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) { WebRtc_FreeBinaryDelayEstimatorFarend(self); self = NULL; } return self; } int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self, int history_size) { RTC_DCHECK(self); // (Re-)Allocate memory for history buffers. self->binary_far_history = static_cast( realloc(self->binary_far_history, history_size * sizeof(*self->binary_far_history))); self->far_bit_counts = static_cast(realloc( self->far_bit_counts, history_size * sizeof(*self->far_bit_counts))); if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) { history_size = 0; } // Fill with zeros if we have expanded the buffers. if (history_size > self->history_size) { int size_diff = history_size - self->history_size; memset(&self->binary_far_history[self->history_size], 0, sizeof(*self->binary_far_history) * size_diff); memset(&self->far_bit_counts[self->history_size], 0, sizeof(*self->far_bit_counts) * size_diff); } self->history_size = history_size; return self->history_size; } void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { RTC_DCHECK(self); memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size); memset(self->far_bit_counts, 0, sizeof(int) * self->history_size); } void WebRtc_SoftResetBinaryDelayEstimatorFarend( BinaryDelayEstimatorFarend* self, int delay_shift) { int abs_shift = abs(delay_shift); int shift_size = 0; int dest_index = 0; int src_index = 0; int padding_index = 0; RTC_DCHECK(self); shift_size = self->history_size - abs_shift; RTC_DCHECK_GT(shift_size, 0); if (delay_shift == 0) { return; } else if (delay_shift > 0) { dest_index = abs_shift; } else if (delay_shift < 0) { src_index = abs_shift; padding_index = shift_size; } // Shift and zero pad buffers. memmove(&self->binary_far_history[dest_index], &self->binary_far_history[src_index], sizeof(*self->binary_far_history) * shift_size); memset(&self->binary_far_history[padding_index], 0, sizeof(*self->binary_far_history) * abs_shift); memmove(&self->far_bit_counts[dest_index], &self->far_bit_counts[src_index], sizeof(*self->far_bit_counts) * shift_size); memset(&self->far_bit_counts[padding_index], 0, sizeof(*self->far_bit_counts) * abs_shift); } void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle, uint32_t binary_far_spectrum) { RTC_DCHECK(handle); // Shift binary spectrum history and insert current |binary_far_spectrum|. memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]), (handle->history_size - 1) * sizeof(uint32_t)); handle->binary_far_history[0] = binary_far_spectrum; // Shift history of far-end binary spectrum bit counts and insert bit count // of current |binary_far_spectrum|. memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]), (handle->history_size - 1) * sizeof(int)); handle->far_bit_counts[0] = BitCount(binary_far_spectrum); } void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) { if (self == NULL) { return; } free(self->mean_bit_counts); self->mean_bit_counts = NULL; free(self->bit_counts); self->bit_counts = NULL; free(self->binary_near_history); self->binary_near_history = NULL; free(self->histogram); self->histogram = NULL; // BinaryDelayEstimator does not have ownership of |farend|, hence we do not // free the memory here. That should be handled separately by the user. self->farend = NULL; free(self); } BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator( BinaryDelayEstimatorFarend* farend, int max_lookahead) { BinaryDelayEstimator* self = NULL; if ((farend != NULL) && (max_lookahead >= 0)) { // Sanity conditions fulfilled. self = static_cast( malloc(sizeof(BinaryDelayEstimator))); } if (self == NULL) { return NULL; } self->farend = farend; self->near_history_size = max_lookahead + 1; self->history_size = 0; self->robust_validation_enabled = 0; // Disabled by default. self->allowed_offset = 0; self->lookahead = max_lookahead; // Allocate memory for spectrum and history buffers. self->mean_bit_counts = NULL; self->bit_counts = NULL; self->histogram = NULL; self->binary_near_history = static_cast( malloc((max_lookahead + 1) * sizeof(*self->binary_near_history))); if (self->binary_near_history == NULL || WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) { WebRtc_FreeBinaryDelayEstimator(self); self = NULL; } return self; } int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self, int history_size) { BinaryDelayEstimatorFarend* far = self->farend; // (Re-)Allocate memory for spectrum and history buffers. if (history_size != far->history_size) { // Only update far-end buffers if we need. history_size = WebRtc_AllocateFarendBufferMemory(far, history_size); } // The extra array element in |mean_bit_counts| and |histogram| is a dummy // element only used while |last_delay| == -2, i.e., before we have a valid // estimate. self->mean_bit_counts = static_cast( realloc(self->mean_bit_counts, (history_size + 1) * sizeof(*self->mean_bit_counts))); self->bit_counts = static_cast( realloc(self->bit_counts, history_size * sizeof(*self->bit_counts))); self->histogram = static_cast( realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram))); if ((self->mean_bit_counts == NULL) || (self->bit_counts == NULL) || (self->histogram == NULL)) { history_size = 0; } // Fill with zeros if we have expanded the buffers. if (history_size > self->history_size) { int size_diff = history_size - self->history_size; memset(&self->mean_bit_counts[self->history_size], 0, sizeof(*self->mean_bit_counts) * size_diff); memset(&self->bit_counts[self->history_size], 0, sizeof(*self->bit_counts) * size_diff); memset(&self->histogram[self->history_size], 0, sizeof(*self->histogram) * size_diff); } self->history_size = history_size; return self->history_size; } void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) { int i = 0; RTC_DCHECK(self); memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size); memset(self->binary_near_history, 0, sizeof(uint32_t) * self->near_history_size); for (i = 0; i <= self->history_size; ++i) { self->mean_bit_counts[i] = (20 << 9); // 20 in Q9. self->histogram[i] = 0.f; } self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9. self->last_delay_probability = (int)kMaxBitCountsQ9; // 32 in Q9. // Default return value if we're unable to estimate. -1 is used for errors. self->last_delay = -2; self->last_candidate_delay = -2; self->compare_delay = self->history_size; self->candidate_hits = 0; self->last_delay_histogram = 0.f; } int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self, int delay_shift) { int lookahead = 0; RTC_DCHECK(self); lookahead = self->lookahead; self->lookahead -= delay_shift; if (self->lookahead < 0) { self->lookahead = 0; } if (self->lookahead > self->near_history_size - 1) { self->lookahead = self->near_history_size - 1; } return lookahead - self->lookahead; } int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self, uint32_t binary_near_spectrum) { int i = 0; int candidate_delay = -1; int valid_candidate = 0; int32_t value_best_candidate = kMaxBitCountsQ9; int32_t value_worst_candidate = 0; int32_t valley_depth = 0; RTC_DCHECK(self); if (self->farend->history_size != self->history_size) { // Non matching history sizes. return -1; } if (self->near_history_size > 1) { // If we apply lookahead, shift near-end binary spectrum history. Insert // current |binary_near_spectrum| and pull out the delayed one. memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]), (self->near_history_size - 1) * sizeof(uint32_t)); self->binary_near_history[0] = binary_near_spectrum; binary_near_spectrum = self->binary_near_history[self->lookahead]; } // Compare with delayed spectra and store the |bit_counts| for each delay. BitCountComparison(binary_near_spectrum, self->farend->binary_far_history, self->history_size, self->bit_counts); // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|. for (i = 0; i < self->history_size; i++) { // |bit_counts| is constrained to [0, 32], meaning we can smooth with a // factor up to 2^26. We use Q9. int32_t bit_count = (self->bit_counts[i] << 9); // Q9. // Update |mean_bit_counts| only when far-end signal has something to // contribute. If |far_bit_counts| is zero the far-end signal is weak and // we likely have a poor echo condition, hence don't update. if (self->farend->far_bit_counts[i] > 0) { // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|. int shifts = kShiftsAtZero; shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4; WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i])); } } // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate| // of |mean_bit_counts|. for (i = 0; i < self->history_size; i++) { if (self->mean_bit_counts[i] < value_best_candidate) { value_best_candidate = self->mean_bit_counts[i]; candidate_delay = i; } if (self->mean_bit_counts[i] > value_worst_candidate) { value_worst_candidate = self->mean_bit_counts[i]; } } valley_depth = value_worst_candidate - value_best_candidate; // The |value_best_candidate| is a good indicator on the probability of // |candidate_delay| being an accurate delay (a small |value_best_candidate| // means a good binary match). In the following sections we make a decision // whether to update |last_delay| or not. // 1) If the difference bit counts between the best and the worst delay // candidates is too small we consider the situation to be unreliable and // don't update |last_delay|. // 2) If the situation is reliable we update |last_delay| if the value of the // best candidate delay has a value less than // i) an adaptive threshold |minimum_probability|, or // ii) this corresponding value |last_delay_probability|, but updated at // this time instant. // Update |minimum_probability|. if ((self->minimum_probability > kProbabilityLowerLimit) && (valley_depth > kProbabilityMinSpread)) { // The "hard" threshold can't be lower than 17 (in Q9). // The valley in the curve also has to be distinct, i.e., the // difference between |value_worst_candidate| and |value_best_candidate| has // to be large enough. int32_t threshold = value_best_candidate + kProbabilityOffset; if (threshold < kProbabilityLowerLimit) { threshold = kProbabilityLowerLimit; } if (self->minimum_probability > threshold) { self->minimum_probability = threshold; } } // Update |last_delay_probability|. // We use a Markov type model, i.e., a slowly increasing level over time. self->last_delay_probability++; // Validate |candidate_delay|. We have a reliable instantaneous delay // estimate if // 1) The valley is distinct enough (|valley_depth| > |kProbabilityOffset|) // and // 2) The depth of the valley is deep enough // (|value_best_candidate| < |minimum_probability|) // and deeper than the best estimate so far // (|value_best_candidate| < |last_delay_probability|) valid_candidate = ((valley_depth > kProbabilityOffset) && ((value_best_candidate < self->minimum_probability) || (value_best_candidate < self->last_delay_probability))); // Check for nonstationary farend signal. const bool non_stationary_farend = std::any_of(self->farend->far_bit_counts, self->farend->far_bit_counts + self->history_size, [](int a) { return a > 0; }); if (non_stationary_farend) { // Only update the validation statistics when the farend is nonstationary // as the underlying estimates are otherwise frozen. UpdateRobustValidationStatistics(self, candidate_delay, valley_depth, value_best_candidate); } if (self->robust_validation_enabled) { int is_histogram_valid = HistogramBasedValidation(self, candidate_delay); valid_candidate = RobustValidation(self, candidate_delay, valid_candidate, is_histogram_valid); } // Only update the delay estimate when the farend is nonstationary and when // a valid delay candidate is available. if (non_stationary_farend && valid_candidate) { if (candidate_delay != self->last_delay) { self->last_delay_histogram = (self->histogram[candidate_delay] > kLastHistogramMax ? kLastHistogramMax : self->histogram[candidate_delay]); // Adjust the histogram if we made a change to |last_delay|, though it was // not the most likely one according to the histogram. if (self->histogram[candidate_delay] < self->histogram[self->compare_delay]) { self->histogram[self->compare_delay] = self->histogram[candidate_delay]; } } self->last_delay = candidate_delay; if (value_best_candidate < self->last_delay_probability) { self->last_delay_probability = value_best_candidate; } self->compare_delay = self->last_delay; } return self->last_delay; } int WebRtc_binary_last_delay(BinaryDelayEstimator* self) { RTC_DCHECK(self); return self->last_delay; } float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) { float quality = 0; RTC_DCHECK(self); if (self->robust_validation_enabled) { // Simply a linear function of the histogram height at delay estimate. quality = self->histogram[self->compare_delay] / kHistogramMax; } else { // Note that |last_delay_probability| states how deep the minimum of the // cost function is, so it is rather an error probability. quality = (float)(kMaxBitCountsQ9 - self->last_delay_probability) / kMaxBitCountsQ9; if (quality < 0) { quality = 0; } } return quality; } void WebRtc_MeanEstimatorFix(int32_t new_value, int factor, int32_t* mean_value) { int32_t diff = new_value - *mean_value; // mean_new = mean_value + ((new_value - mean_value) >> factor); if (diff < 0) { diff = -((-diff) >> factor); } else { diff = (diff >> factor); } *mean_value += diff; }