1
0
mirror of https://github.com/danog/libtgvoip.git synced 2025-01-09 06:08:17 +01:00
libtgvoip/webrtc_dsp/modules/audio_processing/aec3/subtractor.cc
Grishka 5caaaafa42 Updated WebRTC APM
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
2018-11-23 04:02:53 +03:00

330 lines
12 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/subtractor.h"
#include <algorithm>
#include <utility>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool EnableAgcGainChangeResponse() {
return !field_trial::IsEnabled("WebRTC-Aec3AgcGainChangeResponseKillSwitch");
}
bool EnableAdaptationDuringSaturation() {
return !field_trial::IsEnabled("WebRTC-Aec3RapidAgcGainRecoveryKillSwitch");
}
bool EnableMisadjustmentEstimator() {
return !field_trial::IsEnabled("WebRTC-Aec3MisadjustmentEstimatorKillSwitch");
}
bool EnableShadowFilterJumpstart() {
return !field_trial::IsEnabled("WebRTC-Aec3ShadowFilterJumpstartKillSwitch");
}
bool EnableShadowFilterBoostedJumpstart() {
return !field_trial::IsEnabled(
"WebRTC-Aec3ShadowFilterBoostedJumpstartKillSwitch");
}
bool EnableEarlyShadowFilterJumpstart() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EarlyShadowFilterJumpstartKillSwitch");
}
void PredictionError(const Aec3Fft& fft,
const FftData& S,
rtc::ArrayView<const float> y,
std::array<float, kBlockSize>* e,
std::array<float, kBlockSize>* s,
bool adaptation_during_saturation,
bool* saturation) {
std::array<float, kFftLength> tmp;
fft.Ifft(S, &tmp);
constexpr float kScale = 1.0f / kFftLengthBy2;
std::transform(y.begin(), y.end(), tmp.begin() + kFftLengthBy2, e->begin(),
[&](float a, float b) { return a - b * kScale; });
*saturation = false;
if (s) {
for (size_t k = 0; k < s->size(); ++k) {
(*s)[k] = kScale * tmp[k + kFftLengthBy2];
}
auto result = std::minmax_element(s->begin(), s->end());
*saturation = *result.first <= -32768 || *result.first >= 32767;
}
if (!(*saturation)) {
auto result = std::minmax_element(e->begin(), e->end());
*saturation = *result.first <= -32768 || *result.first >= 32767;
}
if (!adaptation_during_saturation) {
std::for_each(e->begin(), e->end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
} else {
*saturation = false;
}
}
void ScaleFilterOutput(rtc::ArrayView<const float> y,
float factor,
rtc::ArrayView<float> e,
rtc::ArrayView<float> s) {
RTC_DCHECK_EQ(y.size(), e.size());
RTC_DCHECK_EQ(y.size(), s.size());
for (size_t k = 0; k < y.size(); ++k) {
s[k] *= factor;
e[k] = y[k] - s[k];
}
}
} // namespace
Subtractor::Subtractor(const EchoCanceller3Config& config,
ApmDataDumper* data_dumper,
Aec3Optimization optimization)
: fft_(),
data_dumper_(data_dumper),
optimization_(optimization),
config_(config),
adaptation_during_saturation_(EnableAdaptationDuringSaturation()),
enable_misadjustment_estimator_(EnableMisadjustmentEstimator()),
enable_agc_gain_change_response_(EnableAgcGainChangeResponse()),
enable_shadow_filter_jumpstart_(EnableShadowFilterJumpstart()),
enable_shadow_filter_boosted_jumpstart_(
EnableShadowFilterBoostedJumpstart()),
enable_early_shadow_filter_jumpstart_(EnableEarlyShadowFilterJumpstart()),
main_filter_(config_.filter.main.length_blocks,
config_.filter.main_initial.length_blocks,
config.filter.config_change_duration_blocks,
optimization,
data_dumper_),
shadow_filter_(config_.filter.shadow.length_blocks,
config_.filter.shadow_initial.length_blocks,
config.filter.config_change_duration_blocks,
optimization,
data_dumper_),
G_main_(config_.filter.main_initial,
config_.filter.config_change_duration_blocks),
G_shadow_(config_.filter.shadow_initial,
config.filter.config_change_duration_blocks) {
RTC_DCHECK(data_dumper_);
}
Subtractor::~Subtractor() = default;
void Subtractor::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
main_filter_.HandleEchoPathChange();
shadow_filter_.HandleEchoPathChange();
G_main_.HandleEchoPathChange(echo_path_variability);
G_shadow_.HandleEchoPathChange();
G_main_.SetConfig(config_.filter.main_initial, true);
G_shadow_.SetConfig(config_.filter.shadow_initial, true);
main_filter_.SetSizePartitions(config_.filter.main_initial.length_blocks,
true);
shadow_filter_.SetSizePartitions(
config_.filter.shadow_initial.length_blocks, true);
};
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
}
if (echo_path_variability.gain_change && enable_agc_gain_change_response_) {
G_main_.HandleEchoPathChange(echo_path_variability);
}
}
void Subtractor::ExitInitialState() {
G_main_.SetConfig(config_.filter.main, false);
G_shadow_.SetConfig(config_.filter.shadow, false);
main_filter_.SetSizePartitions(config_.filter.main.length_blocks, false);
shadow_filter_.SetSizePartitions(config_.filter.shadow.length_blocks, false);
}
void Subtractor::Process(const RenderBuffer& render_buffer,
const rtc::ArrayView<const float> capture,
const RenderSignalAnalyzer& render_signal_analyzer,
const AecState& aec_state,
SubtractorOutput* output) {
RTC_DCHECK_EQ(kBlockSize, capture.size());
rtc::ArrayView<const float> y = capture;
FftData& E_main = output->E_main;
FftData E_shadow;
std::array<float, kBlockSize>& e_main = output->e_main;
std::array<float, kBlockSize>& e_shadow = output->e_shadow;
FftData S;
FftData& G = S;
// Form the outputs of the main and shadow filters.
main_filter_.Filter(render_buffer, &S);
bool main_saturation = false;
PredictionError(fft_, S, y, &e_main, &output->s_main,
adaptation_during_saturation_, &main_saturation);
shadow_filter_.Filter(render_buffer, &S);
bool shadow_saturation = false;
PredictionError(fft_, S, y, &e_shadow, &output->s_shadow,
adaptation_during_saturation_, &shadow_saturation);
// Compute the signal powers in the subtractor output.
output->ComputeMetrics(y);
// Adjust the filter if needed.
bool main_filter_adjusted = false;
if (enable_misadjustment_estimator_) {
filter_misadjustment_estimator_.Update(*output);
if (filter_misadjustment_estimator_.IsAdjustmentNeeded()) {
float scale = filter_misadjustment_estimator_.GetMisadjustment();
main_filter_.ScaleFilter(scale);
ScaleFilterOutput(y, scale, e_main, output->s_main);
filter_misadjustment_estimator_.Reset();
main_filter_adjusted = true;
}
}
// Compute the FFts of the main and shadow filter outputs.
fft_.ZeroPaddedFft(e_main, Aec3Fft::Window::kHanning, &E_main);
fft_.ZeroPaddedFft(e_shadow, Aec3Fft::Window::kHanning, &E_shadow);
// Compute spectra for future use.
E_shadow.Spectrum(optimization_, output->E2_shadow);
E_main.Spectrum(optimization_, output->E2_main);
// Compute the render powers.
std::array<float, kFftLengthBy2Plus1> X2_main;
std::array<float, kFftLengthBy2Plus1> X2_shadow_data;
std::array<float, kFftLengthBy2Plus1>& X2_shadow =
main_filter_.SizePartitions() == shadow_filter_.SizePartitions()
? X2_main
: X2_shadow_data;
if (main_filter_.SizePartitions() == shadow_filter_.SizePartitions()) {
render_buffer.SpectralSum(main_filter_.SizePartitions(), &X2_main);
} else if (main_filter_.SizePartitions() > shadow_filter_.SizePartitions()) {
render_buffer.SpectralSums(shadow_filter_.SizePartitions(),
main_filter_.SizePartitions(), &X2_shadow,
&X2_main);
} else {
render_buffer.SpectralSums(main_filter_.SizePartitions(),
shadow_filter_.SizePartitions(), &X2_main,
&X2_shadow);
}
// Update the main filter.
if (!main_filter_adjusted) {
G_main_.Compute(X2_main, render_signal_analyzer, *output, main_filter_,
aec_state.SaturatedCapture() || main_saturation, &G);
} else {
G.re.fill(0.f);
G.im.fill(0.f);
}
main_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.im);
// Update the shadow filter.
poor_shadow_filter_counter_ =
output->e2_main < output->e2_shadow ? poor_shadow_filter_counter_ + 1 : 0;
if (((poor_shadow_filter_counter_ < 5 &&
enable_early_shadow_filter_jumpstart_) ||
(poor_shadow_filter_counter_ < 10 &&
!enable_early_shadow_filter_jumpstart_)) ||
!enable_shadow_filter_jumpstart_) {
G_shadow_.Compute(X2_shadow, render_signal_analyzer, E_shadow,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture() || shadow_saturation, &G);
shadow_filter_.Adapt(render_buffer, G);
} else {
poor_shadow_filter_counter_ = 0;
if (enable_shadow_filter_boosted_jumpstart_) {
shadow_filter_.SetFilter(main_filter_.GetFilter());
G_shadow_.Compute(X2_shadow, render_signal_analyzer, E_main,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture() || main_saturation, &G);
shadow_filter_.Adapt(render_buffer, G);
} else {
G.re.fill(0.f);
G.im.fill(0.f);
shadow_filter_.Adapt(render_buffer, G);
shadow_filter_.SetFilter(main_filter_.GetFilter());
}
}
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.im);
filter_misadjustment_estimator_.Dump(data_dumper_);
DumpFilters();
if (adaptation_during_saturation_) {
std::for_each(e_main.begin(), e_main.end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
}
data_dumper_->DumpWav("aec3_main_filter_output", kBlockSize, &e_main[0],
16000, 1);
data_dumper_->DumpWav("aec3_shadow_filter_output", kBlockSize, &e_shadow[0],
16000, 1);
}
void Subtractor::FilterMisadjustmentEstimator::Update(
const SubtractorOutput& output) {
e2_acum_ += output.e2_main;
y2_acum_ += output.y2;
if (++n_blocks_acum_ == n_blocks_) {
if (y2_acum_ > n_blocks_ * 200.f * 200.f * kBlockSize) {
float update = (e2_acum_ / y2_acum_);
if (e2_acum_ > n_blocks_ * 7500.f * 7500.f * kBlockSize) {
// Duration equal to blockSizeMs * n_blocks_ * 4.
overhang_ = 4;
} else {
overhang_ = std::max(overhang_ - 1, 0);
}
if ((update < inv_misadjustment_) || (overhang_ > 0)) {
inv_misadjustment_ += 0.1f * (update - inv_misadjustment_);
}
}
e2_acum_ = 0.f;
y2_acum_ = 0.f;
n_blocks_acum_ = 0;
}
}
void Subtractor::FilterMisadjustmentEstimator::Reset() {
e2_acum_ = 0.f;
y2_acum_ = 0.f;
n_blocks_acum_ = 0;
inv_misadjustment_ = 0.f;
overhang_ = 0.f;
}
void Subtractor::FilterMisadjustmentEstimator::Dump(
ApmDataDumper* data_dumper) const {
data_dumper->DumpRaw("aec3_inv_misadjustment_factor", inv_misadjustment_);
}
} // namespace webrtc