/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/render_delay_buffer.h" #include #include #include #include #include "absl/types/optional.h" #include "api/array_view.h" #include "modules/audio_processing/aec3/aec3_common.h" #include "modules/audio_processing/aec3/aec3_fft.h" #include "modules/audio_processing/aec3/decimator.h" #include "modules/audio_processing/aec3/fft_buffer.h" #include "modules/audio_processing/aec3/fft_data.h" #include "modules/audio_processing/aec3/matrix_buffer.h" #include "modules/audio_processing/aec3/vector_buffer.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/atomicops.h" #include "rtc_base/checks.h" #include "rtc_base/constructormagic.h" #include "rtc_base/logging.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { bool EnableZeroExternalDelayHeadroom() { return !field_trial::IsEnabled( "WebRTC-Aec3ZeroExternalDelayHeadroomKillSwitch"); } class RenderDelayBufferImpl final : public RenderDelayBuffer { public: RenderDelayBufferImpl(const EchoCanceller3Config& config, size_t num_bands); ~RenderDelayBufferImpl() override; void Reset() override; BufferingEvent Insert(const std::vector>& block) override; BufferingEvent PrepareCaptureProcessing() override; bool SetDelay(size_t delay) override; size_t Delay() const override { return MapInternalDelayToExternalDelay(); } size_t MaxDelay() const override { return blocks_.buffer.size() - 1 - buffer_headroom_; } RenderBuffer* GetRenderBuffer() override { return &echo_remover_buffer_; } const DownsampledRenderBuffer& GetDownsampledRenderBuffer() const override { return low_rate_; } bool CausalDelay(size_t delay) const override; void SetAudioBufferDelay(size_t delay_ms) override; private: static int instance_count_; std::unique_ptr data_dumper_; const Aec3Optimization optimization_; const EchoCanceller3Config config_; size_t down_sampling_factor_; const bool use_zero_external_delay_headroom_; const int sub_block_size_; MatrixBuffer blocks_; VectorBuffer spectra_; FftBuffer ffts_; absl::optional delay_; absl::optional internal_delay_; RenderBuffer echo_remover_buffer_; DownsampledRenderBuffer low_rate_; Decimator render_decimator_; const std::vector> zero_block_; const Aec3Fft fft_; std::vector render_ds_; const int buffer_headroom_; bool last_call_was_render_ = false; int num_api_calls_in_a_row_ = 0; int max_observed_jitter_ = 1; size_t capture_call_counter_ = 0; size_t render_call_counter_ = 0; bool render_activity_ = false; size_t render_activity_counter_ = 0; absl::optional external_audio_buffer_delay_; bool external_delay_verified_after_reset_ = false; int LowRateBufferOffset() const { return DelayEstimatorOffset(config_) >> 1; } int MapExternalDelayToInternalDelay(size_t external_delay_blocks) const; int MapInternalDelayToExternalDelay() const; void ApplyDelay(int delay); void InsertBlock(const std::vector>& block, int previous_write); bool DetectActiveRender(rtc::ArrayView x) const; RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(RenderDelayBufferImpl); }; // Increases the write indices for the render buffers. void IncreaseWriteIndices(int sub_block_size, MatrixBuffer* blocks, VectorBuffer* spectra, FftBuffer* ffts, DownsampledRenderBuffer* low_rate) { low_rate->UpdateWriteIndex(-sub_block_size); blocks->IncWriteIndex(); spectra->DecWriteIndex(); ffts->DecWriteIndex(); } // Increases the read indices for the render buffers. void IncreaseReadIndices(const absl::optional& delay, int sub_block_size, MatrixBuffer* blocks, VectorBuffer* spectra, FftBuffer* ffts, DownsampledRenderBuffer* low_rate) { RTC_DCHECK_NE(low_rate->read, low_rate->write); low_rate->UpdateReadIndex(-sub_block_size); if (blocks->read != blocks->write) { blocks->IncReadIndex(); spectra->DecReadIndex(); ffts->DecReadIndex(); } else { // Only allow underrun for blocks_ when the delay is not set. RTC_DCHECK(!delay); } } // Checks for a render buffer overrun. bool RenderOverrun(const MatrixBuffer& b, const DownsampledRenderBuffer& l) { return l.read == l.write || b.read == b.write; } // Checks for a render buffer underrun. If the delay is not specified, only the // low rate buffer underrun is counted as the delay offset for the other buffers // is unknown. bool RenderUnderrun(const absl::optional& delay, const MatrixBuffer& b, const DownsampledRenderBuffer& l) { return l.read == l.write || (delay && b.read == b.write); } // Computes the latency in the buffer (the number of unread elements). int BufferLatency(const DownsampledRenderBuffer& l) { return (l.buffer.size() + l.read - l.write) % l.buffer.size(); } // Computes the mismatch between the number of render and capture calls based on // the known offset (achieved during reset) of the low rate buffer. bool ApiCallSkew(const DownsampledRenderBuffer& low_rate_buffer, int sub_block_size, int low_rate_buffer_offset_sub_blocks) { int latency = BufferLatency(low_rate_buffer); int skew = abs(low_rate_buffer_offset_sub_blocks * sub_block_size - latency); int skew_limit = low_rate_buffer_offset_sub_blocks * sub_block_size; return skew >= skew_limit; } int RenderDelayBufferImpl::instance_count_ = 0; RenderDelayBufferImpl::RenderDelayBufferImpl(const EchoCanceller3Config& config, size_t num_bands) : data_dumper_( new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), optimization_(DetectOptimization()), config_(config), down_sampling_factor_(config.delay.down_sampling_factor), use_zero_external_delay_headroom_(EnableZeroExternalDelayHeadroom()), sub_block_size_(static_cast(down_sampling_factor_ > 0 ? kBlockSize / down_sampling_factor_ : kBlockSize)), blocks_(GetRenderDelayBufferSize(down_sampling_factor_, config.delay.num_filters, config.filter.main.length_blocks), num_bands, kBlockSize), spectra_(blocks_.buffer.size(), kFftLengthBy2Plus1), ffts_(blocks_.buffer.size()), delay_(config_.delay.default_delay), echo_remover_buffer_(&blocks_, &spectra_, &ffts_), low_rate_(GetDownSampledBufferSize(down_sampling_factor_, config.delay.num_filters)), render_decimator_(down_sampling_factor_), zero_block_(num_bands, std::vector(kBlockSize, 0.f)), fft_(), render_ds_(sub_block_size_, 0.f), buffer_headroom_(config.filter.main.length_blocks) { RTC_DCHECK_EQ(blocks_.buffer.size(), ffts_.buffer.size()); RTC_DCHECK_EQ(spectra_.buffer.size(), ffts_.buffer.size()); // Necessary condition to avoid unrecoverable echp due to noncausal alignment. RTC_DCHECK_EQ(DelayEstimatorOffset(config_), LowRateBufferOffset() * 2); Reset(); } RenderDelayBufferImpl::~RenderDelayBufferImpl() = default; // Resets the buffer delays and clears the reported delays. void RenderDelayBufferImpl::Reset() { last_call_was_render_ = false; num_api_calls_in_a_row_ = 1; // Pre-fill the low rate buffer (which is used for delay estimation) to add // headroom for the allowed api call jitter. low_rate_.read = low_rate_.OffsetIndex( low_rate_.write, LowRateBufferOffset() * sub_block_size_); // Check for any external audio buffer delay and whether it is feasible. if (external_audio_buffer_delay_) { const size_t headroom = use_zero_external_delay_headroom_ ? 0 : 2; size_t external_delay_to_set = 0; if (*external_audio_buffer_delay_ < headroom) { external_delay_to_set = 0; } else { external_delay_to_set = *external_audio_buffer_delay_ - headroom; } external_delay_to_set = std::min(external_delay_to_set, MaxDelay()); // When an external delay estimate is available, use that delay as the // initial render buffer delay. internal_delay_ = external_delay_to_set; ApplyDelay(*internal_delay_); delay_ = MapInternalDelayToExternalDelay(); external_delay_verified_after_reset_ = false; } else { // If an external delay estimate is not available, use that delay as the // initial delay. Set the render buffer delays to the default delay. ApplyDelay(config_.delay.default_delay); // Unset the delays which are set by SetDelay. delay_ = absl::nullopt; internal_delay_ = absl::nullopt; } } // Inserts a new block into the render buffers. RenderDelayBuffer::BufferingEvent RenderDelayBufferImpl::Insert( const std::vector>& block) { ++render_call_counter_; if (delay_) { if (!last_call_was_render_) { last_call_was_render_ = true; num_api_calls_in_a_row_ = 1; } else { if (++num_api_calls_in_a_row_ > max_observed_jitter_) { max_observed_jitter_ = num_api_calls_in_a_row_; RTC_LOG(LS_WARNING) << "New max number api jitter observed at render block " << render_call_counter_ << ": " << num_api_calls_in_a_row_ << " blocks"; } } } // Increase the write indices to where the new blocks should be written. const int previous_write = blocks_.write; IncreaseWriteIndices(sub_block_size_, &blocks_, &spectra_, &ffts_, &low_rate_); // Allow overrun and do a reset when render overrun occurrs due to more render // data being inserted than capture data is received. BufferingEvent event = RenderOverrun(blocks_, low_rate_) ? BufferingEvent::kRenderOverrun : BufferingEvent::kNone; // Detect and update render activity. if (!render_activity_) { render_activity_counter_ += DetectActiveRender(block[0]) ? 1 : 0; render_activity_ = render_activity_counter_ >= 20; } // Insert the new render block into the specified position. InsertBlock(block, previous_write); if (event != BufferingEvent::kNone) { Reset(); } return event; } // Prepares the render buffers for processing another capture block. RenderDelayBuffer::BufferingEvent RenderDelayBufferImpl::PrepareCaptureProcessing() { BufferingEvent event = BufferingEvent::kNone; ++capture_call_counter_; if (delay_) { if (last_call_was_render_) { last_call_was_render_ = false; num_api_calls_in_a_row_ = 1; } else { if (++num_api_calls_in_a_row_ > max_observed_jitter_) { max_observed_jitter_ = num_api_calls_in_a_row_; RTC_LOG(LS_WARNING) << "New max number api jitter observed at capture block " << capture_call_counter_ << ": " << num_api_calls_in_a_row_ << " blocks"; } } } if (RenderUnderrun(internal_delay_, blocks_, low_rate_)) { // Don't increase the read indices if there is a render underrun. event = BufferingEvent::kRenderUnderrun; } else { // Increase the read indices in the render buffers to point to the most // recent block to use in the capture processing. IncreaseReadIndices(internal_delay_, sub_block_size_, &blocks_, &spectra_, &ffts_, &low_rate_); // Check for skew in the API calls which, if too large, causes the delay // estimation to be noncausal. Doing this check after the render indice // increase saves one unit of allowed skew. Note that the skew check only // should need to be one-sided as one of the skew directions results in an // underrun. bool skew = ApiCallSkew(low_rate_, sub_block_size_, LowRateBufferOffset()); event = skew ? BufferingEvent::kApiCallSkew : BufferingEvent::kNone; } if (event != BufferingEvent::kNone) { Reset(); } echo_remover_buffer_.SetRenderActivity(render_activity_); if (render_activity_) { render_activity_counter_ = 0; render_activity_ = false; } return event; } // Sets the delay and returns a bool indicating whether the delay was changed. bool RenderDelayBufferImpl::SetDelay(size_t delay) { if (!external_delay_verified_after_reset_ && external_audio_buffer_delay_ && delay_) { int difference = static_cast(delay) - static_cast(*delay_); RTC_LOG(LS_WARNING) << "Mismatch between first estimated delay after reset " "and external delay: " << difference << " blocks"; external_delay_verified_after_reset_ = true; } if (delay_ && *delay_ == delay) { return false; } delay_ = delay; // Compute the internal delay and limit the delay to the allowed range. int internal_delay = MapExternalDelayToInternalDelay(*delay_); internal_delay_ = std::min(MaxDelay(), static_cast(std::max(internal_delay, 0))); // Apply the delay to the buffers. ApplyDelay(*internal_delay_); return true; } // Returns whether the specified delay is causal. bool RenderDelayBufferImpl::CausalDelay(size_t delay) const { // Compute the internal delay and limit the delay to the allowed range. int internal_delay = MapExternalDelayToInternalDelay(delay); internal_delay = std::min(MaxDelay(), static_cast(std::max(internal_delay, 0))); return internal_delay >= static_cast(config_.delay.min_echo_path_delay_blocks); } void RenderDelayBufferImpl::SetAudioBufferDelay(size_t delay_ms) { if (!external_audio_buffer_delay_) { RTC_LOG(LS_WARNING) << "Receiving a first reported externally buffer delay of " << delay_ms << " ms."; } // Convert delay from milliseconds to blocks (rounded down). external_audio_buffer_delay_ = delay_ms / 4; } // Maps the externally computed delay to the delay used internally. int RenderDelayBufferImpl::MapExternalDelayToInternalDelay( size_t external_delay_blocks) const { const int latency = BufferLatency(low_rate_); RTC_DCHECK_LT(0, sub_block_size_); RTC_DCHECK_EQ(0, latency % sub_block_size_); int latency_blocks = latency / sub_block_size_; return latency_blocks + static_cast(external_delay_blocks) - DelayEstimatorOffset(config_); } // Maps the internally used delay to the delay used externally. int RenderDelayBufferImpl::MapInternalDelayToExternalDelay() const { const int latency = BufferLatency(low_rate_); int latency_blocks = latency / sub_block_size_; int internal_delay = spectra_.read >= spectra_.write ? spectra_.read - spectra_.write : spectra_.size + spectra_.read - spectra_.write; return internal_delay - latency_blocks + DelayEstimatorOffset(config_); } // Set the read indices according to the delay. void RenderDelayBufferImpl::ApplyDelay(int delay) { RTC_LOG(LS_WARNING) << "Applying internal delay of " << delay << " blocks."; blocks_.read = blocks_.OffsetIndex(blocks_.write, -delay); spectra_.read = spectra_.OffsetIndex(spectra_.write, delay); ffts_.read = ffts_.OffsetIndex(ffts_.write, delay); } // Inserts a block into the render buffers. void RenderDelayBufferImpl::InsertBlock( const std::vector>& block, int previous_write) { auto& b = blocks_; auto& lr = low_rate_; auto& ds = render_ds_; auto& f = ffts_; auto& s = spectra_; RTC_DCHECK_EQ(block.size(), b.buffer[b.write].size()); for (size_t k = 0; k < block.size(); ++k) { RTC_DCHECK_EQ(block[k].size(), b.buffer[b.write][k].size()); std::copy(block[k].begin(), block[k].end(), b.buffer[b.write][k].begin()); } data_dumper_->DumpWav("aec3_render_decimator_input", block[0].size(), block[0].data(), 16000, 1); render_decimator_.Decimate(block[0], ds); data_dumper_->DumpWav("aec3_render_decimator_output", ds.size(), ds.data(), 16000 / down_sampling_factor_, 1); std::copy(ds.rbegin(), ds.rend(), lr.buffer.begin() + lr.write); fft_.PaddedFft(block[0], b.buffer[previous_write][0], &f.buffer[f.write]); f.buffer[f.write].Spectrum(optimization_, s.buffer[s.write]); } bool RenderDelayBufferImpl::DetectActiveRender( rtc::ArrayView x) const { const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f); return x_energy > (config_.render_levels.active_render_limit * config_.render_levels.active_render_limit) * kFftLengthBy2; } } // namespace int RenderDelayBuffer::RenderDelayBuffer::DelayEstimatorOffset( const EchoCanceller3Config& config) { return config.delay.api_call_jitter_blocks * 2; } RenderDelayBuffer* RenderDelayBuffer::Create(const EchoCanceller3Config& config, size_t num_bands) { return new RenderDelayBufferImpl(config, num_bands); } } // namespace webrtc