mirror of
https://github.com/danog/libtgvoip.git
synced 2025-01-08 13:48:41 +01:00
f7ff6409df
But in the end, it doesn't even matter
😭
572 lines
18 KiB
C++
Executable File
572 lines
18 KiB
C++
Executable File
/*
|
|
C++ version:
|
|
Copyright (c) 2016 Edouard M. Griffiths. All rights reserved.
|
|
|
|
Copyright (c) 2015 Christopher A. Taylor. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
* Neither the name of CM256 nor the names of its contributors may be
|
|
used to endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "cm256.h"
|
|
|
|
CM256::CM256()
|
|
{
|
|
m_initialized = m_gf256Ctx.isInitialized();
|
|
}
|
|
|
|
CM256::~CM256()
|
|
{
|
|
}
|
|
|
|
/*
|
|
GF(256) Cauchy Matrix Overview
|
|
|
|
As described on Wikipedia, each element of a normal Cauchy matrix is defined as:
|
|
|
|
a_ij = 1 / (x_i - y_j)
|
|
The arrays x_i and y_j are vector parameters of the matrix.
|
|
The values in x_i cannot be reused in y_j.
|
|
|
|
Moving beyond the Wikipedia...
|
|
|
|
(1) Number of rows (R) is the range of i, and number of columns (C) is the range of j.
|
|
|
|
(2) Being able to select x_i and y_j makes Cauchy matrices more flexible in practice
|
|
than Vandermonde matrices, which only have one parameter per row.
|
|
|
|
(3) Cauchy matrices are always invertible, AKA always full rank, AKA when treated as
|
|
as linear system y = M*x, the linear system has a single solution.
|
|
|
|
(4) A Cauchy matrix concatenated below a square CxC identity matrix always has rank C,
|
|
Meaning that any R rows can be eliminated from the concatenated matrix and the
|
|
matrix will still be invertible. This is how Reed-Solomon erasure codes work.
|
|
|
|
(5) Any row or column can be multiplied by non-zero values, and the resulting matrix
|
|
is still full rank. This is true for any matrix, since it is effectively the same
|
|
as pre and post multiplying by diagonal matrices, which are always invertible.
|
|
|
|
(6) Matrix elements with a value of 1 are much faster to operate on than other values.
|
|
For instance a matrix of [1, 1, 1, 1, 1] is invertible and much faster for various
|
|
purposes than [2, 2, 2, 2, 2].
|
|
|
|
(7) For GF(256) matrices, the symbols in x_i and y_j are selected from the numbers
|
|
0...255, and so the number of rows + number of columns may not exceed 256.
|
|
Note that values in x_i and y_j may not be reused as stated above.
|
|
|
|
In summary, Cauchy matrices
|
|
are preferred over Vandermonde matrices. (2)
|
|
are great for MDS erasure codes. (3) and (4)
|
|
should be optimized to include more 1 elements. (5) and (6)
|
|
have a limited size in GF(256), rows+cols <= 256. (7)
|
|
*/
|
|
|
|
/*
|
|
Selected Cauchy Matrix Form
|
|
|
|
The matrix consists of elements a_ij, where i = row, j = column.
|
|
a_ij = 1 / (x_i - y_j), where x_i and y_j are sets of GF(256) values
|
|
that do not intersect.
|
|
|
|
We select x_i and y_j to just be incrementing numbers for the
|
|
purposes of this library. Further optimizations may yield matrices
|
|
with more 1 elements, but the benefit seems relatively small.
|
|
|
|
The x_i values range from 0...(originalCount - 1).
|
|
The y_j values range from originalCount...(originalCount + recoveryCount - 1).
|
|
|
|
We then improve the Cauchy matrix by dividing each column by the
|
|
first row element of that column. The result is an invertible
|
|
matrix that has all 1 elements in the first row. This is equivalent
|
|
to a rotated Vandermonde matrix, so we could have used one of those.
|
|
|
|
The advantage of doing this is that operations involving the first
|
|
row will be extremely fast (just memory XOR), so the decoder can
|
|
be optimized to take advantage of the shortcut when the first
|
|
recovery row can be used.
|
|
|
|
First row element of Cauchy matrix for each column:
|
|
a_0j = 1 / (x_0 - y_j) = 1 / (x_0 - y_j)
|
|
|
|
Our Cauchy matrix sets first row to ones, so:
|
|
a_ij = (1 / (x_i - y_j)) / a_0j
|
|
a_ij = (y_j - x_0) / (x_i - y_j)
|
|
a_ij = (y_j + x_0) div (x_i + y_j) in GF(256)
|
|
*/
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Encoding
|
|
|
|
void CM256::cm256_encode_block(
|
|
cm256_encoder_params params, // Encoder parameters
|
|
cm256_block* originals, // Array of pointers to original blocks
|
|
int recoveryBlockIndex, // Return value from cm256_get_recovery_block_index()
|
|
void* recoveryBlock) // Output recovery block
|
|
{
|
|
// If only one block of input data,
|
|
if (params.OriginalCount == 1)
|
|
{
|
|
// No meaningful operation here, degenerate to outputting the same data each time.
|
|
|
|
memcpy(recoveryBlock, originals[0].Block, params.BlockBytes);
|
|
return;
|
|
}
|
|
// else OriginalCount >= 2:
|
|
|
|
// Unroll first row of recovery matrix:
|
|
// The matrix we generate for the first row is all ones,
|
|
// so it is merely a parity of the original data.
|
|
if (recoveryBlockIndex == params.OriginalCount)
|
|
{
|
|
gf256_ctx::gf256_addset_mem(recoveryBlock, originals[0].Block, originals[1].Block, params.BlockBytes);
|
|
for (int j = 2; j < params.OriginalCount; ++j)
|
|
{
|
|
gf256_ctx::gf256_add_mem(recoveryBlock, originals[j].Block, params.BlockBytes);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// TBD: Faster algorithms seem to exist for computing this matrix-vector product.
|
|
|
|
// Start the x_0 values arbitrarily from the original count.
|
|
const uint8_t x_0 = static_cast<uint8_t>(params.OriginalCount);
|
|
|
|
// For other rows:
|
|
{
|
|
const uint8_t x_i = static_cast<uint8_t>(recoveryBlockIndex);
|
|
|
|
// Unroll first operation for speed
|
|
{
|
|
const uint8_t y_0 = 0;
|
|
const uint8_t matrixElement = m_gf256Ctx.getMatrixElement(x_i, x_0, y_0);
|
|
|
|
m_gf256Ctx.gf256_mul_mem(recoveryBlock, originals[0].Block, matrixElement, params.BlockBytes);
|
|
}
|
|
|
|
// For each original data column,
|
|
for (int j = 1; j < params.OriginalCount; ++j)
|
|
{
|
|
const uint8_t y_j = static_cast<uint8_t>(j);
|
|
const uint8_t matrixElement = m_gf256Ctx.getMatrixElement(x_i, x_0, y_j);
|
|
|
|
m_gf256Ctx.gf256_muladd_mem(recoveryBlock, matrixElement, originals[j].Block, params.BlockBytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
int CM256::cm256_encode(
|
|
cm256_encoder_params params, // Encoder params
|
|
cm256_block* originals, // Array of pointers to original blocks
|
|
void* recoveryBlocks) // Output recovery blocks end-to-end
|
|
{
|
|
// Validate input:
|
|
if (params.OriginalCount <= 0 ||
|
|
params.RecoveryCount <= 0 ||
|
|
params.BlockBytes <= 0)
|
|
{
|
|
return -1;
|
|
}
|
|
if (params.OriginalCount + params.RecoveryCount > 256)
|
|
{
|
|
return -2;
|
|
}
|
|
if (!originals || !recoveryBlocks)
|
|
{
|
|
return -3;
|
|
}
|
|
|
|
uint8_t* recoveryBlock = static_cast<uint8_t*>(recoveryBlocks);
|
|
|
|
for (int block = 0; block < params.RecoveryCount; ++block, recoveryBlock += params.BlockBytes)
|
|
{
|
|
cm256_encode_block(params, originals, (params.OriginalCount + block), recoveryBlock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Decoding
|
|
|
|
CM256::CM256Decoder::CM256Decoder(gf256_ctx& gf256Ctx) :
|
|
RecoveryCount(0),
|
|
OriginalCount(0),
|
|
m_gf256Ctx(gf256Ctx)
|
|
{
|
|
}
|
|
|
|
CM256::CM256Decoder::~CM256Decoder()
|
|
{
|
|
}
|
|
|
|
bool CM256::CM256Decoder::Initialize(cm256_encoder_params& params, cm256_block* blocks)
|
|
{
|
|
Params = params;
|
|
|
|
cm256_block* block = blocks;
|
|
OriginalCount = 0;
|
|
RecoveryCount = 0;
|
|
|
|
// Initialize erasures to zeros
|
|
for (int ii = 0; ii < params.OriginalCount; ++ii)
|
|
{
|
|
ErasuresIndices[ii] = 0;
|
|
}
|
|
|
|
// For each input block,
|
|
for (int ii = 0; ii < params.OriginalCount; ++ii, ++block)
|
|
{
|
|
int row = block->Index;
|
|
|
|
// If it is an original block,
|
|
if (row < params.OriginalCount)
|
|
{
|
|
Original[OriginalCount++] = block;
|
|
|
|
if (ErasuresIndices[row] != 0)
|
|
{
|
|
// Error out if two row indices repeat
|
|
return false;
|
|
}
|
|
|
|
ErasuresIndices[row] = 1;
|
|
}
|
|
else
|
|
{
|
|
Recovery[RecoveryCount++] = block;
|
|
}
|
|
}
|
|
|
|
// Identify erasures
|
|
for (int ii = 0, indexCount = 0; ii < 256; ++ii)
|
|
{
|
|
if (!ErasuresIndices[ii])
|
|
{
|
|
ErasuresIndices[indexCount] = static_cast<uint8_t>( ii );
|
|
|
|
if (++indexCount >= RecoveryCount)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CM256::CM256Decoder::DecodeM1()
|
|
{
|
|
// XOR all other blocks into the recovery block
|
|
uint8_t* outBlock = static_cast<uint8_t*>(Recovery[0]->Block);
|
|
const uint8_t* inBlock = nullptr;
|
|
|
|
// For each block,
|
|
for (int ii = 0; ii < OriginalCount; ++ii)
|
|
{
|
|
const uint8_t* inBlock2 = static_cast<const uint8_t*>(Original[ii]->Block);
|
|
|
|
if (!inBlock)
|
|
{
|
|
inBlock = inBlock2;
|
|
}
|
|
else
|
|
{
|
|
// outBlock ^= inBlock ^ inBlock2
|
|
gf256_ctx::gf256_add2_mem(outBlock, inBlock, inBlock2, Params.BlockBytes);
|
|
inBlock = nullptr;
|
|
}
|
|
}
|
|
|
|
// Complete XORs
|
|
if (inBlock)
|
|
{
|
|
gf256_ctx::gf256_add_mem(outBlock, inBlock, Params.BlockBytes);
|
|
}
|
|
|
|
// Recover the index it corresponds to
|
|
Recovery[0]->Index = ErasuresIndices[0];
|
|
}
|
|
|
|
// Generate the LU decomposition of the matrix
|
|
void CM256::CM256Decoder::GenerateLDUDecomposition(uint8_t* matrix_L, uint8_t* diag_D, uint8_t* matrix_U)
|
|
{
|
|
// Schur-type-direct-Cauchy algorithm 2.5 from
|
|
// "Pivoting and Backward Stability of Fast Algorithms for Solving Cauchy Linear Equations"
|
|
// T. Boros, T. Kailath, V. Olshevsky
|
|
// Modified for practical use. I folded the diagonal parts of U/L matrices into the
|
|
// diagonal one to reduce the number of multiplications to perform against the input data,
|
|
// and organized the triangle matrices in memory to allow for faster SSE3 GF multiplications.
|
|
|
|
// Matrix size NxN
|
|
const int N = RecoveryCount;
|
|
|
|
// Generators
|
|
uint8_t g[256], b[256];
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
g[i] = 1;
|
|
b[i] = 1;
|
|
}
|
|
|
|
// Temporary buffer for rotated row of U matrix
|
|
// This allows for faster GF bulk multiplication
|
|
uint8_t rotated_row_U[256];
|
|
uint8_t* last_U = matrix_U + ((N - 1) * N) / 2 - 1;
|
|
int firstOffset_U = 0;
|
|
|
|
// Start the x_0 values arbitrarily from the original count.
|
|
const uint8_t x_0 = static_cast<uint8_t>(Params.OriginalCount);
|
|
|
|
// Unrolling k = 0 just makes it slower for some reason.
|
|
for (int k = 0; k < N - 1; ++k)
|
|
{
|
|
const uint8_t x_k = Recovery[k]->Index;
|
|
const uint8_t y_k = ErasuresIndices[k];
|
|
|
|
// D_kk = (x_k + y_k)
|
|
// L_kk = g[k] / (x_k + y_k)
|
|
// U_kk = b[k] * (x_0 + y_k) / (x_k + y_k)
|
|
const uint8_t D_kk = gf256_ctx::gf256_add(x_k, y_k);
|
|
const uint8_t L_kk = m_gf256Ctx.gf256_div(g[k], D_kk);
|
|
const uint8_t U_kk = m_gf256Ctx.gf256_mul(m_gf256Ctx.gf256_div(b[k], D_kk), gf256_ctx::gf256_add(x_0, y_k));
|
|
|
|
// diag_D[k] = D_kk * L_kk * U_kk
|
|
diag_D[k] = m_gf256Ctx.gf256_mul(D_kk, m_gf256Ctx.gf256_mul(L_kk, U_kk));
|
|
|
|
// Computing the k-th row of L and U
|
|
uint8_t* row_L = matrix_L;
|
|
uint8_t* row_U = rotated_row_U;
|
|
for (int j = k + 1; j < N; ++j)
|
|
{
|
|
const uint8_t x_j = Recovery[j]->Index;
|
|
const uint8_t y_j = ErasuresIndices[j];
|
|
|
|
// L_jk = g[j] / (x_j + y_k)
|
|
// U_kj = b[j] / (x_k + y_j)
|
|
const uint8_t L_jk = m_gf256Ctx.gf256_div(g[j], gf256_ctx::gf256_add(x_j, y_k));
|
|
const uint8_t U_kj = m_gf256Ctx.gf256_div(b[j], gf256_ctx::gf256_add(x_k, y_j));
|
|
|
|
*matrix_L++ = L_jk;
|
|
*row_U++ = U_kj;
|
|
|
|
// g[j] = g[j] * (x_j + x_k) / (x_j + y_k)
|
|
// b[j] = b[j] * (y_j + y_k) / (y_j + x_k)
|
|
g[j] = m_gf256Ctx.gf256_mul(g[j], m_gf256Ctx.gf256_div(gf256_ctx::gf256_add(x_j, x_k), gf256_ctx::gf256_add(x_j, y_k)));
|
|
b[j] = m_gf256Ctx.gf256_mul(b[j], m_gf256Ctx.gf256_div(gf256_ctx::gf256_add(y_j, y_k), gf256_ctx::gf256_add(y_j, x_k)));
|
|
}
|
|
|
|
// Do these row/column divisions in bulk for speed.
|
|
// L_jk /= L_kk
|
|
// U_kj /= U_kk
|
|
const int count = N - (k + 1);
|
|
m_gf256Ctx.gf256_div_mem(row_L, row_L, L_kk, count);
|
|
m_gf256Ctx.gf256_div_mem(rotated_row_U, rotated_row_U, U_kk, count);
|
|
|
|
// Copy U matrix row into place in memory.
|
|
uint8_t* output_U = last_U + firstOffset_U;
|
|
row_U = rotated_row_U;
|
|
for (int j = k + 1; j < N; ++j)
|
|
{
|
|
*output_U = *row_U++;
|
|
output_U -= j;
|
|
}
|
|
firstOffset_U -= k + 2;
|
|
}
|
|
|
|
// Multiply diagonal matrix into U
|
|
uint8_t* row_U = matrix_U;
|
|
for (int j = N - 1; j > 0; --j)
|
|
{
|
|
const uint8_t y_j = ErasuresIndices[j];
|
|
const int count = j;
|
|
|
|
m_gf256Ctx.gf256_mul_mem(row_U, row_U, gf256_ctx::gf256_add(x_0, y_j), count);
|
|
row_U += count;
|
|
}
|
|
|
|
const uint8_t x_n = Recovery[N - 1]->Index;
|
|
const uint8_t y_n = ErasuresIndices[N - 1];
|
|
|
|
// D_nn = 1 / (x_n + y_n)
|
|
// L_nn = g[N-1]
|
|
// U_nn = b[N-1] * (x_0 + y_n)
|
|
const uint8_t L_nn = g[N - 1];
|
|
const uint8_t U_nn = m_gf256Ctx.gf256_mul(b[N - 1], gf256_ctx::gf256_add(x_0, y_n));
|
|
|
|
// diag_D[N-1] = L_nn * D_nn * U_nn
|
|
diag_D[N - 1] = m_gf256Ctx.gf256_div(m_gf256Ctx.gf256_mul(L_nn, U_nn), gf256_ctx::gf256_add(x_n, y_n));
|
|
}
|
|
|
|
void CM256::CM256Decoder::Decode()
|
|
{
|
|
// Matrix size is NxN, where N is the number of recovery blocks used.
|
|
const int N = RecoveryCount;
|
|
|
|
// Start the x_0 values arbitrarily from the original count.
|
|
const uint8_t x_0 = static_cast<uint8_t>(Params.OriginalCount);
|
|
|
|
// Eliminate original data from the the recovery rows
|
|
for (int originalIndex = 0; originalIndex < OriginalCount; ++originalIndex)
|
|
{
|
|
const uint8_t* inBlock = static_cast<const uint8_t*>(Original[originalIndex]->Block);
|
|
const uint8_t inRow = Original[originalIndex]->Index;
|
|
|
|
for (int recoveryIndex = 0; recoveryIndex < N; ++recoveryIndex)
|
|
{
|
|
uint8_t* outBlock = static_cast<uint8_t*>(Recovery[recoveryIndex]->Block);
|
|
const uint8_t x_i = Recovery[recoveryIndex]->Index;
|
|
const uint8_t y_j = inRow;
|
|
const uint8_t matrixElement = m_gf256Ctx.getMatrixElement(x_i, x_0, y_j);
|
|
|
|
m_gf256Ctx.gf256_muladd_mem(outBlock, matrixElement, inBlock, Params.BlockBytes);
|
|
}
|
|
}
|
|
|
|
// Allocate matrix
|
|
static const int StackAllocSize = 2048;
|
|
uint8_t stackMatrix[StackAllocSize];
|
|
uint8_t* dynamicMatrix = nullptr;
|
|
uint8_t* matrix = stackMatrix;
|
|
const int requiredSpace = N * N;
|
|
if (requiredSpace > StackAllocSize)
|
|
{
|
|
dynamicMatrix = new uint8_t[requiredSpace];
|
|
matrix = dynamicMatrix;
|
|
}
|
|
|
|
/*
|
|
Compute matrix decomposition:
|
|
|
|
G = L * D * U
|
|
|
|
L is lower-triangular, diagonal is all ones.
|
|
D is a diagonal matrix.
|
|
U is upper-triangular, diagonal is all ones.
|
|
*/
|
|
uint8_t* matrix_U = matrix;
|
|
uint8_t* diag_D = matrix_U + (N - 1) * N / 2;
|
|
uint8_t* matrix_L = diag_D + N;
|
|
GenerateLDUDecomposition(matrix_L, diag_D, matrix_U);
|
|
|
|
/*
|
|
Eliminate lower left triangle.
|
|
*/
|
|
// For each column,
|
|
for (int j = 0; j < N - 1; ++j)
|
|
{
|
|
const void* block_j = Recovery[j]->Block;
|
|
|
|
// For each row,
|
|
for (int i = j + 1; i < N; ++i)
|
|
{
|
|
void* block_i = Recovery[i]->Block;
|
|
const uint8_t c_ij = *matrix_L++; // Matrix elements are stored column-first, top-down.
|
|
|
|
m_gf256Ctx.gf256_muladd_mem(block_i, c_ij, block_j, Params.BlockBytes);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Eliminate diagonal.
|
|
*/
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
void* block = Recovery[i]->Block;
|
|
|
|
Recovery[i]->Index = ErasuresIndices[i];
|
|
|
|
m_gf256Ctx.gf256_div_mem(block, block, diag_D[i], Params.BlockBytes);
|
|
}
|
|
|
|
/*
|
|
Eliminate upper right triangle.
|
|
*/
|
|
for (int j = N - 1; j >= 1; --j)
|
|
{
|
|
const void* block_j = Recovery[j]->Block;
|
|
|
|
for (int i = j - 1; i >= 0; --i)
|
|
{
|
|
void* block_i = Recovery[i]->Block;
|
|
const uint8_t c_ij = *matrix_U++; // Matrix elements are stored column-first, bottom-up.
|
|
|
|
m_gf256Ctx.gf256_muladd_mem(block_i, c_ij, block_j, Params.BlockBytes);
|
|
}
|
|
}
|
|
|
|
delete[] dynamicMatrix;
|
|
}
|
|
|
|
int CM256::cm256_decode(
|
|
cm256_encoder_params params, // Encoder params
|
|
cm256_block* blocks) // Array of 'originalCount' blocks as described above
|
|
{
|
|
if (params.OriginalCount <= 0 ||
|
|
params.RecoveryCount <= 0 ||
|
|
params.BlockBytes <= 0)
|
|
{
|
|
return -1;
|
|
}
|
|
if (params.OriginalCount + params.RecoveryCount > 256)
|
|
{
|
|
return -2;
|
|
}
|
|
if (!blocks)
|
|
{
|
|
return -3;
|
|
}
|
|
|
|
// If there is only one block,
|
|
if (params.OriginalCount == 1)
|
|
{
|
|
// It is the same block repeated
|
|
blocks[0].Index = 0;
|
|
return 0;
|
|
}
|
|
|
|
CM256Decoder state(m_gf256Ctx);
|
|
if (!state.Initialize(params, blocks))
|
|
{
|
|
return -5;
|
|
}
|
|
|
|
// If nothing is erased,
|
|
if (state.RecoveryCount <= 0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
// If m=1,
|
|
if (params.RecoveryCount == 1)
|
|
{
|
|
state.DecodeM1();
|
|
return 0;
|
|
}
|
|
|
|
// Decode for m>1
|
|
state.Decode();
|
|
return 0;
|
|
}
|