mirror of
https://github.com/danog/libtgvoip.git
synced 2025-01-10 06:38:22 +01:00
5caaaafa42
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
221 lines
9.3 KiB
C
221 lines
9.3 KiB
C
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#if defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)
|
|
|
|
#include "common_audio/signal_processing/include/signal_processing_library.h"
|
|
|
|
#include <arm_neon.h>
|
|
|
|
// NEON intrinsics version of WebRtcSpl_DownsampleFast()
|
|
// for ARM 32-bit/64-bit platforms.
|
|
int WebRtcSpl_DownsampleFastNeon(const int16_t* data_in,
|
|
size_t data_in_length,
|
|
int16_t* data_out,
|
|
size_t data_out_length,
|
|
const int16_t* __restrict coefficients,
|
|
size_t coefficients_length,
|
|
int factor,
|
|
size_t delay) {
|
|
size_t i = 0;
|
|
size_t j = 0;
|
|
int32_t out_s32 = 0;
|
|
size_t endpos = delay + factor * (data_out_length - 1) + 1;
|
|
size_t res = data_out_length & 0x7;
|
|
size_t endpos1 = endpos - factor * res;
|
|
|
|
// Return error if any of the running conditions doesn't meet.
|
|
if (data_out_length == 0 || coefficients_length == 0
|
|
|| data_in_length < endpos) {
|
|
return -1;
|
|
}
|
|
|
|
// First part, unroll the loop 8 times, with 3 subcases
|
|
// (factor == 2, 4, others).
|
|
switch (factor) {
|
|
case 2: {
|
|
for (i = delay; i < endpos1; i += 16) {
|
|
// Round value, 0.5 in Q12.
|
|
int32x4_t out32x4_0 = vdupq_n_s32(2048);
|
|
int32x4_t out32x4_1 = vdupq_n_s32(2048);
|
|
|
|
#if defined(WEBRTC_ARCH_ARM64)
|
|
// Unroll the loop 2 times.
|
|
for (j = 0; j < coefficients_length - 1; j += 2) {
|
|
int32x2_t coeff32 = vld1_dup_s32((int32_t*)&coefficients[j]);
|
|
int16x4_t coeff16x4 = vreinterpret_s16_s32(coeff32);
|
|
int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j - 1]);
|
|
|
|
// Mul and accumulate low 64-bit data.
|
|
int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]);
|
|
int16x4_t in16x4_1 = vget_low_s16(in16x8x2.val[1]);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 1);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_1, coeff16x4, 0);
|
|
|
|
// Mul and accumulate high 64-bit data.
|
|
// TODO: vget_high_s16 need extra cost on ARM64. This could be
|
|
// replaced by vmlal_high_lane_s16. But for the interface of
|
|
// vmlal_high_lane_s16, there is a bug in gcc 4.9.
|
|
// This issue need to be tracked in the future.
|
|
int16x4_t in16x4_2 = vget_high_s16(in16x8x2.val[0]);
|
|
int16x4_t in16x4_3 = vget_high_s16(in16x8x2.val[1]);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_2, coeff16x4, 1);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_3, coeff16x4, 0);
|
|
}
|
|
|
|
for (; j < coefficients_length; j++) {
|
|
int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]);
|
|
int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j]);
|
|
|
|
// Mul and accumulate low 64-bit data.
|
|
int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0);
|
|
|
|
// Mul and accumulate high 64-bit data.
|
|
// TODO: vget_high_s16 need extra cost on ARM64. This could be
|
|
// replaced by vmlal_high_lane_s16. But for the interface of
|
|
// vmlal_high_lane_s16, there is a bug in gcc 4.9.
|
|
// This issue need to be tracked in the future.
|
|
int16x4_t in16x4_1 = vget_high_s16(in16x8x2.val[0]);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0);
|
|
}
|
|
#else
|
|
// On ARMv7, the loop unrolling 2 times results in performance
|
|
// regression.
|
|
for (j = 0; j < coefficients_length; j++) {
|
|
int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]);
|
|
int16x8x2_t in16x8x2 = vld2q_s16(&data_in[i - j]);
|
|
|
|
// Mul and accumulate.
|
|
int16x4_t in16x4_0 = vget_low_s16(in16x8x2.val[0]);
|
|
int16x4_t in16x4_1 = vget_high_s16(in16x8x2.val[0]);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0);
|
|
}
|
|
#endif
|
|
|
|
// Saturate and store the output.
|
|
int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12);
|
|
int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12);
|
|
vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1));
|
|
data_out += 8;
|
|
}
|
|
break;
|
|
}
|
|
case 4: {
|
|
for (i = delay; i < endpos1; i += 32) {
|
|
// Round value, 0.5 in Q12.
|
|
int32x4_t out32x4_0 = vdupq_n_s32(2048);
|
|
int32x4_t out32x4_1 = vdupq_n_s32(2048);
|
|
|
|
// Unroll the loop 4 times.
|
|
for (j = 0; j < coefficients_length - 3; j += 4) {
|
|
int16x4_t coeff16x4 = vld1_s16(&coefficients[j]);
|
|
int16x8x4_t in16x8x4 = vld4q_s16(&data_in[i - j - 3]);
|
|
|
|
// Mul and accumulate low 64-bit data.
|
|
int16x4_t in16x4_0 = vget_low_s16(in16x8x4.val[0]);
|
|
int16x4_t in16x4_2 = vget_low_s16(in16x8x4.val[1]);
|
|
int16x4_t in16x4_4 = vget_low_s16(in16x8x4.val[2]);
|
|
int16x4_t in16x4_6 = vget_low_s16(in16x8x4.val[3]);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 3);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_2, coeff16x4, 2);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_4, coeff16x4, 1);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_6, coeff16x4, 0);
|
|
|
|
// Mul and accumulate high 64-bit data.
|
|
// TODO: vget_high_s16 need extra cost on ARM64. This could be
|
|
// replaced by vmlal_high_lane_s16. But for the interface of
|
|
// vmlal_high_lane_s16, there is a bug in gcc 4.9.
|
|
// This issue need to be tracked in the future.
|
|
int16x4_t in16x4_1 = vget_high_s16(in16x8x4.val[0]);
|
|
int16x4_t in16x4_3 = vget_high_s16(in16x8x4.val[1]);
|
|
int16x4_t in16x4_5 = vget_high_s16(in16x8x4.val[2]);
|
|
int16x4_t in16x4_7 = vget_high_s16(in16x8x4.val[3]);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 3);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_3, coeff16x4, 2);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_5, coeff16x4, 1);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_7, coeff16x4, 0);
|
|
}
|
|
|
|
for (; j < coefficients_length; j++) {
|
|
int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]);
|
|
int16x8x4_t in16x8x4 = vld4q_s16(&data_in[i - j]);
|
|
|
|
// Mul and accumulate low 64-bit data.
|
|
int16x4_t in16x4_0 = vget_low_s16(in16x8x4.val[0]);
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0);
|
|
|
|
// Mul and accumulate high 64-bit data.
|
|
// TODO: vget_high_s16 need extra cost on ARM64. This could be
|
|
// replaced by vmlal_high_lane_s16. But for the interface of
|
|
// vmlal_high_lane_s16, there is a bug in gcc 4.9.
|
|
// This issue need to be tracked in the future.
|
|
int16x4_t in16x4_1 = vget_high_s16(in16x8x4.val[0]);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0);
|
|
}
|
|
|
|
// Saturate and store the output.
|
|
int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12);
|
|
int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12);
|
|
vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1));
|
|
data_out += 8;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
for (i = delay; i < endpos1; i += factor * 8) {
|
|
// Round value, 0.5 in Q12.
|
|
int32x4_t out32x4_0 = vdupq_n_s32(2048);
|
|
int32x4_t out32x4_1 = vdupq_n_s32(2048);
|
|
|
|
for (j = 0; j < coefficients_length; j++) {
|
|
int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]);
|
|
int16x4_t in16x4_0 = vld1_dup_s16(&data_in[i - j]);
|
|
in16x4_0 = vld1_lane_s16(&data_in[i + factor - j], in16x4_0, 1);
|
|
in16x4_0 = vld1_lane_s16(&data_in[i + factor * 2 - j], in16x4_0, 2);
|
|
in16x4_0 = vld1_lane_s16(&data_in[i + factor * 3 - j], in16x4_0, 3);
|
|
int16x4_t in16x4_1 = vld1_dup_s16(&data_in[i + factor * 4 - j]);
|
|
in16x4_1 = vld1_lane_s16(&data_in[i + factor * 5 - j], in16x4_1, 1);
|
|
in16x4_1 = vld1_lane_s16(&data_in[i + factor * 6 - j], in16x4_1, 2);
|
|
in16x4_1 = vld1_lane_s16(&data_in[i + factor * 7 - j], in16x4_1, 3);
|
|
|
|
// Mul and accumulate.
|
|
out32x4_0 = vmlal_lane_s16(out32x4_0, in16x4_0, coeff16x4, 0);
|
|
out32x4_1 = vmlal_lane_s16(out32x4_1, in16x4_1, coeff16x4, 0);
|
|
}
|
|
|
|
// Saturate and store the output.
|
|
int16x4_t out16x4_0 = vqshrn_n_s32(out32x4_0, 12);
|
|
int16x4_t out16x4_1 = vqshrn_n_s32(out32x4_1, 12);
|
|
vst1q_s16(data_out, vcombine_s16(out16x4_0, out16x4_1));
|
|
data_out += 8;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Second part, do the rest iterations (if any).
|
|
for (; i < endpos; i += factor) {
|
|
out_s32 = 2048; // Round value, 0.5 in Q12.
|
|
|
|
for (j = 0; j < coefficients_length; j++) {
|
|
out_s32 = WebRtc_MulAccumW16(coefficients[j], data_in[i - j], out_s32);
|
|
}
|
|
|
|
// Saturate and store the output.
|
|
out_s32 >>= 12;
|
|
*data_out++ = WebRtcSpl_SatW32ToW16(out_s32);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|