1
0
mirror of https://github.com/danog/libtgvoip.git synced 2024-12-02 17:51:06 +01:00
libtgvoip/controller/MediaStreamItf.cpp

249 lines
5.4 KiB
C++

//
// libtgvoip is free and unencumbered public domain software.
// For more information, see http://unlicense.org or the UNLICENSE file
// you should have received with this source code distribution.
//
#include "tools/logging.h"
#include "controller/MediaStreamItf.h"
#include "controller/audio/EchoCanceller.h"
#include <stdint.h>
#include <algorithm>
#include <math.h>
#include <assert.h>
using namespace tgvoip;
void MediaStreamItf::SetCallback(size_t (*f)(unsigned char *, size_t, void *), void *param)
{
callback = f;
callbackParam = param;
}
size_t MediaStreamItf::InvokeCallback(unsigned char *data, size_t length)
{
if (callback)
return (*callback)(data, length, callbackParam);
return 0;
}
AudioMixer::AudioMixer() : processedQueue(16), semaphore(16, 0)
{
running = false;
}
AudioMixer::~AudioMixer()
{
}
void AudioMixer::SetOutput(MediaStreamItf *output)
{
output->SetCallback(OutputCallback, this);
}
void AudioMixer::Start()
{
assert(!running);
running = true;
thread = new Thread(std::bind(&AudioMixer::RunThread, this));
thread->SetName("AudioMixer");
thread->Start();
}
void AudioMixer::Stop()
{
if (!running)
{
LOGE("Tried to stop AudioMixer that wasn't started");
return;
}
running = false;
semaphore.Release();
thread->Join();
delete thread;
thread = NULL;
}
void AudioMixer::DoCallback(unsigned char *data, size_t length)
{
//memset(data, 0, 960*2);
//LOGD("audio mixer callback, %d inputs", inputs.size());
if (processedQueue.Size() == 0)
semaphore.Release(2);
else
semaphore.Release();
Buffer buf = processedQueue.GetBlocking();
memcpy(data, *buf, 960 * 2);
}
size_t AudioMixer::OutputCallback(unsigned char *data, size_t length, void *arg)
{
((AudioMixer *)arg)->DoCallback(data, length);
return 960 * 2;
}
void AudioMixer::AddInput(std::shared_ptr<MediaStreamItf> input)
{
MutexGuard m(inputsMutex);
MixerInput in;
in.multiplier = 1;
in.source = input;
inputs.push_back(in);
}
void AudioMixer::RemoveInput(std::shared_ptr<MediaStreamItf> input)
{
MutexGuard m(inputsMutex);
for (std::vector<MixerInput>::iterator i = inputs.begin(); i != inputs.end(); ++i)
{
if (i->source == input)
{
inputs.erase(i);
return;
}
}
}
void AudioMixer::SetInputVolume(std::shared_ptr<MediaStreamItf> input, float volumeDB)
{
MutexGuard m(inputsMutex);
for (std::vector<MixerInput>::iterator i = inputs.begin(); i != inputs.end(); ++i)
{
if (i->source == input)
{
if (volumeDB == -INFINITY)
i->multiplier = 0;
else
i->multiplier = expf(volumeDB / 20.0f * logf(10.0f));
return;
}
}
}
void AudioMixer::RunThread()
{
LOGV("AudioMixer thread started");
while (running)
{
semaphore.Acquire();
if (!running)
break;
try
{
Buffer data = bufferPool.Get();
//LOGV("Audio mixer processing a frame");
MutexGuard m(inputsMutex);
int16_t *buf = reinterpret_cast<int16_t *>(*data);
int16_t input[960];
float out[960];
memset(out, 0, 960 * 4);
int usedInputs = 0;
for (std::vector<MixerInput>::iterator in = inputs.begin(); in != inputs.end(); ++in)
{
size_t res = in->source->InvokeCallback(reinterpret_cast<unsigned char *>(input), 960 * 2);
if (!res || in->multiplier == 0)
{
//LOGV("AudioMixer: skipping silent packet");
continue;
}
usedInputs++;
float k = in->multiplier;
if (k != 1)
{
for (size_t i = 0; i < 960; i++)
{
out[i] += (float)input[i] * k;
}
}
else
{
for (size_t i = 0; i < 960; i++)
{
out[i] += (float)input[i];
}
}
}
if (usedInputs > 0)
{
for (size_t i = 0; i < 960; i++)
{
if (out[i] > 32767.0f)
buf[i] = INT16_MAX;
else if (out[i] < -32768.0f)
buf[i] = INT16_MIN;
else
buf[i] = (int16_t)out[i];
}
}
else
{
memset(*data, 0, 960 * 2);
}
if (echoCanceller)
echoCanceller->SpeakerOutCallback(*data, 960 * 2);
processedQueue.Put(std::move(data));
}
catch (std::bad_alloc &x)
{
LOGE("AudioMixer: no buffers left");
continue;
}
}
LOGI("======== audio mixer thread exiting =========");
}
void AudioMixer::SetEchoCanceller(EchoCanceller *aec)
{
echoCanceller = aec;
}
AudioLevelMeter::AudioLevelMeter()
{
absMax = 0;
count = 0;
currentLevel = 0;
currentLevelFullRange = 0;
}
float AudioLevelMeter::GetLevel()
{
return currentLevel / 9.0f;
}
void AudioLevelMeter::Update(int16_t *samples, size_t count)
{
// Number of bars on the indicator.
// Note that the number of elements is specified because we are indexing it
// in the range of 0-32
const int8_t permutation[33] = {0, 1, 2, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
int16_t absValue = 0;
for (unsigned int k = 0; k < count; k++)
{
int16_t absolute = (int16_t)abs(samples[k]);
if (absolute > absValue)
absValue = absolute;
}
if (absValue > absMax)
absMax = absValue;
// Update level approximately 10 times per second
if (this->count++ == 10)
{
currentLevelFullRange = absMax;
this->count = 0;
// Highest value for a int16_t is 0x7fff = 32767
// Divide with 1000 to get in the range of 0-32 which is the range of
// the permutation vector
int32_t position = absMax / 1000;
// Make it less likely that the bar stays at position 0. I.e. only if
// its in the range 0-250 (instead of 0-1000)
/*if ((position==0) && (absMax>250)){
position=1;
}*/
currentLevel = permutation[position];
// Decay the absolute maximum (divide by 4)
absMax >>= 2;
}
}