mirror of
https://github.com/danog/libtgvoip.git
synced 2024-12-02 09:37:52 +01:00
5caaaafa42
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
228 lines
6.4 KiB
C++
228 lines
6.4 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#if defined(WEBRTC_POSIX)
|
|
#include <sys/time.h>
|
|
#if defined(WEBRTC_MAC)
|
|
#include <mach/mach_time.h>
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
// clang-format off
|
|
// clang formatting would put <windows.h> last,
|
|
// which leads to compilation failure.
|
|
#include <windows.h>
|
|
#include <mmsystem.h>
|
|
#include <sys/timeb.h>
|
|
// clang-format on
|
|
#endif
|
|
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/timeutils.h"
|
|
|
|
namespace rtc {
|
|
|
|
ClockInterface* g_clock = nullptr;
|
|
|
|
ClockInterface* SetClockForTesting(ClockInterface* clock) {
|
|
ClockInterface* prev = g_clock;
|
|
g_clock = clock;
|
|
return prev;
|
|
}
|
|
|
|
ClockInterface* GetClockForTesting() {
|
|
return g_clock;
|
|
}
|
|
|
|
int64_t SystemTimeNanos() {
|
|
int64_t ticks;
|
|
#if defined(WEBRTC_MAC)
|
|
static mach_timebase_info_data_t timebase;
|
|
if (timebase.denom == 0) {
|
|
// Get the timebase if this is the first time we run.
|
|
// Recommended by Apple's QA1398.
|
|
if (mach_timebase_info(&timebase) != KERN_SUCCESS) {
|
|
RTC_NOTREACHED();
|
|
}
|
|
}
|
|
// Use timebase to convert absolute time tick units into nanoseconds.
|
|
const auto mul = [](uint64_t a, uint32_t b) -> int64_t {
|
|
RTC_DCHECK_NE(b, 0);
|
|
RTC_DCHECK_LE(a, std::numeric_limits<int64_t>::max() / b)
|
|
<< "The multiplication " << a << " * " << b << " overflows";
|
|
return rtc::dchecked_cast<int64_t>(a * b);
|
|
};
|
|
ticks = mul(mach_absolute_time(), timebase.numer) / timebase.denom;
|
|
#elif defined(WEBRTC_POSIX)
|
|
struct timespec ts;
|
|
// TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not
|
|
// supported?
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) +
|
|
static_cast<int64_t>(ts.tv_nsec);
|
|
#elif defined(WEBRTC_WIN)
|
|
static volatile LONG last_timegettime = 0;
|
|
static volatile int64_t num_wrap_timegettime = 0;
|
|
volatile LONG* last_timegettime_ptr = &last_timegettime;
|
|
DWORD now = timeGetTime();
|
|
// Atomically update the last gotten time
|
|
DWORD old = InterlockedExchange(last_timegettime_ptr, now);
|
|
if (now < old) {
|
|
// If now is earlier than old, there may have been a race between threads.
|
|
// 0x0fffffff ~3.1 days, the code will not take that long to execute
|
|
// so it must have been a wrap around.
|
|
if (old > 0xf0000000 && now < 0x0fffffff) {
|
|
num_wrap_timegettime++;
|
|
}
|
|
}
|
|
ticks = now + (num_wrap_timegettime << 32);
|
|
// TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're
|
|
// just wasting a multiply and divide when doing Time() on Windows.
|
|
ticks = ticks * kNumNanosecsPerMillisec;
|
|
#else
|
|
#error Unsupported platform.
|
|
#endif
|
|
return ticks;
|
|
}
|
|
|
|
int64_t SystemTimeMillis() {
|
|
return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec);
|
|
}
|
|
|
|
int64_t TimeNanos() {
|
|
if (g_clock) {
|
|
return g_clock->TimeNanos();
|
|
}
|
|
return SystemTimeNanos();
|
|
}
|
|
|
|
uint32_t Time32() {
|
|
return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
|
|
}
|
|
|
|
int64_t TimeMillis() {
|
|
return TimeNanos() / kNumNanosecsPerMillisec;
|
|
}
|
|
|
|
int64_t TimeMicros() {
|
|
return TimeNanos() / kNumNanosecsPerMicrosec;
|
|
}
|
|
|
|
int64_t TimeAfter(int64_t elapsed) {
|
|
RTC_DCHECK_GE(elapsed, 0);
|
|
return TimeMillis() + elapsed;
|
|
}
|
|
|
|
int32_t TimeDiff32(uint32_t later, uint32_t earlier) {
|
|
return later - earlier;
|
|
}
|
|
|
|
int64_t TimeDiff(int64_t later, int64_t earlier) {
|
|
return later - earlier;
|
|
}
|
|
|
|
TimestampWrapAroundHandler::TimestampWrapAroundHandler()
|
|
: last_ts_(0), num_wrap_(-1) {}
|
|
|
|
int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
|
|
if (num_wrap_ == -1) {
|
|
last_ts_ = ts;
|
|
num_wrap_ = 0;
|
|
return ts;
|
|
}
|
|
|
|
if (ts < last_ts_) {
|
|
if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff)
|
|
++num_wrap_;
|
|
} else if ((ts - last_ts_) > 0xf0000000) {
|
|
// Backwards wrap. Unwrap with last wrap count and don't update last_ts_.
|
|
return ts + ((num_wrap_ - 1) << 32);
|
|
}
|
|
|
|
last_ts_ = ts;
|
|
return ts + (num_wrap_ << 32);
|
|
}
|
|
|
|
int64_t TmToSeconds(const tm& tm) {
|
|
static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
|
static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151,
|
|
181, 212, 243, 273, 304, 334};
|
|
int year = tm.tm_year + 1900;
|
|
int month = tm.tm_mon;
|
|
int day = tm.tm_mday - 1; // Make 0-based like the rest.
|
|
int hour = tm.tm_hour;
|
|
int min = tm.tm_min;
|
|
int sec = tm.tm_sec;
|
|
|
|
bool expiry_in_leap_year =
|
|
(year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
|
|
|
|
if (year < 1970)
|
|
return -1;
|
|
if (month < 0 || month > 11)
|
|
return -1;
|
|
if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
|
|
return -1;
|
|
if (hour < 0 || hour > 23)
|
|
return -1;
|
|
if (min < 0 || min > 59)
|
|
return -1;
|
|
if (sec < 0 || sec > 59)
|
|
return -1;
|
|
|
|
day += cumul_mdays[month];
|
|
|
|
// Add number of leap days between 1970 and the expiration year, inclusive.
|
|
day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
|
|
(year / 400 - 1970 / 400));
|
|
|
|
// We will have added one day too much above if expiration is during a leap
|
|
// year, and expiration is in January or February.
|
|
if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based.
|
|
day -= 1;
|
|
|
|
// Combine all variables into seconds from 1970-01-01 00:00 (except |month|
|
|
// which was accumulated into |day| above).
|
|
return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 +
|
|
min) *
|
|
60 +
|
|
sec;
|
|
}
|
|
|
|
int64_t TimeUTCMicros() {
|
|
if (g_clock) {
|
|
return g_clock->TimeNanos() / kNumNanosecsPerMicrosec;
|
|
}
|
|
#if defined(WEBRTC_POSIX)
|
|
struct timeval time;
|
|
gettimeofday(&time, nullptr);
|
|
// Convert from second (1.0) and microsecond (1e-6).
|
|
return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec +
|
|
time.tv_usec);
|
|
|
|
#elif defined(WEBRTC_WIN)
|
|
struct _timeb time;
|
|
_ftime(&time);
|
|
// Convert from second (1.0) and milliseconds (1e-3).
|
|
return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec +
|
|
static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec);
|
|
#endif
|
|
}
|
|
|
|
int64_t TimeUTCMillis() {
|
|
return TimeUTCMicros() / kNumMicrosecsPerMillisec;
|
|
}
|
|
|
|
} // namespace rtc
|