// // libtgvoip is free and unencumbered public domain software. // For more information, see http://unlicense.org or the UNLICENSE file // you should have received with this source code distribution. // #ifndef _WIN32 #include #include #endif #include #include #include #include "VoIPController.h" #include "logging.h" #include "threading.h" #include "BufferOutputStream.h" #include "BufferInputStream.h" #include "OpusEncoder.h" #include "OpusDecoder.h" #include "VoIPServerConfig.h" #include #include #include #include #include using namespace tgvoip; #ifdef __APPLE__ #include "os/darwin/AudioUnitIO.h" #include double VoIPController::machTimebase=0; uint64_t VoIPController::machTimestart=0; #endif #ifdef _WIN32 int64_t VoIPController::win32TimeScale = 0; bool VoIPController::didInitWin32TimeScale = false; #endif #define SHA1_LENGTH 20 #define SHA256_LENGTH 32 #ifndef TGVOIP_USE_CUSTOM_CRYPTO #include #include #include void tgvoip_openssl_aes_ige_encrypt(uint8_t* in, uint8_t* out, size_t length, uint8_t* key, uint8_t* iv){ AES_KEY akey; AES_set_encrypt_key(key, 32*8, &akey); AES_ige_encrypt(in, out, length, &akey, iv, AES_ENCRYPT); } void tgvoip_openssl_aes_ige_decrypt(uint8_t* in, uint8_t* out, size_t length, uint8_t* key, uint8_t* iv){ AES_KEY akey; AES_set_decrypt_key(key, 32*8, &akey); AES_ige_encrypt(in, out, length, &akey, iv, AES_DECRYPT); } void tgvoip_openssl_rand_bytes(uint8_t* buffer, size_t len){ RAND_bytes(buffer, len); } void tgvoip_openssl_sha1(uint8_t* msg, size_t len, uint8_t* output){ SHA1(msg, len, output); } void tgvoip_openssl_sha256(uint8_t* msg, size_t len, uint8_t* output){ SHA256(msg, len, output); } void tgvoip_openssl_aes_ctr_encrypt(uint8_t* inout, size_t length, uint8_t* key, uint8_t* iv, uint8_t* ecount, uint32_t* num){ AES_KEY akey; AES_set_encrypt_key(key, 32*8, &akey); AES_ctr128_encrypt(inout, inout, length, &akey, iv, ecount, num); } voip_crypto_functions_t VoIPController::crypto={ tgvoip_openssl_rand_bytes, tgvoip_openssl_sha1, tgvoip_openssl_sha256, tgvoip_openssl_aes_ige_encrypt, tgvoip_openssl_aes_ige_decrypt, tgvoip_openssl_aes_ctr_encrypt }; #else voip_crypto_functions_t VoIPController::crypto; // set it yourself upon initialization #endif #ifdef _MSC_VER #define MSC_STACK_FALLBACK(a, b) (b) #else #define MSC_STACK_FALLBACK(a, b) (a) #endif extern FILE* tgvoipLogFile; VoIPController::VoIPController(Php::Value pinputCallbacks, Php::Value poutputCallbacks) : activeNetItfName(""), currentAudioInput("default"), currentAudioOutput("default"){ inputCallbacks = pinputCallbacks; outputCallbacks = poutputCallbacks; seq=1; lastRemoteSeq=0; state=STATE_WAIT_INIT; audioInput=NULL; audioOutput=NULL; decoder=NULL; encoder=NULL; jitterBuffer=NULL; audioOutStarted=false; audioTimestampIn=0; audioTimestampOut=0; stopping=false; int i; for(i=0;i<20;i++){ emptySendBuffers.push_back(new BufferOutputStream(1024)); } sendQueue=new BlockingQueue(21); init_mutex(sendBufferMutex); memset(remoteAcks, 0, sizeof(double)*32); memset(sentPacketTimes, 0, sizeof(double)*32); memset(recvPacketTimes, 0, sizeof(double)*32); memset(rttHistory, 0, sizeof(double)*32); memset(sendLossCountHistory, 0, sizeof(uint32_t)*32); memset(&stats, 0, sizeof(voip_stats_t)); lastRemoteAckSeq=0; lastSentSeq=0; recvLossCount=0; packetsRecieved=0; waitingForAcks=false; networkType=NET_TYPE_UNKNOWN; audioPacketGrouping=3; audioPacketsWritten=0; currentAudioPacket=NULL; stateCallback=NULL; echoCanceller=NULL; dontSendPackets=0; micMuted=false; currentEndpoint=NULL; waitingForRelayPeerInfo=false; allowP2p=true; dataSavingMode=false; publicEndpointsReqTime=0; init_mutex(queuedPacketsMutex); init_mutex(endpointsMutex); connectionInitTime=0; lastRecvPacketTime=0; dataSavingRequestedByPeer=false; peerVersion=0; conctl=new CongestionControl(); prevSendLossCount=0; receivedInit=false; receivedInitAck=false; peerPreferredRelay=NULL; statsDump=NULL; useTCP=false; didAddTcpRelays=false; enableTcpAt=0; socket=NetworkSocket::Create(); maxAudioBitrate=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_max_bitrate", 20000); maxAudioBitrateGPRS=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_max_bitrate_gprs", 8000); maxAudioBitrateEDGE=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_max_bitrate_edge", 16000); maxAudioBitrateSaving=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_max_bitrate_saving", 8000); initAudioBitrate=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_init_bitrate", 16000); initAudioBitrateGPRS=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_init_bitrate_gprs", 8000); initAudioBitrateEDGE=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_init_bitrate_edge", 8000); initAudioBitrateSaving=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_init_bitrate_saving", 8000); audioBitrateStepIncr=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_bitrate_step_incr", 1000); audioBitrateStepDecr=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_bitrate_step_decr", 1000); minAudioBitrate=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_min_bitrate", 8000); relaySwitchThreshold=ServerConfig::GetSharedInstance()->GetDouble("relay_switch_threshold", 0.8); p2pToRelaySwitchThreshold=ServerConfig::GetSharedInstance()->GetDouble("p2p_to_relay_switch_threshold", 0.6); relayToP2pSwitchThreshold=ServerConfig::GetSharedInstance()->GetDouble("relay_to_p2p_switch_threshold", 0.8); #ifdef __APPLE__ machTimestart=0; #ifdef TGVOIP_USE_AUDIO_SESSION needNotifyAcquiredAudioSession=false; #endif #endif voip_stream_t* stm=(voip_stream_t *) malloc(sizeof(voip_stream_t)); stm->id=1; stm->type=STREAM_TYPE_AUDIO; stm->codec=CODEC_OPUS; stm->enabled=1; stm->frameDuration=60; outgoingStreams.push_back(stm); std::vector odevs=EnumerateAudioOutputs(); for(int i=0;i idevs=EnumerateAudioInputs(); for(int i=0;iStop(); if(audioOutput) audioOutput->Stop(); stopping=true; runReceiver=false; LOGD("before shutdown socket"); if(socket) socket->Close(); sendQueue->Put(NULL); LOGD("before join sendThread"); join_thread(sendThread); LOGD("before join recvThread"); join_thread(recvThread); LOGD("before join tickThread"); join_thread(tickThread); free_mutex(sendBufferMutex); LOGD("before close socket"); if(socket) delete socket; LOGD("before free send buffers"); while(emptySendBuffers.size()>0){ delete emptySendBuffers[emptySendBuffers.size()-1]; emptySendBuffers.pop_back(); } while(sendQueue->Size()>0){ void* p=sendQueue->Get(); if(p) delete (BufferOutputStream*)p; } LOGD("before delete jitter buffer"); if(jitterBuffer){ delete jitterBuffer; } LOGD("before stop decoder"); if(decoder){ decoder->Stop(); } LOGD("before delete audio input"); if(audioInput){ delete audioInput; } LOGD("before delete encoder"); if(encoder){ encoder->Stop(); delete encoder; } LOGD("before delete audio output"); if(audioOutput){ delete audioOutput; } LOGD("before delete decoder"); if(decoder){ delete decoder; } LOGD("before delete echo canceller"); if(echoCanceller){ echoCanceller->Stop(); delete echoCanceller; } delete sendQueue; unsigned int i; for(i=0;idata) free(queuedPackets[i]->data); free(queuedPackets[i]); } delete conctl; for(std::vector::iterator itr=endpoints.begin();itr!=endpoints.end();++itr) delete *itr; LOGD("Left VoIPController::~VoIPController"); if(tgvoipLogFile){ FILE* log=tgvoipLogFile; tgvoipLogFile=NULL; fclose(log); } if(statsDump) fclose(statsDump); } void VoIPController::SetRemoteEndpoints(std::vector endpoints, bool allowP2p){ LOGW("Set remote endpoints"); preferredRelay=NULL; size_t i; lock_mutex(endpointsMutex); this->endpoints.clear(); didAddTcpRelays=false; useTCP=true; for(std::vector::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){ this->endpoints.push_back(new Endpoint(*itrtr)); if(itrtr->type==EP_TYPE_TCP_RELAY) didAddTcpRelays=true; if(itrtr->type==EP_TYPE_UDP_RELAY) useTCP=false; LOGV("Adding endpoint: %s:%d, %s", itrtr->address.ToString().c_str(), itrtr->port, itrtr->type==EP_TYPE_UDP_RELAY ? "UDP" : "TCP"); } unlock_mutex(endpointsMutex); currentEndpoint=this->endpoints[0]; preferredRelay=currentEndpoint; this->allowP2p=allowP2p; } void* VoIPController::StartRecvThread(void* controller){ ((VoIPController*)controller)->RunRecvThread(); return NULL; } void* VoIPController::StartSendThread(void* controller){ ((VoIPController*)controller)->RunSendThread(); return NULL; } void* VoIPController::StartTickThread(void* controller){ ((VoIPController*) controller)->RunTickThread(); return NULL; } void VoIPController::Start(){ int res; LOGW("Starting voip controller"); int32_t cfgFrameSize=60; //ServerConfig::GetSharedInstance()->GetInt("audio_frame_size", 60); if(cfgFrameSize==20 || cfgFrameSize==40 || cfgFrameSize==60) outgoingStreams[0]->frameDuration=(uint16_t) cfgFrameSize; socket->Open(); SendPacket(NULL, 0, currentEndpoint); runReceiver=true; start_thread(recvThread, StartRecvThread, this); set_thread_priority(recvThread, get_thread_max_priority()); set_thread_name(recvThread, "voip-recv"); start_thread(sendThread, StartSendThread, this); set_thread_priority(sendThread, get_thread_max_priority()); set_thread_name(sendThread, "voip-send"); start_thread(tickThread, StartTickThread, this); set_thread_priority(tickThread, get_thread_max_priority()); set_thread_name(tickThread, "voip-tick"); } size_t VoIPController::AudioInputCallback(unsigned char* data, size_t length, void* param){ ((VoIPController*)param)->HandleAudioInput(data, length); return 0; } void VoIPController::HandleAudioInput(unsigned char *data, size_t len){ if(stopping) return; if(waitingForAcks || dontSendPackets>0){ LOGV("waiting for RLC, dropping outgoing audio packet"); return; } int audioPacketGrouping=1; BufferOutputStream* pkt=NULL; if(audioPacketsWritten==0){ pkt=GetOutgoingPacketBuffer(); if(!pkt){ LOGW("Dropping data packet, queue overflow"); return; } currentAudioPacket=pkt; }else{ pkt=currentAudioPacket; } unsigned char flags=(unsigned char) (len>255 ? STREAM_DATA_FLAG_LEN16 : 0); pkt->WriteByte((unsigned char) (1 | flags)); // streamID + flags if(len>255) pkt->WriteInt16((int16_t)len); else pkt->WriteByte((unsigned char)len); pkt->WriteInt32(audioTimestampOut); pkt->WriteBytes(data, len); audioPacketsWritten++; if(audioPacketsWritten>=audioPacketGrouping){ uint32_t pl=pkt->GetLength(); unsigned char tmp[MSC_STACK_FALLBACK(pl, 1024)]; memcpy(tmp, pkt->GetBuffer(), pl); pkt->Reset(); unsigned char type; switch(audioPacketGrouping){ case 2: type=PKT_STREAM_DATA_X2; break; case 3: type=PKT_STREAM_DATA_X3; break; default: type=PKT_STREAM_DATA; break; } WritePacketHeader(pkt, type, pl); pkt->WriteBytes(tmp, pl); //LOGI("payload size %u", pl); if(pl<253) pl+=1; for(;pl%4>0;pl++) pkt->WriteByte(0); sendQueue->Put(pkt); audioPacketsWritten=0; } audioTimestampOut+=outgoingStreams[0]->frameDuration; } void VoIPController::Connect(){ assert(state!=STATE_WAIT_INIT_ACK); connectionInitTime=GetCurrentTime(); enableTcpAt=connectionInitTime+5; SendInit(); } void VoIPController::SetEncryptionKey(char *key, bool isOutgoing){ memcpy(encryptionKey, key, 256); uint8_t sha1[SHA1_LENGTH]; crypto.sha1((uint8_t*) encryptionKey, 256, sha1); memcpy(keyFingerprint, sha1+(SHA1_LENGTH-8), 8); uint8_t sha256[SHA256_LENGTH]; crypto.sha256((uint8_t*) encryptionKey, 256, sha256); memcpy(callID, sha256+(SHA256_LENGTH-16), 16); this->isOutgoing=isOutgoing; } uint32_t VoIPController::WritePacketHeader(BufferOutputStream *s, unsigned char type, uint32_t length){ uint32_t acks=0; int i; for(i=0;i<32;i++){ if(recvPacketTimes[i]>0) acks|=1; if(i<31) acks<<=1; } uint32_t pseq=seq++; if(state==STATE_WAIT_INIT || state==STATE_WAIT_INIT_ACK){ s->WriteInt32(TLID_DECRYPTED_AUDIO_BLOCK); int64_t randomID; crypto.rand_bytes((uint8_t *) &randomID, 8); s->WriteInt64(randomID); unsigned char randBytes[7]; crypto.rand_bytes(randBytes, 7); s->WriteByte(7); s->WriteBytes(randBytes, 7); uint32_t pflags=PFLAG_HAS_RECENT_RECV | PFLAG_HAS_SEQ; if(length>0) pflags|=PFLAG_HAS_DATA; if(state==STATE_WAIT_INIT || state==STATE_WAIT_INIT_ACK){ pflags|=PFLAG_HAS_CALL_ID | PFLAG_HAS_PROTO; } pflags|=((uint32_t) type) << 24; s->WriteInt32(pflags); if(pflags & PFLAG_HAS_CALL_ID){ s->WriteBytes(callID, 16); } s->WriteInt32(lastRemoteSeq); s->WriteInt32(pseq); s->WriteInt32(acks); if(pflags & PFLAG_HAS_PROTO){ s->WriteInt32(PROTOCOL_NAME); } if(length>0){ if(length<=253){ s->WriteByte((unsigned char) length); }else{ s->WriteByte(254); s->WriteByte((unsigned char) (length & 0xFF)); s->WriteByte((unsigned char) ((length >> 8) & 0xFF)); s->WriteByte((unsigned char) ((length >> 16) & 0xFF)); } } }else{ s->WriteInt32(TLID_SIMPLE_AUDIO_BLOCK); int64_t randomID; crypto.rand_bytes((uint8_t *) &randomID, 8); s->WriteInt64(randomID); unsigned char randBytes[7]; crypto.rand_bytes(randBytes, 7); s->WriteByte(7); s->WriteBytes(randBytes, 7); uint32_t lenWithHeader=length+13; if(lenWithHeader>0){ if(lenWithHeader<=253){ s->WriteByte((unsigned char) lenWithHeader); }else{ s->WriteByte(254); s->WriteByte((unsigned char) (lenWithHeader & 0xFF)); s->WriteByte((unsigned char) ((lenWithHeader >> 8) & 0xFF)); s->WriteByte((unsigned char) ((lenWithHeader >> 16) & 0xFF)); } } s->WriteByte(type); s->WriteInt32(lastRemoteSeq); s->WriteInt32(pseq); s->WriteInt32(acks); } if(type==PKT_STREAM_DATA || type==PKT_STREAM_DATA_X2 || type==PKT_STREAM_DATA_X3) conctl->PacketSent(pseq, length); memmove(&sentPacketTimes[1], sentPacketTimes, 31*sizeof(double)); sentPacketTimes[0]=GetCurrentTime(); lastSentSeq=pseq; //LOGI("packet header size %d", s->GetLength()); return pseq; } void VoIPController::UpdateAudioBitrate(){ if(encoder){ if(dataSavingMode || dataSavingRequestedByPeer){ maxBitrate=maxAudioBitrateSaving; encoder->SetBitrate(initAudioBitrateSaving); }else if(networkType==NET_TYPE_GPRS){ maxBitrate=maxAudioBitrateGPRS; encoder->SetBitrate(initAudioBitrateGPRS); }else if(networkType==NET_TYPE_EDGE){ maxBitrate=maxAudioBitrateEDGE; encoder->SetBitrate(initAudioBitrateEDGE); }else{ maxBitrate=maxAudioBitrate; encoder->SetBitrate(initAudioBitrate); } } } void VoIPController::SendInit(){ BufferOutputStream* out=new BufferOutputStream(1024); WritePacketHeader(out, PKT_INIT, 15); out->WriteInt32(PROTOCOL_VERSION); out->WriteInt32(MIN_PROTOCOL_VERSION); uint32_t flags=0; if(dataSavingMode) flags|=INIT_FLAG_DATA_SAVING_ENABLED; out->WriteInt32(flags); out->WriteByte(1); // audio codecs count out->WriteByte(CODEC_OPUS); out->WriteByte(0); // video codecs count lock_mutex(endpointsMutex); for(std::vector::iterator itr=endpoints.begin();itr!=endpoints.end();++itr){ if((*itr)->type==EP_TYPE_TCP_RELAY && !useTCP) continue; SendPacket(out->GetBuffer(), out->GetLength(), *itr); } unlock_mutex(endpointsMutex); SetState(STATE_WAIT_INIT_ACK); delete out; } void VoIPController::SendInitAck(){ } void VoIPController::RunRecvThread(){ LOGI("Receive thread starting"); unsigned char buffer[1024]; NetworkPacket packet; while(runReceiver){ //LOGI("Before recv"); packet.data=buffer; packet.length=1024; socket->Receive(&packet); if(!packet.address){ LOGE("Packet has null address. This shouldn't happen."); continue; } size_t len=packet.length; if(!len){ LOGE("Packet has zero length."); continue; } //LOGV("Received %d bytes from %s:%d at %.5lf", len, packet.address->ToString().c_str(), packet.port, GetCurrentTime()); Endpoint* srcEndpoint=NULL; IPv4Address* src4=dynamic_cast(packet.address); if(src4){ lock_mutex(endpointsMutex); for(std::vector::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){ if((*itrtr)->address==*src4 && (*itrtr)->port==packet.port){ if(((*itrtr)->type!=EP_TYPE_TCP_RELAY && packet.protocol==PROTO_UDP) || ((*itrtr)->type==EP_TYPE_TCP_RELAY && packet.protocol==PROTO_TCP)){ srcEndpoint=*itrtr; break; } } } unlock_mutex(endpointsMutex); } if(!srcEndpoint){ LOGW("Received a packet from unknown source %s:%u", packet.address->ToString().c_str(), packet.port); continue; } if(len<=0){ //LOGW("error receiving: %d / %s", errno, strerror(errno)); continue; } if(IS_MOBILE_NETWORK(networkType)) stats.bytesRecvdMobile+=(uint64_t)len; else stats.bytesRecvdWifi+=(uint64_t)len; BufferInputStream in(buffer, (size_t)len); try{ if(memcmp(buffer, srcEndpoint->type==EP_TYPE_UDP_RELAY || srcEndpoint->type==EP_TYPE_TCP_RELAY ? srcEndpoint->peerTag : callID, 16)!=0){ LOGW("Received packet has wrong peerTag"); continue; } in.Seek(16); if(waitingForRelayPeerInfo && in.Remaining()>=32){ bool isPublicIpResponse=true; int i; for(i=0;i<12;i++){ if((unsigned char)buffer[in.GetOffset()+i]!=0xFF){ isPublicIpResponse=false; break; } } if(isPublicIpResponse){ waitingForRelayPeerInfo=false; in.Seek(in.GetOffset()+12); uint32_t tlid=(uint32_t) in.ReadInt32(); if(tlid==TLID_UDP_REFLECTOR_PEER_INFO){ lock_mutex(endpointsMutex); uint32_t myAddr=(uint32_t) in.ReadInt32(); uint32_t myPort=(uint32_t) in.ReadInt32(); uint32_t peerAddr=(uint32_t) in.ReadInt32(); uint32_t peerPort=(uint32_t) in.ReadInt32(); for(std::vector::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){ Endpoint* ep=*itrtr; if(ep->type==EP_TYPE_UDP_P2P_INET){ if(currentEndpoint==ep) currentEndpoint=preferredRelay; delete ep; endpoints.erase(itrtr); break; } } for(std::vector::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){ Endpoint* ep=*itrtr; if(ep->type==EP_TYPE_UDP_P2P_LAN){ if(currentEndpoint==ep) currentEndpoint=preferredRelay; delete ep; endpoints.erase(itrtr); break; } } IPv4Address _peerAddr(peerAddr); IPv6Address emptyV6("::0"); unsigned char peerTag[16]; endpoints.push_back(new Endpoint(0, (uint16_t) peerPort, _peerAddr, emptyV6, EP_TYPE_UDP_P2P_INET, peerTag)); LOGW("Received reflector peer info, my=%08X:%u, peer=%08X:%u", myAddr, myPort, peerAddr, peerPort); if(myAddr==peerAddr){ LOGW("Detected LAN"); IPv4Address lanAddr(0); socket->GetLocalInterfaceInfo(&lanAddr, NULL); BufferOutputStream pkt(8); pkt.WriteInt32(lanAddr.GetAddress()); pkt.WriteInt32(socket->GetLocalPort()); SendPacketReliably(PKT_LAN_ENDPOINT, pkt.GetBuffer(), pkt.GetLength(), 0.5, 10); } unlock_mutex(endpointsMutex); }else{ LOGE("It looks like a reflector response but tlid is %08X, expected %08X", tlid, TLID_UDP_REFLECTOR_PEER_INFO); } continue; } } if(in.Remaining()<40){ continue; } unsigned char fingerprint[8], msgHash[16]; in.ReadBytes(fingerprint, 8); in.ReadBytes(msgHash, 16); if(memcmp(fingerprint, keyFingerprint, 8)!=0){ LOGW("Received packet has wrong key fingerprint"); continue; } unsigned char key[32], iv[32]; KDF(msgHash, isOutgoing ? 8 : 0, key, iv); unsigned char aesOut[MSC_STACK_FALLBACK(in.Remaining(), 1024)]; crypto.aes_ige_decrypt((unsigned char *) buffer+in.GetOffset(), aesOut, in.Remaining(), key, iv); memcpy(buffer+in.GetOffset(), aesOut, in.Remaining()); unsigned char sha[SHA1_LENGTH]; uint32_t _len=(uint32_t) in.ReadInt32(); if(_len>in.Remaining()) _len=in.Remaining(); crypto.sha1((uint8_t *) (buffer+in.GetOffset()-4), (size_t) (_len+4), sha); if(memcmp(msgHash, sha+(SHA1_LENGTH-16), 16)!=0){ LOGW("Received packet has wrong hash after decryption"); continue; } lastRecvPacketTime=GetCurrentTime(); /*decryptedAudioBlock random_id:long random_bytes:string flags:# voice_call_id:flags.2?int128 in_seq_no:flags.4?int out_seq_no:flags.4?int * recent_received_mask:flags.5?int proto:flags.3?int extra:flags.1?string raw_data:flags.0?string = DecryptedAudioBlock simpleAudioBlock random_id:long random_bytes:string raw_data:string = DecryptedAudioBlock; */ uint32_t ackId, pseq, acks; unsigned char type; uint32_t tlid=(uint32_t) in.ReadInt32(); uint32_t packetInnerLen; if(tlid==TLID_DECRYPTED_AUDIO_BLOCK){ in.ReadInt64(); // random id uint32_t randLen=(uint32_t) in.ReadTlLength(); in.Seek(in.GetOffset()+randLen+pad4(randLen)); uint32_t flags=(uint32_t) in.ReadInt32(); type=(unsigned char) ((flags >> 24) & 0xFF); if(!(flags & PFLAG_HAS_SEQ && flags & PFLAG_HAS_RECENT_RECV)){ LOGW("Received packet doesn't have PFLAG_HAS_SEQ, PFLAG_HAS_RECENT_RECV, or both"); continue; } if(flags & PFLAG_HAS_CALL_ID){ unsigned char pktCallID[16]; in.ReadBytes(pktCallID, 16); if(memcmp(pktCallID, callID, 16)!=0){ LOGW("Received packet has wrong call id"); lastError=TGVOIP_ERROR_UNKNOWN; SetState(STATE_FAILED); return; } } ackId=(uint32_t) in.ReadInt32(); pseq=(uint32_t) in.ReadInt32(); acks=(uint32_t) in.ReadInt32(); if(flags & PFLAG_HAS_PROTO){ uint32_t proto=(uint32_t) in.ReadInt32(); if(proto!=PROTOCOL_NAME){ LOGW("Received packet uses wrong protocol"); lastError=TGVOIP_ERROR_INCOMPATIBLE; SetState(STATE_FAILED); return; } } if(flags & PFLAG_HAS_EXTRA){ uint32_t extraLen=(uint32_t) in.ReadTlLength(); in.Seek(in.GetOffset()+extraLen+pad4(extraLen)); } if(flags & PFLAG_HAS_DATA){ packetInnerLen=in.ReadTlLength(); } }else if(tlid==TLID_SIMPLE_AUDIO_BLOCK){ in.ReadInt64(); // random id uint32_t randLen=(uint32_t) in.ReadTlLength(); in.Seek(in.GetOffset()+randLen+pad4(randLen)); packetInnerLen=in.ReadTlLength(); type=in.ReadByte(); ackId=(uint32_t) in.ReadInt32(); pseq=(uint32_t) in.ReadInt32(); acks=(uint32_t) in.ReadInt32(); }else{ LOGW("Received a packet of unknown type %08X", tlid); continue; } packetsRecieved++; if(seqgt(pseq, lastRemoteSeq)){ uint32_t diff=pseq-lastRemoteSeq; if(diff>31){ memset(recvPacketTimes, 0, 32*sizeof(double)); }else{ memmove(&recvPacketTimes[diff], recvPacketTimes, (32-diff)*sizeof(double)); if(diff>1){ memset(recvPacketTimes, 0, diff*sizeof(double)); } recvPacketTimes[0]=GetCurrentTime(); } lastRemoteSeq=pseq; }else if(!seqgt(pseq, lastRemoteSeq) && lastRemoteSeq-pseq<32){ if(recvPacketTimes[lastRemoteSeq-pseq]!=0){ LOGW("Received duplicated packet for seq %u", pseq); continue; } recvPacketTimes[lastRemoteSeq-pseq]=GetCurrentTime(); }else if(lastRemoteSeq-pseq>=32){ LOGW("Packet %u is out of order and too late", pseq); continue; } if(seqgt(ackId, lastRemoteAckSeq)){ uint32_t diff=ackId-lastRemoteAckSeq; if(diff>31){ memset(remoteAcks, 0, 32*sizeof(double)); }else{ memmove(&remoteAcks[diff], remoteAcks, (32-diff)*sizeof(double)); if(diff>1){ memset(remoteAcks, 0, diff*sizeof(double)); } remoteAcks[0]=GetCurrentTime(); } if(waitingForAcks && lastRemoteAckSeq>=firstSentPing){ memset(rttHistory, 0, 32*sizeof(double)); waitingForAcks=false; dontSendPackets=10; LOGI("resuming sending"); } lastRemoteAckSeq=ackId; conctl->PacketAcknowledged(ackId); int i; for(i=0;i<31;i++){ if(remoteAcks[i+1]==0){ if((acks >> (31-i)) & 1){ remoteAcks[i+1]=GetCurrentTime(); conctl->PacketAcknowledged(ackId-(i+1)); } } } lock_mutex(queuedPacketsMutex); for(i=0;iseqs[j]); if(qp->seqs[j]==0) break; int remoteAcksIndex=lastRemoteAckSeq-qp->seqs[j]; LOGV("remote acks index %u, value %f", remoteAcksIndex, remoteAcksIndex>=0 && remoteAcksIndex<32 ? remoteAcks[remoteAcksIndex] : -1); if(seqgt(lastRemoteAckSeq, qp->seqs[j]) && remoteAcksIndex>=0 && remoteAcksIndex<32 && remoteAcks[remoteAcksIndex]>0){ LOGD("did ack seq %u, removing", qp->seqs[j]); didAck=true; break; } } if(didAck){ if(qp->data) free(qp->data); free(qp); queuedPackets.erase(queuedPackets.begin()+i); i--; continue; } } unlock_mutex(queuedPacketsMutex); } if(srcEndpoint!=currentEndpoint && srcEndpoint->type==EP_TYPE_UDP_RELAY && currentEndpoint->type!=EP_TYPE_UDP_RELAY){ if(seqgt(lastSentSeq-32, lastRemoteAckSeq)){ currentEndpoint=srcEndpoint; LOGI("Peer network address probably changed, switching to relay"); if(allowP2p) SendPublicEndpointsRequest(); } } //LOGV("acks: %u -> %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf", lastRemoteAckSeq, remoteAcks[0], remoteAcks[1], remoteAcks[2], remoteAcks[3], remoteAcks[4], remoteAcks[5], remoteAcks[6], remoteAcks[7]); //LOGD("recv: %u -> %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf", lastRemoteSeq, recvPacketTimes[0], recvPacketTimes[1], recvPacketTimes[2], recvPacketTimes[3], recvPacketTimes[4], recvPacketTimes[5], recvPacketTimes[6], recvPacketTimes[7]); //LOGI("RTT = %.3lf", GetAverageRTT()); //LOGV("Packet %u type is %d", pseq, type); if(type==PKT_INIT){ LOGD("Received init"); if(!receivedInit){ receivedInit=true; currentEndpoint=srcEndpoint; if(srcEndpoint->type==EP_TYPE_UDP_RELAY || (useTCP && srcEndpoint->type==EP_TYPE_TCP_RELAY)) preferredRelay=srcEndpoint; LogDebugInfo(); } peerVersion=(uint32_t) in.ReadInt32(); LOGI("Peer version is %d", peerVersion); uint32_t minVer=(uint32_t) in.ReadInt32(); if(minVer>PROTOCOL_VERSION || peerVersion=2 ? 10 : 2)+(peerVersion>=2 ? 6 : 4)*outgoingStreams.size()); if(peerVersion>=2){ out->WriteInt32(PROTOCOL_VERSION); out->WriteInt32(MIN_PROTOCOL_VERSION); } out->WriteByte((unsigned char) outgoingStreams.size()); for(i=0; iWriteByte(outgoingStreams[i]->id); out->WriteByte(outgoingStreams[i]->type); out->WriteByte(outgoingStreams[i]->codec); if(peerVersion>=2) out->WriteInt16(outgoingStreams[i]->frameDuration); else outgoingStreams[i]->frameDuration=20; out->WriteByte((unsigned char) (outgoingStreams[i]->enabled ? 1 : 0)); } SendPacket(out->GetBuffer(), out->GetLength(), currentEndpoint); delete out; } if(type==PKT_INIT_ACK){ LOGD("Received init ack"); if(!receivedInitAck){ receivedInitAck=true; if(packetInnerLen>10){ peerVersion=in.ReadInt32(); uint32_t minVer=(uint32_t) in.ReadInt32(); if(minVer>PROTOCOL_VERSION || peerVersionid=in.ReadByte(); stm->type=in.ReadByte(); stm->codec=in.ReadByte(); if(peerVersion>=2) stm->frameDuration=(uint16_t) in.ReadInt16(); else stm->frameDuration=20; stm->enabled=in.ReadByte()==1; incomingStreams.push_back(stm); if(stm->type==STREAM_TYPE_AUDIO && !incomingAudioStream) incomingAudioStream=stm; } if(!incomingAudioStream) continue; voip_stream_t *outgoingAudioStream=outgoingStreams[0]; if(!audioInput){ LOGI("before create audio io"); audioInput=tgvoip::audio::AudioInput::Create(inputCallbacks); audioInput->Configure(48000, 16, 1); audioOutput=tgvoip::audio::AudioOutput::Create(outputCallbacks); audioOutput->Configure(48000, 16, 1); echoCanceller=new EchoCanceller(config.enableAEC, config.enableNS, config.enableAGC); encoder=new OpusEncoder(audioInput); encoder->SetCallback(AudioInputCallback, this); encoder->SetOutputFrameDuration(outgoingAudioStream->frameDuration); encoder->SetEchoCanceller(echoCanceller); encoder->Start(); if(!micMuted){ audioInput->Start(); if(!audioInput->IsInitialized()){ LOGE("Erorr initializing audio capture"); lastError=TGVOIP_ERROR_AUDIO_IO; SetState(STATE_FAILED); return; } } if(!audioOutput->IsInitialized()){ LOGE("Erorr initializing audio playback"); lastError=TGVOIP_ERROR_AUDIO_IO; SetState(STATE_FAILED); return; } UpdateAudioBitrate(); jitterBuffer=new JitterBuffer(NULL, incomingAudioStream->frameDuration); decoder=new OpusDecoder(audioOutput); decoder->SetEchoCanceller(echoCanceller); decoder->SetJitterBuffer(jitterBuffer); decoder->SetFrameDuration(incomingAudioStream->frameDuration); decoder->Start(); if(incomingAudioStream->frameDuration>50) jitterBuffer->SetMinPacketCount(ServerConfig::GetSharedInstance()->GetInt("jitter_initial_delay_60", 3)); else if(incomingAudioStream->frameDuration>30) jitterBuffer->SetMinPacketCount(ServerConfig::GetSharedInstance()->GetInt("jitter_initial_delay_40", 4)); else jitterBuffer->SetMinPacketCount(ServerConfig::GetSharedInstance()->GetInt("jitter_initial_delay_20", 6)); //audioOutput->Start(); #ifdef TGVOIP_USE_AUDIO_SESSION #ifdef __APPLE__ if(acquireAudioSession){ acquireAudioSession(^(){ LOGD("Audio session acquired"); needNotifyAcquiredAudioSession=true; }); }else{ audio::AudioUnitIO::AudioSessionAcquired(); } #endif #endif } SetState(STATE_ESTABLISHED); if(allowP2p) SendPublicEndpointsRequest(); } } if(type==PKT_STREAM_DATA || type==PKT_STREAM_DATA_X2 || type==PKT_STREAM_DATA_X3){ int count; switch(type){ case PKT_STREAM_DATA_X2: count=2; break; case PKT_STREAM_DATA_X3: count=3; break; case PKT_STREAM_DATA: default: count=1; break; } int i; if(srcEndpoint->type==EP_TYPE_UDP_RELAY && srcEndpoint!=peerPreferredRelay){ peerPreferredRelay=srcEndpoint; } for(i=0;iStart(); audioOutStarted=true; } if(jitterBuffer) jitterBuffer->HandleInput((unsigned char*) (buffer+in.GetOffset()), sdlen, pts); if(iToString().c_str(), srcEndpoint->port); if(srcEndpoint->type!=EP_TYPE_UDP_RELAY && !allowP2p){ LOGW("Received p2p ping but p2p is disabled by manual override"); continue; } if(srcEndpoint==currentEndpoint){ BufferOutputStream *pkt=GetOutgoingPacketBuffer(); if(!pkt){ LOGW("Dropping pong packet, queue overflow"); continue; } WritePacketHeader(pkt, PKT_PONG, 4); pkt->WriteInt32(pseq); sendQueue->Put(pkt); }else{ BufferOutputStream pkt(32); WritePacketHeader(&pkt, PKT_PONG, 4); pkt.WriteInt32(pseq); SendPacket(pkt.GetBuffer(), pkt.GetLength(), srcEndpoint); } } if(type==PKT_PONG){ if(packetInnerLen>=4){ uint32_t pingSeq=(uint32_t) in.ReadInt32(); if(pingSeq==srcEndpoint->lastPingSeq){ memmove(&srcEndpoint->rtts[1], srcEndpoint->rtts, sizeof(double)*5); srcEndpoint->rtts[0]=GetCurrentTime()-srcEndpoint->lastPingTime; int i; srcEndpoint->averageRTT=0; for(i=0;i<6;i++){ if(srcEndpoint->rtts[i]==0) break; srcEndpoint->averageRTT+=srcEndpoint->rtts[i]; } srcEndpoint->averageRTT/=i; LOGD("Current RTT via %s: %.3f, average: %.3f", packet.address->ToString().c_str(), srcEndpoint->rtts[0], srcEndpoint->averageRTT); } } /*if(currentEndpoint!=srcEndpoint && (srcEndpoint->type==EP_TYPE_UDP_P2P_INET || srcEndpoint->type==EP_TYPE_UDP_P2P_LAN)){ LOGI("Switching to P2P now!"); currentEndpoint=srcEndpoint; needSendP2pPing=false; }*/ } if(type==PKT_STREAM_STATE){ unsigned char id=in.ReadByte(); unsigned char enabled=in.ReadByte(); int i; for(i=0;iid==id){ incomingStreams[i]->enabled=enabled==1; UpdateAudioOutputState(); break; } } } if(type==PKT_LAN_ENDPOINT){ LOGV("received lan endpoint"); uint32_t peerAddr=(uint32_t) in.ReadInt32(); uint16_t peerPort=(uint16_t) in.ReadInt32(); lock_mutex(endpointsMutex); for(std::vector::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){ if((*itrtr)->type==EP_TYPE_UDP_P2P_LAN){ if(currentEndpoint==*itrtr) currentEndpoint=preferredRelay; delete *itrtr; endpoints.erase(itrtr); break; } } IPv4Address v4addr(peerAddr); IPv6Address v6addr("::0"); unsigned char peerTag[16]; endpoints.push_back(new Endpoint(0, peerPort, v4addr, v6addr, EP_TYPE_UDP_P2P_LAN, peerTag)); unlock_mutex(endpointsMutex); } if(type==PKT_NETWORK_CHANGED && currentEndpoint->type!=EP_TYPE_UDP_RELAY && currentEndpoint->type!=EP_TYPE_TCP_RELAY){ currentEndpoint=preferredRelay; if(allowP2p) SendPublicEndpointsRequest(); if(peerVersion>=2){ uint32_t flags=(uint32_t) in.ReadInt32(); dataSavingRequestedByPeer=(flags & INIT_FLAG_DATA_SAVING_ENABLED)==INIT_FLAG_DATA_SAVING_ENABLED; UpdateDataSavingState(); UpdateAudioBitrate(); } } /*if(type==PKT_SWITCH_PREF_RELAY){ uint64_t relayId=(uint64_t) in.ReadInt64(); int i; for(i=0;itype==EP_TYPE_UDP_RELAY && endpoints[i]->id==relayId){ preferredRelay=endpoints[i]; LOGD("Switching preferred relay to %s:%d", inet_ntoa(preferredRelay->address), preferredRelay->port); break; } } if(currentEndpoint->type==EP_TYPE_UDP_RELAY) currentEndpoint=preferredRelay; }*/ /*if(type==PKT_SWITCH_TO_P2P && allowP2p){ voip_endpoint_t* p2p=GetEndpointByType(EP_TYPE_UDP_P2P_INET); if(p2p){ voip_endpoint_t* lan=GetEndpointByType(EP_TYPE_UDP_P2P_LAN); if(lan && lan->_averageRtt>0){ LOGI("Switching to p2p (LAN)"); currentEndpoint=lan; }else{ if(lan) lan->_lastPingTime=0; if(p2p->_averageRtt>0){ LOGI("Switching to p2p (Inet)"); currentEndpoint=p2p; }else{ p2p->_lastPingTime=0; } } } }*/ }catch(std::out_of_range x){ LOGW("Error parsing packet: %s", x.what()); } } LOGI("=== recv thread exiting ==="); } void VoIPController::RunSendThread(){ while(runReceiver){ BufferOutputStream* pkt=(BufferOutputStream *) sendQueue->GetBlocking(); if(pkt){ lock_mutex(endpointsMutex); SendPacket(pkt->GetBuffer(), pkt->GetLength(), currentEndpoint); unlock_mutex(endpointsMutex); pkt->Reset(); lock_mutex(sendBufferMutex); emptySendBuffers.push_back(pkt); unlock_mutex(sendBufferMutex); }else{ LOGE("tried to send null packet"); } } LOGI("=== send thread exiting ==="); } void VoIPController::RunTickThread(){ uint32_t tickCount=0; bool wasWaitingForAcks=false; double startTime=GetCurrentTime(); while(runReceiver){ #ifndef _WIN32 usleep(100000); #else Sleep(100); #endif tickCount++; double time=GetCurrentTime(); if(tickCount%5==0 && state==STATE_ESTABLISHED){ memmove(&rttHistory[1], rttHistory, 31*sizeof(double)); rttHistory[0]=GetAverageRTT(); /*if(rttHistory[16]>0){ LOGI("rtt diff: %.3lf", rttHistory[0]-rttHistory[16]); }*/ int i; double v=0; for(i=1;i<32;i++){ v+=rttHistory[i-1]-rttHistory[i]; } v=v/32; if(rttHistory[0]>10.0 && rttHistory[8]>10.0 && (networkType==NET_TYPE_EDGE || networkType==NET_TYPE_GPRS)){ waitingForAcks=true; }else{ waitingForAcks=false; } if(waitingForAcks) wasWaitingForAcks=false; //LOGI("%.3lf/%.3lf, rtt diff %.3lf, waiting=%d, queue=%d", rttHistory[0], rttHistory[8], v, waitingForAcks, sendQueue->Size()); if(jitterBuffer){ int lostCount=jitterBuffer->GetAndResetLostPacketCount(); if(lostCount>0 || (lostCount<0 && recvLossCount>((uint32_t)-lostCount))) recvLossCount+=lostCount; } } if(dontSendPackets>0) dontSendPackets--; int i; conctl->Tick(); if(!useTCP && ((state==STATE_WAIT_INIT_ACK && tickCount>=50) || (state==STATE_ESTABLISHED && time-lastRecvPacketTime>=5.0))){ useTCP=true; if(!didAddTcpRelays){ std::vector relays; for(std::vector::iterator itr=endpoints.begin(); itr!=endpoints.end(); ++itr){ if((*itr)->type!=EP_TYPE_UDP_RELAY) continue; Endpoint *tcpRelay=new Endpoint(**itr); tcpRelay->type=EP_TYPE_TCP_RELAY; tcpRelay->averageRTT=0; tcpRelay->lastPingSeq=0; tcpRelay->lastPingTime=0; memset(tcpRelay->rtts, 0, sizeof(tcpRelay->rtts)); relays.push_back(tcpRelay); } endpoints.insert(endpoints.end(), relays.begin(), relays.end()); didAddTcpRelays=true; } } if(state==STATE_ESTABLISHED){ if((audioInput && !audioInput->IsInitialized()) || (audioOutput && !audioOutput->IsInitialized())){ LOGE("Audio I/O failed"); lastError=TGVOIP_ERROR_AUDIO_IO; SetState(STATE_FAILED); } int act=conctl->GetBandwidthControlAction(); if(act==TGVOIP_CONCTL_ACT_DECREASE){ uint32_t bitrate=encoder->GetBitrate(); if(bitrate>8000) encoder->SetBitrate(bitrate<(minAudioBitrate+audioBitrateStepDecr) ? minAudioBitrate : (bitrate-audioBitrateStepDecr)); }else if(act==TGVOIP_CONCTL_ACT_INCREASE){ uint32_t bitrate=encoder->GetBitrate(); if(bitrateSetBitrate(bitrate+audioBitrateStepIncr); } if(tickCount%10==0 && encoder){ uint32_t sendLossCount=conctl->GetSendLossCount(); memmove(sendLossCountHistory+1, sendLossCountHistory, 31*sizeof(uint32_t)); sendLossCountHistory[0]=sendLossCount-prevSendLossCount; prevSendLossCount=sendLossCount; double avgSendLossCount=0; for(i=0;i<10;i++){ avgSendLossCount+=sendLossCountHistory[i]; } double packetsPerSec=1000/(double)outgoingStreams[0]->frameDuration; avgSendLossCount=avgSendLossCount/10/packetsPerSec; //LOGV("avg send loss: %.1f%%", avgSendLossCount*100); if(avgSendLossCount>0.1){ encoder->SetPacketLoss(40); }else if(avgSendLossCount>0.075){ encoder->SetPacketLoss(35); }else if(avgSendLossCount>0.0625){ encoder->SetPacketLoss(30); }else if(avgSendLossCount>0.05){ encoder->SetPacketLoss(25); }else if(avgSendLossCount>0.025){ encoder->SetPacketLoss(20); }else if(avgSendLossCount>0.01){ encoder->SetPacketLoss(17); }else{ encoder->SetPacketLoss(15); } } } bool areThereAnyEnabledStreams=false; for(i=0;ienabled) areThereAnyEnabledStreams=true; } if((waitingForAcks && tickCount%10==0) || (!areThereAnyEnabledStreams && tickCount%2==0)){ BufferOutputStream* pkt=GetOutgoingPacketBuffer(); if(!pkt){ LOGW("Dropping ping packet, queue overflow"); return; } uint32_t seq=WritePacketHeader(pkt, PKT_NOP, 0); firstSentPing=seq; sendQueue->Put(pkt); LOGV("sent ping"); } if(state==STATE_WAIT_INIT_ACK && GetCurrentTime()-stateChangeTime>.5){ SendInit(); } /*if(needSendP2pPing){ if(GetCurrentTime()-lastP2pPingTime>2){ if(p2pPingCount<10){ // try hairpin routing first, even if we have a LAN address SendP2pPing(EP_TYPE_UDP_P2P_INET); } if(p2pPingCount>=5 && p2pPingCount<15){ // last resort to get p2p SendP2pPing(EP_TYPE_UDP_P2P_LAN); } p2pPingCount++; } }*/ if(waitingForRelayPeerInfo && GetCurrentTime()-publicEndpointsReqTime>5){ LOGD("Resending peer relay info request"); SendPublicEndpointsRequest(); } lock_mutex(queuedPacketsMutex); for(i=0;itimeout>0 && qp->firstSentTime>0 && GetCurrentTime()-qp->firstSentTime>=qp->timeout){ LOGD("Removing queued packet because of timeout"); if(qp->data) free(qp->data); free(qp); queuedPackets.erase(queuedPackets.begin()+i); i--; continue; } if(GetCurrentTime()-qp->lastSentTime>=qp->retryInterval){ BufferOutputStream* pkt=GetOutgoingPacketBuffer(); if(pkt){ uint32_t seq=WritePacketHeader(pkt, qp->type, qp->length); memmove(&qp->seqs[1], qp->seqs, 4*9); qp->seqs[0]=seq; qp->lastSentTime=GetCurrentTime(); LOGD("Sending queued packet, seq=%u, type=%u, len=%u", seq, qp->type, unsigned(qp->length)); if(qp->firstSentTime==0) qp->firstSentTime=qp->lastSentTime; if(qp->length) pkt->WriteBytes(qp->data, qp->length); sendQueue->Put(pkt); } } } unlock_mutex(queuedPacketsMutex); if(jitterBuffer) jitterBuffer->Tick(); if(state==STATE_ESTABLISHED){ lock_mutex(endpointsMutex); Endpoint* minPingRelay=preferredRelay; double minPing=preferredRelay->averageRTT; for(std::vector::iterator e=endpoints.begin();e!=endpoints.end();++e){ Endpoint* endpoint=*e; if(endpoint->type==EP_TYPE_TCP_RELAY && !useTCP) continue; if(GetCurrentTime()-endpoint->lastPingTime>=10){ LOGV("Sending ping to %s", endpoint->address.ToString().c_str()); BufferOutputStream pkt(32); uint32_t seq=WritePacketHeader(&pkt, PKT_PING, 0); endpoint->lastPingTime=GetCurrentTime(); endpoint->lastPingSeq=seq; SendPacket(pkt.GetBuffer(), pkt.GetLength(), endpoint); } if(endpoint->type==EP_TYPE_UDP_RELAY || (useTCP && endpoint->type==EP_TYPE_TCP_RELAY)){ double k=endpoint->type==EP_TYPE_UDP_RELAY ? 1 : 2; if(endpoint->averageRTT>0 && endpoint->averageRTT*kaverageRTT*k; minPingRelay=endpoint; } } } if(minPingRelay!=preferredRelay){ preferredRelay=minPingRelay; LOGV("set preferred relay to %s", preferredRelay->address.ToString().c_str()); if(currentEndpoint->type==EP_TYPE_UDP_RELAY || currentEndpoint->type==EP_TYPE_TCP_RELAY) currentEndpoint=preferredRelay; LogDebugInfo(); /*BufferOutputStream pkt(32); pkt.WriteInt64(preferredRelay->id); SendPacketReliably(PKT_SWITCH_PREF_RELAY, pkt.GetBuffer(), pkt.GetLength(), 1, 9);*/ } if(currentEndpoint->type==EP_TYPE_UDP_RELAY){ Endpoint* p2p=GetEndpointByType(EP_TYPE_UDP_P2P_INET); if(p2p){ Endpoint* lan=GetEndpointByType(EP_TYPE_UDP_P2P_LAN); if(lan && lan->averageRTT>0 && lan->averageRTTaverageRTT>0 && p2p->averageRTT0 && minPingaverageRTT*p2pToRelaySwitchThreshold){ LOGI("Switching to relay"); currentEndpoint=preferredRelay; LogDebugInfo(); } } unlock_mutex(endpointsMutex); } if(state==STATE_ESTABLISHED){ if(GetCurrentTime()-lastRecvPacketTime>=config.recv_timeout){ if(currentEndpoint && currentEndpoint->type!=EP_TYPE_UDP_RELAY && currentEndpoint->type!=EP_TYPE_TCP_RELAY){ LOGW("Packet receive timeout, switching to relay"); currentEndpoint=preferredRelay; for(std::vector::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){ Endpoint* e=*itrtr; if(e->type==EP_TYPE_UDP_P2P_INET || e->type==EP_TYPE_UDP_P2P_LAN){ e->averageRTT=0; memset(e->rtts, 0, sizeof(e->rtts)); } } if(allowP2p){ SendPublicEndpointsRequest(); } UpdateDataSavingState(); UpdateAudioBitrate(); BufferOutputStream s(4); s.WriteInt32(dataSavingMode ? INIT_FLAG_DATA_SAVING_ENABLED : 0); SendPacketReliably(PKT_NETWORK_CHANGED, s.GetBuffer(), s.GetLength(), 1, 20); lastRecvPacketTime=GetCurrentTime(); }else{ LOGW("Packet receive timeout, disconnecting"); lastError=TGVOIP_ERROR_TIMEOUT; SetState(STATE_FAILED); } } }else if(state==STATE_WAIT_INIT || state==STATE_WAIT_INIT_ACK){ if(GetCurrentTime()-connectionInitTime>=config.init_timeout){ LOGW("Init timeout, disconnecting"); lastError=TGVOIP_ERROR_TIMEOUT; SetState(STATE_FAILED); } } if(statsDump){ //fprintf(statsDump, "Time\tRTT\tLISeq\tLASeq\tCWnd\tBitrate\tJitter\tJDelay\tAJDelay\n"); fprintf(statsDump, "%.3f\t%.3f\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%.3f\t%.3f\t%.3f\n", GetCurrentTime()-startTime, currentEndpoint->rtts[0], lastRemoteSeq, seq, lastRemoteAckSeq, recvLossCount, conctl ? conctl->GetSendLossCount() : 0, conctl ? (int)conctl->GetInflightDataSize() : 0, encoder ? encoder->GetBitrate() : 0, encoder ? encoder->GetPacketLoss() : 0, jitterBuffer ? jitterBuffer->GetLastMeasuredJitter() : 0, jitterBuffer ? jitterBuffer->GetLastMeasuredDelay()*0.06 : 0, jitterBuffer ? jitterBuffer->GetAverageDelay()*0.06 : 0); } #if defined(__APPLE__) && defined(TGVOIP_USE_AUDIO_SESSION) if(needNotifyAcquiredAudioSession){ needNotifyAcquiredAudioSession=false; audio::AudioUnitIO::AudioSessionAcquired(); } #endif } LOGI("=== tick thread exiting ==="); } Endpoint& VoIPController::GetRemoteEndpoint(){ //return useLan ? &remoteLanEp : &remotePublicEp; return *currentEndpoint; } void VoIPController::SendPacket(unsigned char *data, size_t len, Endpoint* ep){ if(stopping) return; if(ep->type==EP_TYPE_TCP_RELAY && !useTCP) return; //dst.sin_addr=ep->address; //dst.sin_port=htons(ep->port); //dst.sin_family=AF_INET; BufferOutputStream out(len+128); if(ep->type==EP_TYPE_UDP_RELAY || ep->type==EP_TYPE_TCP_RELAY) out.WriteBytes((unsigned char*)ep->peerTag, 16); else out.WriteBytes(callID, 16); if(len>0){ BufferOutputStream inner(len+128); inner.WriteInt32(len); inner.WriteBytes(data, len); if(inner.GetLength()%16!=0){ size_t padLen=16-inner.GetLength()%16; unsigned char padding[16]; crypto.rand_bytes((uint8_t *) padding, padLen); inner.WriteBytes(padding, padLen); } assert(inner.GetLength()%16==0); unsigned char key[32], iv[32], msgHash[SHA1_LENGTH]; crypto.sha1((uint8_t *) inner.GetBuffer(), len+4, msgHash); out.WriteBytes(keyFingerprint, 8); out.WriteBytes((msgHash+(SHA1_LENGTH-16)), 16); KDF(msgHash+(SHA1_LENGTH-16), isOutgoing ? 0 : 8, key, iv); unsigned char aesOut[MSC_STACK_FALLBACK(inner.GetLength(), 1024)]; crypto.aes_ige_encrypt(inner.GetBuffer(), aesOut, inner.GetLength(), key, iv); out.WriteBytes(aesOut, inner.GetLength()); } //LOGV("Sending %d bytes to %s:%d", out.GetLength(), ep->address.ToString().c_str(), ep->port); if(IS_MOBILE_NETWORK(networkType)) stats.bytesSentMobile+=(uint64_t)out.GetLength(); else stats.bytesSentWifi+=(uint64_t)out.GetLength(); NetworkPacket pkt; pkt.address=(NetworkAddress*)&ep->address; pkt.port=ep->port; pkt.length=out.GetLength(); pkt.data=out.GetBuffer(); pkt.protocol=ep->type==EP_TYPE_TCP_RELAY ? PROTO_TCP : PROTO_UDP; socket->Send(&pkt); } void VoIPController::SetNetworkType(int type){ networkType=type; UpdateDataSavingState(); UpdateAudioBitrate(); std::string itfName=socket->GetLocalInterfaceInfo(NULL, NULL); if(itfName!=activeNetItfName){ socket->OnActiveInterfaceChanged(); LOGI("Active network interface changed: %s -> %s", activeNetItfName.c_str(), itfName.c_str()); bool isFirstChange=activeNetItfName.length()==0; activeNetItfName=itfName; if(isFirstChange) return; if(currentEndpoint && currentEndpoint->type!=EP_TYPE_UDP_RELAY){ if(preferredRelay->type==EP_TYPE_UDP_RELAY) currentEndpoint=preferredRelay; for(std::vector::iterator itr=endpoints.begin();itr!=endpoints.end();){ Endpoint* endpoint=*itr; if(endpoint->type==EP_TYPE_UDP_RELAY && useTCP){ useTCP=false; if(preferredRelay->type==EP_TYPE_TCP_RELAY){ preferredRelay=endpoint; currentEndpoint=endpoint; } } //if(endpoint->type==EP_TYPE_UDP_P2P_INET){ endpoint->averageRTT=0; memset(endpoint->rtts, 0, sizeof(endpoint->rtts)); //} if(endpoint->type==EP_TYPE_UDP_P2P_LAN){ delete endpoint; itr=endpoints.erase(itr); }else{ ++itr; } } } if(allowP2p && currentEndpoint){ SendPublicEndpointsRequest(); } BufferOutputStream s(4); s.WriteInt32(dataSavingMode ? INIT_FLAG_DATA_SAVING_ENABLED : 0); SendPacketReliably(PKT_NETWORK_CHANGED, s.GetBuffer(), s.GetLength(), 1, 20); } LOGI("set network type: %d, active interface %s", type, activeNetItfName.c_str()); /*if(type==NET_TYPE_GPRS || type==NET_TYPE_EDGE) audioPacketGrouping=2; else audioPacketGrouping=1;*/ } double VoIPController::GetAverageRTT(){ if(lastSentSeq>=lastRemoteAckSeq){ uint32_t diff=lastSentSeq-lastRemoteAckSeq; //LOGV("rtt diff=%u", diff); if(diff<32){ int i; double res=0; int count=0; for(i=diff;i<32;i++){ if(remoteAcks[i-diff]>0){ res+=(remoteAcks[i-diff]-sentPacketTimes[i]); count++; } } if(count>0) res/=count; return res; } } return 999; } #if defined(__APPLE__) static void initMachTimestart() { mach_timebase_info_data_t tb = { 0, 0 }; mach_timebase_info(&tb); VoIPController::machTimebase = tb.numer; VoIPController::machTimebase /= tb.denom; VoIPController::machTimestart = mach_absolute_time(); } #endif double VoIPController::GetCurrentTime(){ #if defined(__linux__) struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec+(double)ts.tv_nsec/1000000000.0; #elif defined(__APPLE__) static pthread_once_t token = PTHREAD_ONCE_INIT; pthread_once(&token, &initMachTimestart); return (mach_absolute_time() - machTimestart) * machTimebase / 1000000000.0f; #elif defined(_WIN32) if(!didInitWin32TimeScale){ LARGE_INTEGER scale; QueryPerformanceFrequency(&scale); win32TimeScale=scale.QuadPart; didInitWin32TimeScale=true; } LARGE_INTEGER t; QueryPerformanceCounter(&t); return (double)t.QuadPart/(double)win32TimeScale; #endif } void VoIPController::SetStateCallback(void (* f)(VoIPController*, int)){ stateCallback=f; if(stateCallback){ stateCallback(this, state); } } void VoIPController::SetState(int state){ this->state=state; LOGV("Call state changed to %d", state); stateChangeTime=GetCurrentTime(); if(stateCallback){ stateCallback(this, state); } } void VoIPController::SetMicMute(bool mute){ micMuted=mute; if(audioInput){ if(mute) audioInput->Stop(); else audioInput->Start(); if(!audioInput->IsInitialized()){ lastError=TGVOIP_ERROR_AUDIO_IO; SetState(STATE_FAILED); return; } } if(echoCanceller) echoCanceller->Enable(!mute); int i; for(i=0;itype==STREAM_TYPE_AUDIO){ unsigned char buf[2]; buf[0]=outgoingStreams[i]->id; buf[1]=(char) (mute ? 0 : 1); SendPacketReliably(PKT_STREAM_STATE, buf, 2, .5f, 20); outgoingStreams[i]->enabled=!mute; } } } void VoIPController::UpdateAudioOutputState(){ bool areAnyAudioStreamsEnabled=false; int i; for(i=0;itype==STREAM_TYPE_AUDIO && incomingStreams[i]->enabled) areAnyAudioStreamsEnabled=true; } if(jitterBuffer){ jitterBuffer->Reset(); } if(decoder){ decoder->ResetQueue(); } if(audioOutput){ if(audioOutput->IsPlaying()!=areAnyAudioStreamsEnabled){ if(areAnyAudioStreamsEnabled) audioOutput->Start(); else audioOutput->Stop(); } } } BufferOutputStream *VoIPController::GetOutgoingPacketBuffer(){ BufferOutputStream* pkt=NULL; lock_mutex(sendBufferMutex); if(emptySendBuffers.size()>0){ pkt=emptySendBuffers[emptySendBuffers.size()-1]; emptySendBuffers.pop_back(); } unlock_mutex(sendBufferMutex); return pkt; } void VoIPController::KDF(unsigned char* msgKey, size_t x, unsigned char* aesKey, unsigned char* aesIv){ uint8_t sA[SHA1_LENGTH], sB[SHA1_LENGTH], sC[SHA1_LENGTH], sD[SHA1_LENGTH]; BufferOutputStream buf(128); buf.WriteBytes(msgKey, 16); buf.WriteBytes(encryptionKey+x, 32); crypto.sha1(buf.GetBuffer(), buf.GetLength(), sA); buf.Reset(); buf.WriteBytes(encryptionKey+32+x, 16); buf.WriteBytes(msgKey, 16); buf.WriteBytes(encryptionKey+48+x, 16); crypto.sha1(buf.GetBuffer(), buf.GetLength(), sB); buf.Reset(); buf.WriteBytes(encryptionKey+64+x, 32); buf.WriteBytes(msgKey, 16); crypto.sha1(buf.GetBuffer(), buf.GetLength(), sC); buf.Reset(); buf.WriteBytes(msgKey, 16); buf.WriteBytes(encryptionKey+96+x, 32); crypto.sha1(buf.GetBuffer(), buf.GetLength(), sD); buf.Reset(); buf.WriteBytes(sA, 8); buf.WriteBytes(sB+8, 12); buf.WriteBytes(sC+4, 12); assert(buf.GetLength()==32); memcpy(aesKey, buf.GetBuffer(), 32); buf.Reset(); buf.WriteBytes(sA+8, 12); buf.WriteBytes(sB, 8); buf.WriteBytes(sC+16, 4); buf.WriteBytes(sD, 8); assert(buf.GetLength()==32); memcpy(aesIv, buf.GetBuffer(), 32); } void VoIPController::GetDebugString(char *buffer, size_t len){ char endpointsBuf[10240]; memset(endpointsBuf, 0, 10240); int i; for(std::vector::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){ const char* type; Endpoint* endpoint=*itrtr; switch(endpoint->type){ case EP_TYPE_UDP_P2P_INET: type="UDP_P2P_INET"; break; case EP_TYPE_UDP_P2P_LAN: type="UDP_P2P_LAN"; break; case EP_TYPE_UDP_RELAY: type="UDP_RELAY"; break; case EP_TYPE_TCP_RELAY: type="TCP_RELAY"; break; default: type="UNKNOWN"; break; } if(strlen(endpointsBuf)>10240-1024) break; sprintf(endpointsBuf+strlen(endpointsBuf), "%s:%u %dms [%s%s]\n", endpoint->address.ToString().c_str(), endpoint->port, (int)(endpoint->averageRTT*1000), type, currentEndpoint==endpoint ? ", IN_USE" : ""); } double avgLate[3]; if(jitterBuffer) jitterBuffer->GetAverageLateCount(avgLate); else memset(avgLate, 0, 3*sizeof(double)); snprintf(buffer, len, "Remote endpoints: \n%s" "Jitter buffer: %d/%.2f | %.1f, %.1f, %.1f\n" "RTT avg/min: %d/%d\n" "Congestion window: %d/%d bytes\n" "Key fingerprint: %02hhX%02hhX%02hhX%02hhX%02hhX%02hhX%02hhX%02hhX\n" "Last sent/ack'd seq: %u/%u\n" "Last recvd seq: %u\n" "Send/recv losses: %u/%u (%d%%)\n" "Audio bitrate: %d kbit\n" // "Packet grouping: %d\n" "Frame size out/in: %d/%d\n" "Bytes sent/recvd: %llu/%llu", endpointsBuf, jitterBuffer ? jitterBuffer->GetMinPacketCount() : 0, jitterBuffer ? jitterBuffer->GetAverageDelay() : 0, avgLate[0], avgLate[1], avgLate[2], // (int)(GetAverageRTT()*1000), 0, (int)(conctl->GetAverageRTT()*1000), (int)(conctl->GetMinimumRTT()*1000), int(conctl->GetInflightDataSize()), int(conctl->GetCongestionWindow()), keyFingerprint[0],keyFingerprint[1],keyFingerprint[2],keyFingerprint[3],keyFingerprint[4],keyFingerprint[5],keyFingerprint[6],keyFingerprint[7], lastSentSeq, lastRemoteAckSeq, lastRemoteSeq, conctl->GetSendLossCount(), recvLossCount, encoder ? encoder->GetPacketLoss() : 0, encoder ? (encoder->GetBitrate()/1000) : 0, // audioPacketGrouping, outgoingStreams[0]->frameDuration, incomingStreams.size()>0 ? incomingStreams[0]->frameDuration : 0, (long long unsigned int)(stats.bytesSentMobile+stats.bytesSentWifi), (long long unsigned int)(stats.bytesRecvdMobile+stats.bytesRecvdWifi)); } void VoIPController::SendPublicEndpointsRequest(){ LOGI("Sending public endpoints request"); if(preferredRelay){ SendPublicEndpointsRequest(*preferredRelay); } if(peerPreferredRelay && peerPreferredRelay!=preferredRelay){ SendPublicEndpointsRequest(*peerPreferredRelay); } } void VoIPController::SendPublicEndpointsRequest(Endpoint& relay){ LOGD("Sending public endpoints request to %s:%d", relay.address.ToString().c_str(), relay.port); publicEndpointsReqTime=GetCurrentTime(); waitingForRelayPeerInfo=true; unsigned char buf[32]; memcpy(buf, relay.peerTag, 16); memset(buf+16, 0xFF, 16); NetworkPacket pkt; pkt.data=buf; pkt.length=32; pkt.address=(NetworkAddress*)&relay.address; pkt.port=relay.port; pkt.protocol=PROTO_UDP; socket->Send(&pkt); } Endpoint* VoIPController::GetEndpointByType(int type){ if(type==EP_TYPE_UDP_RELAY && preferredRelay) return preferredRelay; for(std::vector::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){ if((*itrtr)->type==type) return *itrtr; } return NULL; } float VoIPController::GetOutputLevel(){ if(!audioOutput || !audioOutStarted){ return 0.0; } return audioOutput->GetLevel(); } void VoIPController::SendPacketReliably(unsigned char type, unsigned char *data, size_t len, double retryInterval, double timeout){ LOGD("Send reliably, type=%u, len=%u, retry=%.3f, timeout=%.3f", type, unsigned(len), retryInterval, timeout); voip_queued_packet_t* pkt=(voip_queued_packet_t *) malloc(sizeof(voip_queued_packet_t)); memset(pkt, 0, sizeof(voip_queued_packet_t)); pkt->type=type; if(data){ pkt->data=(unsigned char *) malloc(len); memcpy(pkt->data, data, len); pkt->length=len; } pkt->retryInterval=retryInterval; pkt->timeout=timeout; pkt->firstSentTime=0; pkt->lastSentTime=0; lock_mutex(queuedPacketsMutex); queuedPackets.push_back(pkt); unlock_mutex(queuedPacketsMutex); } void VoIPController::SetConfig(voip_config_t *cfg){ memcpy(&config, cfg, sizeof(voip_config_t)); if(tgvoipLogFile){ fclose(tgvoipLogFile); } if(strlen(cfg->logFilePath)){ tgvoipLogFile=fopen(cfg->logFilePath, "a"); tgvoip_log_file_write_header(); } if(statsDump) fclose(statsDump); if(strlen(cfg->statsDumpFilePath)){ statsDump=fopen(cfg->statsDumpFilePath, "w"); fprintf(statsDump, "Time\tRTT\tLRSeq\tLSSeq\tLASeq\tLostR\tLostS\tCWnd\tBitrate\tLoss%%\tJitter\tJDelay\tAJDelay\n"); } UpdateDataSavingState(); UpdateAudioBitrate(); } void VoIPController::UpdateDataSavingState(){ if(config.data_saving==DATA_SAVING_ALWAYS){ dataSavingMode=true; }else if(config.data_saving==DATA_SAVING_MOBILE){ dataSavingMode=networkType==NET_TYPE_GPRS || networkType==NET_TYPE_EDGE || networkType==NET_TYPE_3G || networkType==NET_TYPE_HSPA || networkType==NET_TYPE_LTE || networkType==NET_TYPE_OTHER_MOBILE; }else{ dataSavingMode=false; } LOGI("update data saving mode, config %d, enabled %d, reqd by peer %d", config.data_saving, dataSavingMode, dataSavingRequestedByPeer); } void VoIPController::DebugCtl(int request, int param){ if(request==1){ // set bitrate maxBitrate=param; if(encoder){ encoder->SetBitrate(maxBitrate); } }else if(request==2){ // set packet loss if(encoder){ encoder->SetPacketLoss(param); } }else if(request==3){ // force enable/disable p2p allowP2p=param==1; if(!allowP2p && currentEndpoint && currentEndpoint->type!=EP_TYPE_UDP_RELAY){ currentEndpoint=preferredRelay; }else if(allowP2p){ SendPublicEndpointsRequest(); } BufferOutputStream s(4); s.WriteInt32(dataSavingMode ? INIT_FLAG_DATA_SAVING_ENABLED : 0); SendPacketReliably(PKT_NETWORK_CHANGED, s.GetBuffer(), s.GetLength(), 1, 20); }else if(request==4){ if(echoCanceller) echoCanceller->Enable(param==1); } } const char* VoIPController::GetVersion(){ return LIBTGVOIP_VERSION; } int64_t VoIPController::GetPreferredRelayID(){ if(preferredRelay) return preferredRelay->id; return 0; } int VoIPController::GetLastError(){ return lastError; } void VoIPController::GetStats(voip_stats_t *stats){ memcpy(stats, &this->stats, sizeof(voip_stats_t)); } #ifdef TGVOIP_USE_AUDIO_SESSION void VoIPController::SetAcquireAudioSession(void (^completion)(void (^)())) { this->acquireAudioSession = [completion copy]; } void VoIPController::ReleaseAudioSession(void (^completion)()) { completion(); } #endif void VoIPController::LogDebugInfo(){ std::string json="{\"endpoints\":["; for(std::vector::iterator itr=endpoints.begin();itr!=endpoints.end();++itr){ Endpoint* e=*itr; char buffer[1024]; const char* typeStr="unknown"; switch(e->type){ case EP_TYPE_UDP_RELAY: typeStr="udp_relay"; break; case EP_TYPE_UDP_P2P_INET: typeStr="udp_p2p_inet"; break; case EP_TYPE_UDP_P2P_LAN: typeStr="udp_p2p_lan"; break; case EP_TYPE_TCP_RELAY: typeStr="tcp_relay"; break; } snprintf(buffer, 1024, "{\"address\":\"%s\",\"port\":%u,\"type\":\"%s\",\"rtt\":%u%s%s}", e->address.ToString().c_str(), e->port, typeStr, (unsigned int)round(e->averageRTT*1000), currentEndpoint==&*e ? ",\"in_use\":true" : "", preferredRelay==&*e ? ",\"preferred\":true" : ""); json+=buffer; if(itr!=endpoints.end()-1) json+=","; } json+="],"; char buffer[1024]; const char* netTypeStr; switch(networkType){ case NET_TYPE_WIFI: netTypeStr="wifi"; break; case NET_TYPE_GPRS: netTypeStr="gprs"; break; case NET_TYPE_EDGE: netTypeStr="edge"; break; case NET_TYPE_3G: netTypeStr="3g"; break; case NET_TYPE_HSPA: netTypeStr="hspa"; break; case NET_TYPE_LTE: netTypeStr="lte"; break; case NET_TYPE_ETHERNET: netTypeStr="ethernet"; break; case NET_TYPE_OTHER_HIGH_SPEED: netTypeStr="other_high_speed"; break; case NET_TYPE_OTHER_LOW_SPEED: netTypeStr="other_low_speed"; break; case NET_TYPE_DIALUP: netTypeStr="dialup"; break; case NET_TYPE_OTHER_MOBILE: netTypeStr="other_mobile"; break; default: netTypeStr="unknown"; break; } snprintf(buffer, 1024, "\"time\":%u,\"network_type\":\"%s\"}", (unsigned int)time(NULL), netTypeStr); json+=buffer; debugLogs.push_back(json); } std::string VoIPController::GetDebugLog(){ std::string log="{\"events\":["; for(std::vector::iterator itr=debugLogs.begin();itr!=debugLogs.end();++itr){ log+=(*itr); if((itr+1)!=debugLogs.end()) log+=","; } log+="],\"libtgvoip_version\":\"" LIBTGVOIP_VERSION "\"}"; return log; } void VoIPController::GetDebugLog(char *buffer){ strcpy(buffer, GetDebugLog().c_str()); } size_t VoIPController::GetDebugLogLength(){ size_t len=128; for(std::vector::iterator itr=debugLogs.begin();itr!=debugLogs.end();++itr){ len+=(*itr).length()+1; } return len; } std::vector VoIPController::EnumerateAudioInputs(){ vector devs; audio::AudioInput::EnumerateDevices(devs); return devs; } std::vector VoIPController::EnumerateAudioOutputs(){ vector devs; audio::AudioOutput::EnumerateDevices(devs); return devs; } void VoIPController::SetCurrentAudioInput(std::string id){ currentAudioInput=id; if(audioInput) audioInput->SetCurrentDevice(id); } void VoIPController::SetCurrentAudioOutput(std::string id){ currentAudioOutput=id; if(audioOutput) audioOutput->SetCurrentDevice(id); } std::string VoIPController::GetCurrentAudioInputID(){ return currentAudioInput; } std::string VoIPController::GetCurrentAudioOutputID(){ return currentAudioOutput; } Endpoint::Endpoint(int64_t id, uint16_t port, IPv4Address& _address, IPv6Address& _v6address, char type, unsigned char peerTag[16]) : address(_address), v6address(_v6address){ this->id=id; this->port=port; this->type=type; memcpy(this->peerTag, peerTag, 16); LOGV("new endpoint %lld: %s:%u", (long long int)id, address.ToString().c_str(), port); lastPingSeq=0; lastPingTime=0; averageRTT=0; memset(rtts, 0, sizeof(rtts)); } Endpoint::Endpoint() : address(0), v6address("::0") { lastPingSeq=0; lastPingTime=0; averageRTT=0; memset(rtts, 0, sizeof(rtts)); } #if defined(__APPLE__) && TARGET_OS_IPHONE void VoIPController::SetRemoteEndpoints(voip_legacy_endpoint_t* buffer, size_t count, bool allowP2P){ std::vector endpoints; for(size_t i=0;iSetRemoteEndpoints(endpoints, allowP2P); } #endif