mirror of
https://github.com/danog/libtgvoip.git
synced 2025-01-08 13:48:41 +01:00
5caaaafa42
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
215 lines
7.2 KiB
C++
215 lines
7.2 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef COMMON_AUDIO_INCLUDE_AUDIO_UTIL_H_
|
|
#define COMMON_AUDIO_INCLUDE_AUDIO_UTIL_H_
|
|
|
|
#include <stdint.h>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <limits>
|
|
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
|
|
typedef std::numeric_limits<int16_t> limits_int16;
|
|
|
|
// The conversion functions use the following naming convention:
|
|
// S16: int16_t [-32768, 32767]
|
|
// Float: float [-1.0, 1.0]
|
|
// FloatS16: float [-32768.0, 32767.0]
|
|
// Dbfs: float [-20.0*log(10, 32768), 0] = [-90.3, 0]
|
|
// The ratio conversion functions use this naming convention:
|
|
// Ratio: float (0, +inf)
|
|
// Db: float (-inf, +inf)
|
|
static inline int16_t FloatToS16(float v) {
|
|
if (v > 0)
|
|
return v >= 1 ? limits_int16::max()
|
|
: static_cast<int16_t>(v * limits_int16::max() + 0.5f);
|
|
return v <= -1 ? limits_int16::min()
|
|
: static_cast<int16_t>(-v * limits_int16::min() - 0.5f);
|
|
}
|
|
|
|
static inline float S16ToFloat(int16_t v) {
|
|
static const float kMaxInt16Inverse = 1.f / limits_int16::max();
|
|
static const float kMinInt16Inverse = 1.f / limits_int16::min();
|
|
return v * (v > 0 ? kMaxInt16Inverse : -kMinInt16Inverse);
|
|
}
|
|
|
|
static inline int16_t FloatS16ToS16(float v) {
|
|
static const float kMaxRound = limits_int16::max() - 0.5f;
|
|
static const float kMinRound = limits_int16::min() + 0.5f;
|
|
if (v > 0)
|
|
return v >= kMaxRound ? limits_int16::max()
|
|
: static_cast<int16_t>(v + 0.5f);
|
|
return v <= kMinRound ? limits_int16::min() : static_cast<int16_t>(v - 0.5f);
|
|
}
|
|
|
|
static inline float FloatToFloatS16(float v) {
|
|
return v * (v > 0 ? limits_int16::max() : -limits_int16::min());
|
|
}
|
|
|
|
static inline float FloatS16ToFloat(float v) {
|
|
static const float kMaxInt16Inverse = 1.f / limits_int16::max();
|
|
static const float kMinInt16Inverse = 1.f / limits_int16::min();
|
|
return v * (v > 0 ? kMaxInt16Inverse : -kMinInt16Inverse);
|
|
}
|
|
|
|
void FloatToS16(const float* src, size_t size, int16_t* dest);
|
|
void S16ToFloat(const int16_t* src, size_t size, float* dest);
|
|
void FloatS16ToS16(const float* src, size_t size, int16_t* dest);
|
|
void FloatToFloatS16(const float* src, size_t size, float* dest);
|
|
void FloatS16ToFloat(const float* src, size_t size, float* dest);
|
|
|
|
inline float DbToRatio(float v) {
|
|
return std::pow(10.0f, v / 20.0f);
|
|
}
|
|
|
|
inline float DbfsToFloatS16(float v) {
|
|
static constexpr float kMaximumAbsFloatS16 = -limits_int16::min();
|
|
return DbToRatio(v) * kMaximumAbsFloatS16;
|
|
}
|
|
|
|
inline float FloatS16ToDbfs(float v) {
|
|
RTC_DCHECK_GE(v, 0);
|
|
|
|
// kMinDbfs is equal to -20.0 * log10(-limits_int16::min())
|
|
static constexpr float kMinDbfs = -90.30899869919436f;
|
|
if (v <= 1.0f) {
|
|
return kMinDbfs;
|
|
}
|
|
// Equal to 20 * log10(v / (-limits_int16::min()))
|
|
return 20.0f * std::log10(v) + kMinDbfs;
|
|
}
|
|
|
|
// Copy audio from |src| channels to |dest| channels unless |src| and |dest|
|
|
// point to the same address. |src| and |dest| must have the same number of
|
|
// channels, and there must be sufficient space allocated in |dest|.
|
|
template <typename T>
|
|
void CopyAudioIfNeeded(const T* const* src,
|
|
int num_frames,
|
|
int num_channels,
|
|
T* const* dest) {
|
|
for (int i = 0; i < num_channels; ++i) {
|
|
if (src[i] != dest[i]) {
|
|
std::copy(src[i], src[i] + num_frames, dest[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Deinterleave audio from |interleaved| to the channel buffers pointed to
|
|
// by |deinterleaved|. There must be sufficient space allocated in the
|
|
// |deinterleaved| buffers (|num_channel| buffers with |samples_per_channel|
|
|
// per buffer).
|
|
template <typename T>
|
|
void Deinterleave(const T* interleaved,
|
|
size_t samples_per_channel,
|
|
size_t num_channels,
|
|
T* const* deinterleaved) {
|
|
for (size_t i = 0; i < num_channels; ++i) {
|
|
T* channel = deinterleaved[i];
|
|
size_t interleaved_idx = i;
|
|
for (size_t j = 0; j < samples_per_channel; ++j) {
|
|
channel[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_channels;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Interleave audio from the channel buffers pointed to by |deinterleaved| to
|
|
// |interleaved|. There must be sufficient space allocated in |interleaved|
|
|
// (|samples_per_channel| * |num_channels|).
|
|
template <typename T>
|
|
void Interleave(const T* const* deinterleaved,
|
|
size_t samples_per_channel,
|
|
size_t num_channels,
|
|
T* interleaved) {
|
|
for (size_t i = 0; i < num_channels; ++i) {
|
|
const T* channel = deinterleaved[i];
|
|
size_t interleaved_idx = i;
|
|
for (size_t j = 0; j < samples_per_channel; ++j) {
|
|
interleaved[interleaved_idx] = channel[j];
|
|
interleaved_idx += num_channels;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copies audio from a single channel buffer pointed to by |mono| to each
|
|
// channel of |interleaved|. There must be sufficient space allocated in
|
|
// |interleaved| (|samples_per_channel| * |num_channels|).
|
|
template <typename T>
|
|
void UpmixMonoToInterleaved(const T* mono,
|
|
int num_frames,
|
|
int num_channels,
|
|
T* interleaved) {
|
|
int interleaved_idx = 0;
|
|
for (int i = 0; i < num_frames; ++i) {
|
|
for (int j = 0; j < num_channels; ++j) {
|
|
interleaved[interleaved_idx++] = mono[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename Intermediate>
|
|
void DownmixToMono(const T* const* input_channels,
|
|
size_t num_frames,
|
|
int num_channels,
|
|
T* out) {
|
|
for (size_t i = 0; i < num_frames; ++i) {
|
|
Intermediate value = input_channels[0][i];
|
|
for (int j = 1; j < num_channels; ++j) {
|
|
value += input_channels[j][i];
|
|
}
|
|
out[i] = value / num_channels;
|
|
}
|
|
}
|
|
|
|
// Downmixes an interleaved multichannel signal to a single channel by averaging
|
|
// all channels.
|
|
template <typename T, typename Intermediate>
|
|
void DownmixInterleavedToMonoImpl(const T* interleaved,
|
|
size_t num_frames,
|
|
int num_channels,
|
|
T* deinterleaved) {
|
|
RTC_DCHECK_GT(num_channels, 0);
|
|
RTC_DCHECK_GT(num_frames, 0);
|
|
|
|
const T* const end = interleaved + num_frames * num_channels;
|
|
|
|
while (interleaved < end) {
|
|
const T* const frame_end = interleaved + num_channels;
|
|
|
|
Intermediate value = *interleaved++;
|
|
while (interleaved < frame_end) {
|
|
value += *interleaved++;
|
|
}
|
|
|
|
*deinterleaved++ = value / num_channels;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void DownmixInterleavedToMono(const T* interleaved,
|
|
size_t num_frames,
|
|
int num_channels,
|
|
T* deinterleaved);
|
|
|
|
template <>
|
|
void DownmixInterleavedToMono<int16_t>(const int16_t* interleaved,
|
|
size_t num_frames,
|
|
int num_channels,
|
|
int16_t* deinterleaved);
|
|
|
|
} // namespace webrtc
|
|
|
|
#endif // COMMON_AUDIO_INCLUDE_AUDIO_UTIL_H_
|