1
0
mirror of https://github.com/danog/libtgvoip.git synced 2025-01-10 06:38:22 +01:00
libtgvoip/webrtc_dsp/common_audio/signal_processing/real_fft.c
Grishka 5caaaafa42 Updated WebRTC APM
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
2018-11-23 04:02:53 +03:00

103 lines
3.1 KiB
C

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_audio/signal_processing/include/real_fft.h"
#include <stdlib.h>
#include "common_audio/signal_processing/include/signal_processing_library.h"
struct RealFFT {
int order;
};
struct RealFFT* WebRtcSpl_CreateRealFFT(int order) {
struct RealFFT* self = NULL;
if (order > kMaxFFTOrder || order < 0) {
return NULL;
}
self = malloc(sizeof(struct RealFFT));
if (self == NULL) {
return NULL;
}
self->order = order;
return self;
}
void WebRtcSpl_FreeRealFFT(struct RealFFT* self) {
if (self != NULL) {
free(self);
}
}
// The C version FFT functions (i.e. WebRtcSpl_RealForwardFFT and
// WebRtcSpl_RealInverseFFT) are real-valued FFT wrappers for complex-valued
// FFT implementation in SPL.
int WebRtcSpl_RealForwardFFT(struct RealFFT* self,
const int16_t* real_data_in,
int16_t* complex_data_out) {
int i = 0;
int j = 0;
int result = 0;
int n = 1 << self->order;
// The complex-value FFT implementation needs a buffer to hold 2^order
// 16-bit COMPLEX numbers, for both time and frequency data.
int16_t complex_buffer[2 << kMaxFFTOrder];
// Insert zeros to the imaginary parts for complex forward FFT input.
for (i = 0, j = 0; i < n; i += 1, j += 2) {
complex_buffer[j] = real_data_in[i];
complex_buffer[j + 1] = 0;
};
WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
result = WebRtcSpl_ComplexFFT(complex_buffer, self->order, 1);
// For real FFT output, use only the first N + 2 elements from
// complex forward FFT.
memcpy(complex_data_out, complex_buffer, sizeof(int16_t) * (n + 2));
return result;
}
int WebRtcSpl_RealInverseFFT(struct RealFFT* self,
const int16_t* complex_data_in,
int16_t* real_data_out) {
int i = 0;
int j = 0;
int result = 0;
int n = 1 << self->order;
// Create the buffer specific to complex-valued FFT implementation.
int16_t complex_buffer[2 << kMaxFFTOrder];
// For n-point FFT, first copy the first n + 2 elements into complex
// FFT, then construct the remaining n - 2 elements by real FFT's
// conjugate-symmetric properties.
memcpy(complex_buffer, complex_data_in, sizeof(int16_t) * (n + 2));
for (i = n + 2; i < 2 * n; i += 2) {
complex_buffer[i] = complex_data_in[2 * n - i];
complex_buffer[i + 1] = -complex_data_in[2 * n - i + 1];
}
WebRtcSpl_ComplexBitReverse(complex_buffer, self->order);
result = WebRtcSpl_ComplexIFFT(complex_buffer, self->order, 1);
// Strip out the imaginary parts of the complex inverse FFT output.
for (i = 0, j = 0; i < n; i += 1, j += 2) {
real_data_out[i] = complex_buffer[j];
}
return result;
}