1
0
mirror of https://github.com/danog/libtgvoip.git synced 2025-01-09 06:08:17 +01:00
libtgvoip/webrtc_dsp/modules/audio_processing/aec3/aec_state.cc
Grishka 5caaaafa42 Updated WebRTC APM
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
2018-11-23 04:02:53 +03:00

607 lines
22 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include <math.h>
#include <algorithm>
#include <numeric>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool EnableErleResetsAtGainChanges() {
return !field_trial::IsEnabled("WebRTC-Aec3ResetErleAtGainChangesKillSwitch");
}
bool UseLegacyFilterQualityState() {
return field_trial::IsEnabled("WebRTC-Aec3FilterQualityStateKillSwitch");
}
bool EnableLegacySaturationBehavior() {
return field_trial::IsEnabled("WebRTC-Aec3NewSaturationBehaviorKillSwitch");
}
bool UseSuppressionGainLimiter() {
return field_trial::IsEnabled("WebRTC-Aec3GainLimiterDeactivationKillSwitch");
}
bool EnableErleUpdatesDuringReverb() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EnableErleUpdatesDuringReverbKillSwitch");
}
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
} // namespace
int AecState::instance_count_ = 0;
void AecState::GetResidualEchoScaling(
rtc::ArrayView<float> residual_scaling) const {
bool filter_has_had_time_to_converge;
if (config_.filter.conservative_initial_phase) {
filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ >= 1.5f * kNumBlocksPerSecond;
} else {
filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ >= 0.8f * kNumBlocksPerSecond;
}
echo_audibility_.GetResidualEchoScaling(filter_has_had_time_to_converge,
residual_scaling);
}
absl::optional<float> AecState::ErleUncertainty() const {
if (SaturatedEcho() && use_legacy_saturation_behavior_) {
return 1.f;
}
return absl::nullopt;
}
AecState::AecState(const EchoCanceller3Config& config)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
config_(config),
use_legacy_saturation_behavior_(EnableLegacySaturationBehavior()),
enable_erle_resets_at_gain_changes_(EnableErleResetsAtGainChanges()),
enable_erle_updates_during_reverb_(EnableErleUpdatesDuringReverb()),
use_legacy_filter_quality_(UseLegacyFilterQualityState()),
use_suppressor_gain_limiter_(UseSuppressionGainLimiter()),
initial_state_(config_),
delay_state_(config_),
transparent_state_(config_),
filter_quality_state_(config_),
legacy_filter_quality_state_(config_),
legacy_saturation_detector_(config_),
erl_estimator_(2 * kNumBlocksPerSecond),
erle_estimator_(2 * kNumBlocksPerSecond,
config_.erle.min,
config_.erle.max_l,
config_.erle.max_h),
suppression_gain_limiter_(config_),
filter_analyzer_(config_),
echo_audibility_(
config_.echo_audibility.use_stationarity_properties_at_init),
reverb_model_estimator_(config_) {}
AecState::~AecState() = default;
void AecState::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
filter_analyzer_.Reset();
capture_signal_saturation_ = false;
strong_not_saturated_render_blocks_ = 0;
blocks_with_active_render_ = 0;
if (use_suppressor_gain_limiter_) {
suppression_gain_limiter_.Reset();
}
initial_state_.Reset();
transparent_state_.Reset();
if (use_legacy_saturation_behavior_) {
legacy_saturation_detector_.Reset();
}
erle_estimator_.Reset(true);
erl_estimator_.Reset();
if (use_legacy_filter_quality_) {
legacy_filter_quality_state_.Reset();
} else {
filter_quality_state_.Reset();
}
};
// TODO(peah): Refine the reset scheme according to the type of gain and
// delay adjustment.
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
} else if (enable_erle_resets_at_gain_changes_ &&
echo_path_variability.gain_change) {
erle_estimator_.Reset(false);
}
subtractor_output_analyzer_.HandleEchoPathChange();
}
void AecState::Update(
const absl::optional<DelayEstimate>& external_delay,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<const float> y) {
// Analyze the filter output.
subtractor_output_analyzer_.Update(subtractor_output);
// Analyze the properties of the filter.
filter_analyzer_.Update(adaptive_filter_impulse_response,
adaptive_filter_frequency_response, render_buffer);
// Estimate the direct path delay of the filter.
delay_state_.Update(filter_analyzer_, external_delay,
strong_not_saturated_render_blocks_);
const std::vector<float>& aligned_render_block =
render_buffer.Block(-delay_state_.DirectPathFilterDelay())[0];
// Update render counters.
const float render_energy = std::inner_product(
aligned_render_block.begin(), aligned_render_block.end(),
aligned_render_block.begin(), 0.f);
const bool active_render =
render_energy > (config_.render_levels.active_render_limit *
config_.render_levels.active_render_limit) *
kFftLengthBy2;
blocks_with_active_render_ += active_render ? 1 : 0;
strong_not_saturated_render_blocks_ +=
active_render && !SaturatedCapture() ? 1 : 0;
if (use_suppressor_gain_limiter_) {
// Update the limit on the echo suppression after an echo path change to
// avoid an initial echo burst.
suppression_gain_limiter_.Update(render_buffer.GetRenderActivity(),
TransparentMode());
if (subtractor_output_analyzer_.ConvergedFilter()) {
suppression_gain_limiter_.Deactivate();
}
}
std::array<float, kFftLengthBy2Plus1> X2_reverb;
render_reverb_.Apply(
render_buffer.GetSpectrumBuffer(), delay_state_.DirectPathFilterDelay(),
config_.ep_strength.reverb_based_on_render ? ReverbDecay() : 0.f,
X2_reverb);
if (config_.echo_audibility.use_stationary_properties) {
// Update the echo audibility evaluator.
echo_audibility_.Update(render_buffer,
render_reverb_.GetReverbContributionPowerSpectrum(),
delay_state_.DirectPathFilterDelay(),
delay_state_.ExternalDelayReported());
}
// Update the ERL and ERLE measures.
if (initial_state_.TransitionTriggered()) {
erle_estimator_.Reset(false);
}
const auto& X2 = render_buffer.Spectrum(delay_state_.DirectPathFilterDelay());
const auto& X2_input_erle =
enable_erle_updates_during_reverb_ ? X2_reverb : X2;
erle_estimator_.Update(X2_input_erle, Y2, E2_main,
subtractor_output_analyzer_.ConvergedFilter(),
config_.erle.onset_detection);
erl_estimator_.Update(subtractor_output_analyzer_.ConvergedFilter(), X2, Y2);
// Detect and flag echo saturation.
if (use_legacy_saturation_behavior_) {
legacy_saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
EchoPathGain());
} else {
saturation_detector_.Update(aligned_render_block, SaturatedCapture(),
UsableLinearEstimate(), subtractor_output,
EchoPathGain());
}
// Update the decision on whether to use the initial state parameter set.
initial_state_.Update(active_render, SaturatedCapture());
// Detect whether the transparent mode should be activated.
transparent_state_.Update(delay_state_.DirectPathFilterDelay(),
filter_analyzer_.Consistent(),
subtractor_output_analyzer_.ConvergedFilter(),
subtractor_output_analyzer_.DivergedFilter(),
active_render, SaturatedCapture());
// Analyze the quality of the filter.
if (use_legacy_filter_quality_) {
legacy_filter_quality_state_.Update(
SaturatedEcho(), active_render, SaturatedCapture(), TransparentMode(),
external_delay, subtractor_output_analyzer_.ConvergedFilter(),
subtractor_output_analyzer_.DivergedFilter());
} else {
filter_quality_state_.Update(active_render, TransparentMode(),
SaturatedCapture(),
filter_analyzer_.Consistent(), external_delay,
subtractor_output_analyzer_.ConvergedFilter());
}
// Update the reverb estimate.
const bool stationary_block =
config_.echo_audibility.use_stationary_properties &&
echo_audibility_.IsBlockStationary();
reverb_model_estimator_.Update(filter_analyzer_.GetAdjustedFilter(),
adaptive_filter_frequency_response,
erle_estimator_.GetInstLinearQualityEstimate(),
delay_state_.DirectPathFilterDelay(),
UsableLinearEstimate(), stationary_block);
erle_estimator_.Dump(data_dumper_);
reverb_model_estimator_.Dump(data_dumper_.get());
data_dumper_->DumpRaw("aec3_erl", Erl());
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
data_dumper_->DumpRaw("aec3_transparent_mode", TransparentMode());
data_dumper_->DumpRaw("aec3_filter_delay", filter_analyzer_.DelayBlocks());
data_dumper_->DumpRaw("aec3_consistent_filter",
filter_analyzer_.Consistent());
data_dumper_->DumpRaw("aec3_suppression_gain_limit", SuppressionGainLimit());
data_dumper_->DumpRaw("aec3_initial_state",
initial_state_.InitialStateActive());
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
data_dumper_->DumpRaw("aec3_echo_saturation", SaturatedEcho());
data_dumper_->DumpRaw("aec3_converged_filter",
subtractor_output_analyzer_.ConvergedFilter());
data_dumper_->DumpRaw("aec3_diverged_filter",
subtractor_output_analyzer_.DivergedFilter());
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
external_delay ? 1 : 0);
data_dumper_->DumpRaw("aec3_suppresion_gain_limiter_running",
IsSuppressionGainLimitActive());
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
GetReverbFrequencyResponse());
}
AecState::InitialState::InitialState(const EchoCanceller3Config& config)
: conservative_initial_phase_(config.filter.conservative_initial_phase),
initial_state_seconds_(config.filter.initial_state_seconds) {
Reset();
}
void AecState::InitialState::InitialState::Reset() {
initial_state_ = true;
strong_not_saturated_render_blocks_ = 0;
}
void AecState::InitialState::InitialState::Update(bool active_render,
bool saturated_capture) {
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
// Flag whether the initial state is still active.
bool prev_initial_state = initial_state_;
if (conservative_initial_phase_) {
initial_state_ =
strong_not_saturated_render_blocks_ < 5 * kNumBlocksPerSecond;
} else {
initial_state_ = strong_not_saturated_render_blocks_ <
initial_state_seconds_ * kNumBlocksPerSecond;
}
// Flag whether the transition from the initial state has started.
transition_triggered_ = !initial_state_ && prev_initial_state;
}
AecState::FilterDelay::FilterDelay(const EchoCanceller3Config& config)
: delay_headroom_blocks_(config.delay.delay_headroom_blocks) {}
void AecState::FilterDelay::Update(
const FilterAnalyzer& filter_analyzer,
const absl::optional<DelayEstimate>& external_delay,
size_t blocks_with_proper_filter_adaptation) {
// Update the delay based on the external delay.
if (external_delay &&
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
external_delay_ = external_delay;
external_delay_reported_ = true;
}
// Override the estimated delay if it is not certain that the filter has had
// time to converge.
const bool delay_estimator_may_not_have_converged =
blocks_with_proper_filter_adaptation < 2 * kNumBlocksPerSecond;
if (delay_estimator_may_not_have_converged && external_delay_) {
filter_delay_blocks_ = delay_headroom_blocks_;
} else {
filter_delay_blocks_ = filter_analyzer.DelayBlocks();
}
}
AecState::TransparentMode::TransparentMode(const EchoCanceller3Config& config)
: bounded_erl_(config.ep_strength.bounded_erl),
linear_and_stable_echo_path_(
config.echo_removal_control.linear_and_stable_echo_path),
active_blocks_since_sane_filter_(kBlocksSinceConsistentEstimateInit),
non_converged_sequence_size_(kBlocksSinceConvergencedFilterInit) {}
void AecState::TransparentMode::Reset() {
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
diverged_sequence_size_ = 0;
strong_not_saturated_render_blocks_ = 0;
if (linear_and_stable_echo_path_) {
recent_convergence_during_activity_ = false;
}
}
void AecState::TransparentMode::Update(int filter_delay_blocks,
bool consistent_filter,
bool converged_filter,
bool diverged_filter,
bool active_render,
bool saturated_capture) {
++capture_block_counter_;
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
if (consistent_filter && filter_delay_blocks < 5) {
sane_filter_observed_ = true;
active_blocks_since_sane_filter_ = 0;
} else if (active_render) {
++active_blocks_since_sane_filter_;
}
bool sane_filter_recently_seen;
if (!sane_filter_observed_) {
sane_filter_recently_seen =
capture_block_counter_ <= 5 * kNumBlocksPerSecond;
} else {
sane_filter_recently_seen =
active_blocks_since_sane_filter_ <= 30 * kNumBlocksPerSecond;
}
if (converged_filter) {
recent_convergence_during_activity_ = true;
active_non_converged_sequence_size_ = 0;
non_converged_sequence_size_ = 0;
++num_converged_blocks_;
} else {
if (++non_converged_sequence_size_ > 20 * kNumBlocksPerSecond) {
num_converged_blocks_ = 0;
}
if (active_render &&
++active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
recent_convergence_during_activity_ = false;
}
}
if (!diverged_filter) {
diverged_sequence_size_ = 0;
} else if (++diverged_sequence_size_ >= 60) {
// TODO(peah): Change these lines to ensure proper triggering of usable
// filter.
non_converged_sequence_size_ = kBlocksSinceConvergencedFilterInit;
}
if (active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
finite_erl_recently_detected_ = false;
}
if (num_converged_blocks_ > 50) {
finite_erl_recently_detected_ = true;
}
if (bounded_erl_) {
transparency_activated_ = false;
} else if (finite_erl_recently_detected_) {
transparency_activated_ = false;
} else if (sane_filter_recently_seen && recent_convergence_during_activity_) {
transparency_activated_ = false;
} else {
const bool filter_should_have_converged =
strong_not_saturated_render_blocks_ > 6 * kNumBlocksPerSecond;
transparency_activated_ = filter_should_have_converged;
}
}
AecState::FilteringQualityAnalyzer::FilteringQualityAnalyzer(
const EchoCanceller3Config& config) {}
void AecState::FilteringQualityAnalyzer::Reset() {
usable_linear_estimate_ = false;
filter_update_blocks_since_reset_ = 0;
}
void AecState::FilteringQualityAnalyzer::Update(
bool active_render,
bool transparent_mode,
bool saturated_capture,
bool consistent_estimate_,
const absl::optional<DelayEstimate>& external_delay,
bool converged_filter) {
// Update blocks counter.
const bool filter_update = active_render && !saturated_capture;
filter_update_blocks_since_reset_ += filter_update ? 1 : 0;
filter_update_blocks_since_start_ += filter_update ? 1 : 0;
// Store convergence flag when observed.
convergence_seen_ = convergence_seen_ || converged_filter;
// Verify requirements for achieving a decent filter. The requirements for
// filter adaptation at call startup are more restrictive than after an
// in-call reset.
const bool sufficient_data_to_converge_at_startup =
filter_update_blocks_since_start_ > kNumBlocksPerSecond * 0.4f;
const bool sufficient_data_to_converge_at_reset =
sufficient_data_to_converge_at_startup &&
filter_update_blocks_since_reset_ > kNumBlocksPerSecond * 0.2f;
// The linear filter can only be used it has had time to converge.
usable_linear_estimate_ = sufficient_data_to_converge_at_startup &&
sufficient_data_to_converge_at_reset;
// The linear filter can only be used if an external delay or convergence have
// been identified
usable_linear_estimate_ =
usable_linear_estimate_ && (external_delay || convergence_seen_);
// If transparent mode is on, deactivate usign the linear filter.
usable_linear_estimate_ = usable_linear_estimate_ && !transparent_mode;
}
AecState::LegacyFilteringQualityAnalyzer::LegacyFilteringQualityAnalyzer(
const EchoCanceller3Config& config)
: conservative_initial_phase_(config.filter.conservative_initial_phase),
required_blocks_for_convergence_(
kNumBlocksPerSecond * (conservative_initial_phase_ ? 1.5f : 0.8f)),
linear_and_stable_echo_path_(
config.echo_removal_control.linear_and_stable_echo_path),
non_converged_sequence_size_(kBlocksSinceConvergencedFilterInit) {}
void AecState::LegacyFilteringQualityAnalyzer::Reset() {
usable_linear_estimate_ = false;
strong_not_saturated_render_blocks_ = 0;
if (linear_and_stable_echo_path_) {
recent_convergence_during_activity_ = false;
}
diverged_sequence_size_ = 0;
// TODO(peah): Change to ensure proper triggering of usable filter.
non_converged_sequence_size_ = 10000;
recent_convergence_ = true;
}
void AecState::LegacyFilteringQualityAnalyzer::Update(
bool saturated_echo,
bool active_render,
bool saturated_capture,
bool transparent_mode,
const absl::optional<DelayEstimate>& external_delay,
bool converged_filter,
bool diverged_filter) {
diverged_sequence_size_ = diverged_filter ? diverged_sequence_size_ + 1 : 0;
if (diverged_sequence_size_ >= 60) {
// TODO(peah): Change these lines to ensure proper triggering of usable
// filter.
non_converged_sequence_size_ = 10000;
recent_convergence_ = true;
}
if (converged_filter) {
non_converged_sequence_size_ = 0;
recent_convergence_ = true;
active_non_converged_sequence_size_ = 0;
recent_convergence_during_activity_ = true;
} else {
if (++non_converged_sequence_size_ >= 60 * kNumBlocksPerSecond) {
recent_convergence_ = false;
}
if (active_render &&
++active_non_converged_sequence_size_ > 60 * kNumBlocksPerSecond) {
recent_convergence_during_activity_ = false;
}
}
strong_not_saturated_render_blocks_ +=
active_render && !saturated_capture ? 1 : 0;
const bool filter_has_had_time_to_converge =
strong_not_saturated_render_blocks_ > required_blocks_for_convergence_;
usable_linear_estimate_ = filter_has_had_time_to_converge && external_delay;
if (!conservative_initial_phase_ && recent_convergence_during_activity_) {
usable_linear_estimate_ = true;
}
if (!linear_and_stable_echo_path_ && !recent_convergence_) {
usable_linear_estimate_ = false;
}
if (saturated_echo || transparent_mode) {
usable_linear_estimate_ = false;
}
}
void AecState::SaturationDetector::Update(
rtc::ArrayView<const float> x,
bool saturated_capture,
bool usable_linear_estimate,
const SubtractorOutput& subtractor_output,
float echo_path_gain) {
saturated_echo_ = saturated_capture;
if (usable_linear_estimate) {
constexpr float kSaturationThreshold = 20000.f;
saturated_echo_ =
saturated_echo_ &&
(subtractor_output.s_main_max_abs > kSaturationThreshold ||
subtractor_output.s_shadow_max_abs > kSaturationThreshold);
} else {
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
saturated_echo_ = saturated_echo_ && peak_echo_amplitude > 32000;
}
}
AecState::LegacySaturationDetector::LegacySaturationDetector(
const EchoCanceller3Config& config)
: echo_can_saturate_(config.ep_strength.echo_can_saturate),
not_saturated_sequence_size_(1000) {}
void AecState::LegacySaturationDetector::Reset() {
not_saturated_sequence_size_ = 0;
}
void AecState::LegacySaturationDetector::Update(rtc::ArrayView<const float> x,
bool saturated_capture,
float echo_path_gain) {
if (!echo_can_saturate_) {
saturated_echo_ = false;
return;
}
RTC_DCHECK_LT(0, x.size());
if (saturated_capture) {
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
// Set flag for potential presence of saturated echo
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
if (peak_echo_amplitude > 32000) {
not_saturated_sequence_size_ = 0;
saturated_echo_ = true;
return;
}
}
saturated_echo_ = ++not_saturated_sequence_size_ < 5;
}
} // namespace webrtc