1
0
mirror of https://github.com/danog/libtgvoip.git synced 2025-01-09 06:08:17 +01:00
libtgvoip/webrtc_dsp/modules/audio_processing/aec3/echo_remover.cc
Grishka 5caaaafa42 Updated WebRTC APM
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
2018-11-23 04:02:53 +03:00

423 lines
16 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/echo_remover.h"
#include <math.h>
#include <stddef.h>
#include <algorithm>
#include <array>
#include <memory>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/comfort_noise_generator.h"
#include "modules/audio_processing/aec3/echo_path_variability.h"
#include "modules/audio_processing/aec3/echo_remover_metrics.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/aec3/render_buffer.h"
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
#include "modules/audio_processing/aec3/subtractor.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/aec3/suppression_filter.h"
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "rtc_base/constructormagic.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool UseShadowFilterOutput() {
return !field_trial::IsEnabled(
"WebRTC-Aec3UtilizeShadowFilterOutputKillSwitch");
}
bool UseSmoothSignalTransitions() {
return !field_trial::IsEnabled(
"WebRTC-Aec3SmoothSignalTransitionsKillSwitch");
}
bool EnableBoundedNearend() {
return !field_trial::IsEnabled("WebRTC-Aec3BoundedNearendKillSwitch");
}
void LinearEchoPower(const FftData& E,
const FftData& Y,
std::array<float, kFftLengthBy2Plus1>* S2) {
for (size_t k = 0; k < E.re.size(); ++k) {
(*S2)[k] = (Y.re[k] - E.re[k]) * (Y.re[k] - E.re[k]) +
(Y.im[k] - E.im[k]) * (Y.im[k] - E.im[k]);
}
}
// Fades between two input signals using a fix-sized transition.
void SignalTransition(rtc::ArrayView<const float> from,
rtc::ArrayView<const float> to,
rtc::ArrayView<float> out) {
constexpr size_t kTransitionSize = 30;
constexpr float kOneByTransitionSizePlusOne = 1.f / (kTransitionSize + 1);
RTC_DCHECK_EQ(from.size(), to.size());
RTC_DCHECK_EQ(from.size(), out.size());
RTC_DCHECK_LE(kTransitionSize, out.size());
for (size_t k = 0; k < kTransitionSize; ++k) {
float a = (k + 1) * kOneByTransitionSizePlusOne;
out[k] = a * to[k] + (1.f - a) * from[k];
}
std::copy(to.begin() + kTransitionSize, to.end(),
out.begin() + kTransitionSize);
}
// Computes a windowed (square root Hanning) padded FFT and updates the related
// memory.
void WindowedPaddedFft(const Aec3Fft& fft,
rtc::ArrayView<const float> v,
rtc::ArrayView<float> v_old,
FftData* V) {
fft.PaddedFft(v, v_old, Aec3Fft::Window::kSqrtHanning, V);
std::copy(v.begin(), v.end(), v_old.begin());
}
// Class for removing the echo from the capture signal.
class EchoRemoverImpl final : public EchoRemover {
public:
EchoRemoverImpl(const EchoCanceller3Config& config, int sample_rate_hz);
~EchoRemoverImpl() override;
void GetMetrics(EchoControl::Metrics* metrics) const override;
// Removes the echo from a block of samples from the capture signal. The
// supplied render signal is assumed to be pre-aligned with the capture
// signal.
void ProcessCapture(EchoPathVariability echo_path_variability,
bool capture_signal_saturation,
const absl::optional<DelayEstimate>& external_delay,
RenderBuffer* render_buffer,
std::vector<std::vector<float>>* capture) override;
// Returns the internal delay estimate in blocks.
absl::optional<int> Delay() const override {
// TODO(peah): Remove or reactivate this functionality.
return absl::nullopt;
}
// Updates the status on whether echo leakage is detected in the output of the
// echo remover.
void UpdateEchoLeakageStatus(bool leakage_detected) override {
echo_leakage_detected_ = leakage_detected;
}
private:
// Selects which of the shadow and main linear filter outputs that is most
// appropriate to pass to the suppressor and forms the linear filter output by
// smoothly transition between those.
void FormLinearFilterOutput(bool smooth_transition,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<float> output);
static int instance_count_;
const EchoCanceller3Config config_;
const Aec3Fft fft_;
std::unique_ptr<ApmDataDumper> data_dumper_;
const Aec3Optimization optimization_;
const int sample_rate_hz_;
const bool use_shadow_filter_output_;
const bool use_smooth_signal_transitions_;
const bool enable_bounded_nearend_;
Subtractor subtractor_;
SuppressionGain suppression_gain_;
ComfortNoiseGenerator cng_;
SuppressionFilter suppression_filter_;
RenderSignalAnalyzer render_signal_analyzer_;
ResidualEchoEstimator residual_echo_estimator_;
bool echo_leakage_detected_ = false;
AecState aec_state_;
EchoRemoverMetrics metrics_;
std::array<float, kFftLengthBy2> e_old_;
std::array<float, kFftLengthBy2> x_old_;
std::array<float, kFftLengthBy2> y_old_;
size_t block_counter_ = 0;
int gain_change_hangover_ = 0;
bool main_filter_output_last_selected_ = true;
bool linear_filter_output_last_selected_ = true;
RTC_DISALLOW_COPY_AND_ASSIGN(EchoRemoverImpl);
};
int EchoRemoverImpl::instance_count_ = 0;
EchoRemoverImpl::EchoRemoverImpl(const EchoCanceller3Config& config,
int sample_rate_hz)
: config_(config),
fft_(),
data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
optimization_(DetectOptimization()),
sample_rate_hz_(sample_rate_hz),
use_shadow_filter_output_(
UseShadowFilterOutput() &&
config_.filter.enable_shadow_filter_output_usage),
use_smooth_signal_transitions_(UseSmoothSignalTransitions()),
enable_bounded_nearend_(EnableBoundedNearend()),
subtractor_(config, data_dumper_.get(), optimization_),
suppression_gain_(config_, optimization_, sample_rate_hz),
cng_(optimization_),
suppression_filter_(optimization_, sample_rate_hz_),
render_signal_analyzer_(config_),
residual_echo_estimator_(config_),
aec_state_(config_) {
RTC_DCHECK(ValidFullBandRate(sample_rate_hz));
x_old_.fill(0.f);
y_old_.fill(0.f);
e_old_.fill(0.f);
}
EchoRemoverImpl::~EchoRemoverImpl() = default;
void EchoRemoverImpl::GetMetrics(EchoControl::Metrics* metrics) const {
// Echo return loss (ERL) is inverted to go from gain to attenuation.
metrics->echo_return_loss = -10.0 * log10(aec_state_.ErlTimeDomain());
metrics->echo_return_loss_enhancement =
Log2TodB(aec_state_.FullBandErleLog2());
}
void EchoRemoverImpl::ProcessCapture(
EchoPathVariability echo_path_variability,
bool capture_signal_saturation,
const absl::optional<DelayEstimate>& external_delay,
RenderBuffer* render_buffer,
std::vector<std::vector<float>>* capture) {
++block_counter_;
const std::vector<std::vector<float>>& x = render_buffer->Block(0);
std::vector<std::vector<float>>* y = capture;
RTC_DCHECK(render_buffer);
RTC_DCHECK(y);
RTC_DCHECK_EQ(x.size(), NumBandsForRate(sample_rate_hz_));
RTC_DCHECK_EQ(y->size(), NumBandsForRate(sample_rate_hz_));
RTC_DCHECK_EQ(x[0].size(), kBlockSize);
RTC_DCHECK_EQ((*y)[0].size(), kBlockSize);
const std::vector<float>& x0 = x[0];
std::vector<float>& y0 = (*y)[0];
data_dumper_->DumpWav("aec3_echo_remover_capture_input", kBlockSize, &y0[0],
LowestBandRate(sample_rate_hz_), 1);
data_dumper_->DumpWav("aec3_echo_remover_render_input", kBlockSize, &x0[0],
LowestBandRate(sample_rate_hz_), 1);
data_dumper_->DumpRaw("aec3_echo_remover_capture_input", y0);
data_dumper_->DumpRaw("aec3_echo_remover_render_input", x0);
aec_state_.UpdateCaptureSaturation(capture_signal_saturation);
if (echo_path_variability.AudioPathChanged()) {
// Ensure that the gain change is only acted on once per frame.
if (echo_path_variability.gain_change) {
if (gain_change_hangover_ == 0) {
constexpr int kMaxBlocksPerFrame = 3;
gain_change_hangover_ = kMaxBlocksPerFrame;
RTC_LOG(LS_WARNING)
<< "Gain change detected at block " << block_counter_;
} else {
echo_path_variability.gain_change = false;
}
}
subtractor_.HandleEchoPathChange(echo_path_variability);
aec_state_.HandleEchoPathChange(echo_path_variability);
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
suppression_gain_.SetInitialState(true);
}
}
if (gain_change_hangover_ > 0) {
--gain_change_hangover_;
}
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> S2_linear;
std::array<float, kFftLengthBy2Plus1> G;
float high_bands_gain;
FftData Y;
FftData E;
FftData comfort_noise;
FftData high_band_comfort_noise;
SubtractorOutput subtractor_output;
// Analyze the render signal.
render_signal_analyzer_.Update(*render_buffer,
aec_state_.FilterDelayBlocks());
// Perform linear echo cancellation.
if (aec_state_.TransitionTriggered()) {
subtractor_.ExitInitialState();
suppression_gain_.SetInitialState(false);
}
// If the delay is known, use the echo subtractor.
subtractor_.Process(*render_buffer, y0, render_signal_analyzer_, aec_state_,
&subtractor_output);
std::array<float, kBlockSize> e;
FormLinearFilterOutput(use_smooth_signal_transitions_, subtractor_output, e);
// Compute spectra.
WindowedPaddedFft(fft_, y0, y_old_, &Y);
WindowedPaddedFft(fft_, e, e_old_, &E);
LinearEchoPower(E, Y, &S2_linear);
Y.Spectrum(optimization_, Y2);
E.Spectrum(optimization_, E2);
// Update the AEC state information.
aec_state_.Update(external_delay, subtractor_.FilterFrequencyResponse(),
subtractor_.FilterImpulseResponse(), *render_buffer, E2, Y2,
subtractor_output, y0);
// Choose the linear output.
data_dumper_->DumpWav("aec3_output_linear2", kBlockSize, &e[0],
LowestBandRate(sample_rate_hz_), 1);
if (aec_state_.UseLinearFilterOutput()) {
if (!linear_filter_output_last_selected_ &&
use_smooth_signal_transitions_) {
SignalTransition(y0, e, y0);
} else {
std::copy(e.begin(), e.end(), y0.begin());
}
} else {
if (linear_filter_output_last_selected_ && use_smooth_signal_transitions_) {
SignalTransition(e, y0, y0);
}
}
linear_filter_output_last_selected_ = aec_state_.UseLinearFilterOutput();
const auto& Y_fft = aec_state_.UseLinearFilterOutput() ? E : Y;
data_dumper_->DumpWav("aec3_output_linear", kBlockSize, &y0[0],
LowestBandRate(sample_rate_hz_), 1);
// Estimate the residual echo power.
residual_echo_estimator_.Estimate(aec_state_, *render_buffer, S2_linear, Y2,
&R2);
// Estimate the comfort noise.
cng_.Compute(aec_state_, Y2, &comfort_noise, &high_band_comfort_noise);
// Compute and apply the suppression gain.
const auto& echo_spectrum =
aec_state_.UsableLinearEstimate() ? S2_linear : R2;
std::array<float, kFftLengthBy2Plus1> E2_bounded;
if (enable_bounded_nearend_) {
std::transform(E2.begin(), E2.end(), Y2.begin(), E2_bounded.begin(),
[](float a, float b) { return std::min(a, b); });
} else {
std::copy(E2.begin(), E2.end(), E2_bounded.begin());
}
suppression_gain_.GetGain(E2, E2_bounded, echo_spectrum, R2,
cng_.NoiseSpectrum(), E, Y, render_signal_analyzer_,
aec_state_, x, &high_bands_gain, &G);
suppression_filter_.ApplyGain(comfort_noise, high_band_comfort_noise, G,
high_bands_gain, Y_fft, y);
// Update the metrics.
metrics_.Update(aec_state_, cng_.NoiseSpectrum(), G);
// Debug outputs for the purpose of development and analysis.
data_dumper_->DumpWav("aec3_echo_estimate", kBlockSize,
&subtractor_output.s_main[0],
LowestBandRate(sample_rate_hz_), 1);
data_dumper_->DumpRaw("aec3_output", y0);
data_dumper_->DumpRaw("aec3_narrow_render",
render_signal_analyzer_.NarrowPeakBand() ? 1 : 0);
data_dumper_->DumpRaw("aec3_N2", cng_.NoiseSpectrum());
data_dumper_->DumpRaw("aec3_suppressor_gain", G);
data_dumper_->DumpWav("aec3_output",
rtc::ArrayView<const float>(&y0[0], kBlockSize),
LowestBandRate(sample_rate_hz_), 1);
data_dumper_->DumpRaw("aec3_using_subtractor_output",
aec_state_.UseLinearFilterOutput() ? 1 : 0);
data_dumper_->DumpRaw("aec3_E2", E2);
data_dumper_->DumpRaw("aec3_S2_linear", S2_linear);
data_dumper_->DumpRaw("aec3_Y2", Y2);
data_dumper_->DumpRaw(
"aec3_X2", render_buffer->Spectrum(aec_state_.FilterDelayBlocks()));
data_dumper_->DumpRaw("aec3_R2", R2);
data_dumper_->DumpRaw("aec3_R2_reverb",
residual_echo_estimator_.GetReverbPowerSpectrum());
data_dumper_->DumpRaw("aec3_filter_delay", aec_state_.FilterDelayBlocks());
data_dumper_->DumpRaw("aec3_capture_saturation",
aec_state_.SaturatedCapture() ? 1 : 0);
}
void EchoRemoverImpl::FormLinearFilterOutput(
bool smooth_transition,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<float> output) {
RTC_DCHECK_EQ(subtractor_output.e_main.size(), output.size());
RTC_DCHECK_EQ(subtractor_output.e_shadow.size(), output.size());
bool use_main_output = true;
if (use_shadow_filter_output_) {
// As the output of the main adaptive filter generally should be better
// than the shadow filter output, add a margin and threshold for when
// choosing the shadow filter output.
if (subtractor_output.e2_shadow < 0.9f * subtractor_output.e2_main &&
subtractor_output.y2 > 30.f * 30.f * kBlockSize &&
(subtractor_output.s2_main > 60.f * 60.f * kBlockSize ||
subtractor_output.s2_shadow > 60.f * 60.f * kBlockSize)) {
use_main_output = false;
} else {
// If the main filter is diverged, choose the filter output that has the
// lowest power.
if (subtractor_output.e2_shadow < subtractor_output.e2_main &&
subtractor_output.y2 < subtractor_output.e2_main) {
use_main_output = false;
}
}
}
if (use_main_output) {
if (!main_filter_output_last_selected_ && smooth_transition) {
SignalTransition(subtractor_output.e_shadow, subtractor_output.e_main,
output);
} else {
std::copy(subtractor_output.e_main.begin(),
subtractor_output.e_main.end(), output.begin());
}
} else {
if (main_filter_output_last_selected_ && smooth_transition) {
SignalTransition(subtractor_output.e_main, subtractor_output.e_shadow,
output);
} else {
std::copy(subtractor_output.e_shadow.begin(),
subtractor_output.e_shadow.end(), output.begin());
}
}
main_filter_output_last_selected_ = use_main_output;
}
} // namespace
EchoRemover* EchoRemover::Create(const EchoCanceller3Config& config,
int sample_rate_hz) {
return new EchoRemoverImpl(config, sample_rate_hz);
}
} // namespace webrtc