mirror of
https://github.com/danog/libtgvoip.git
synced 2025-01-09 06:08:17 +01:00
5caaaafa42
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
168 lines
5.5 KiB
C++
168 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/agc2/signal_classifier.h"
|
|
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/agc2/down_sampler.h"
|
|
#include "modules/audio_processing/agc2/noise_spectrum_estimator.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
void RemoveDcLevel(rtc::ArrayView<float> x) {
|
|
RTC_DCHECK_LT(0, x.size());
|
|
float mean = std::accumulate(x.data(), x.data() + x.size(), 0.f);
|
|
mean /= x.size();
|
|
|
|
for (float& v : x) {
|
|
v -= mean;
|
|
}
|
|
}
|
|
|
|
void PowerSpectrum(const OouraFft* ooura_fft,
|
|
rtc::ArrayView<const float> x,
|
|
rtc::ArrayView<float> spectrum) {
|
|
RTC_DCHECK_EQ(65, spectrum.size());
|
|
RTC_DCHECK_EQ(128, x.size());
|
|
float X[128];
|
|
std::copy(x.data(), x.data() + x.size(), X);
|
|
ooura_fft->Fft(X);
|
|
|
|
float* X_p = X;
|
|
RTC_DCHECK_EQ(X_p, &X[0]);
|
|
spectrum[0] = (*X_p) * (*X_p);
|
|
++X_p;
|
|
RTC_DCHECK_EQ(X_p, &X[1]);
|
|
spectrum[64] = (*X_p) * (*X_p);
|
|
for (int k = 1; k < 64; ++k) {
|
|
++X_p;
|
|
RTC_DCHECK_EQ(X_p, &X[2 * k]);
|
|
spectrum[k] = (*X_p) * (*X_p);
|
|
++X_p;
|
|
RTC_DCHECK_EQ(X_p, &X[2 * k + 1]);
|
|
spectrum[k] += (*X_p) * (*X_p);
|
|
}
|
|
}
|
|
|
|
webrtc::SignalClassifier::SignalType ClassifySignal(
|
|
rtc::ArrayView<const float> signal_spectrum,
|
|
rtc::ArrayView<const float> noise_spectrum,
|
|
ApmDataDumper* data_dumper) {
|
|
int num_stationary_bands = 0;
|
|
int num_highly_nonstationary_bands = 0;
|
|
|
|
// Detect stationary and highly nonstationary bands.
|
|
for (size_t k = 1; k < 40; k++) {
|
|
if (signal_spectrum[k] < 3 * noise_spectrum[k] &&
|
|
signal_spectrum[k] * 3 > noise_spectrum[k]) {
|
|
++num_stationary_bands;
|
|
} else if (signal_spectrum[k] > 9 * noise_spectrum[k]) {
|
|
++num_highly_nonstationary_bands;
|
|
}
|
|
}
|
|
|
|
data_dumper->DumpRaw("lc_num_stationary_bands", 1, &num_stationary_bands);
|
|
data_dumper->DumpRaw("lc_num_highly_nonstationary_bands", 1,
|
|
&num_highly_nonstationary_bands);
|
|
|
|
// Use the detected number of bands to classify the overall signal
|
|
// stationarity.
|
|
if (num_stationary_bands > 15) {
|
|
return SignalClassifier::SignalType::kStationary;
|
|
} else {
|
|
return SignalClassifier::SignalType::kNonStationary;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
SignalClassifier::FrameExtender::FrameExtender(size_t frame_size,
|
|
size_t extended_frame_size)
|
|
: x_old_(extended_frame_size - frame_size, 0.f) {}
|
|
|
|
SignalClassifier::FrameExtender::~FrameExtender() = default;
|
|
|
|
void SignalClassifier::FrameExtender::ExtendFrame(
|
|
rtc::ArrayView<const float> x,
|
|
rtc::ArrayView<float> x_extended) {
|
|
RTC_DCHECK_EQ(x_old_.size() + x.size(), x_extended.size());
|
|
std::copy(x_old_.data(), x_old_.data() + x_old_.size(), x_extended.data());
|
|
std::copy(x.data(), x.data() + x.size(), x_extended.data() + x_old_.size());
|
|
std::copy(x_extended.data() + x_extended.size() - x_old_.size(),
|
|
x_extended.data() + x_extended.size(), x_old_.data());
|
|
}
|
|
|
|
SignalClassifier::SignalClassifier(ApmDataDumper* data_dumper)
|
|
: data_dumper_(data_dumper),
|
|
down_sampler_(data_dumper_),
|
|
noise_spectrum_estimator_(data_dumper_) {
|
|
Initialize(48000);
|
|
}
|
|
SignalClassifier::~SignalClassifier() {}
|
|
|
|
void SignalClassifier::Initialize(int sample_rate_hz) {
|
|
down_sampler_.Initialize(sample_rate_hz);
|
|
noise_spectrum_estimator_.Initialize();
|
|
frame_extender_.reset(new FrameExtender(80, 128));
|
|
sample_rate_hz_ = sample_rate_hz;
|
|
initialization_frames_left_ = 2;
|
|
consistent_classification_counter_ = 3;
|
|
last_signal_type_ = SignalClassifier::SignalType::kNonStationary;
|
|
}
|
|
|
|
SignalClassifier::SignalType SignalClassifier::Analyze(
|
|
rtc::ArrayView<const float> signal) {
|
|
RTC_DCHECK_EQ(signal.size(), sample_rate_hz_ / 100);
|
|
|
|
// Compute the signal power spectrum.
|
|
float downsampled_frame[80];
|
|
down_sampler_.DownSample(signal, downsampled_frame);
|
|
float extended_frame[128];
|
|
frame_extender_->ExtendFrame(downsampled_frame, extended_frame);
|
|
RemoveDcLevel(extended_frame);
|
|
float signal_spectrum[65];
|
|
PowerSpectrum(&ooura_fft_, extended_frame, signal_spectrum);
|
|
|
|
// Classify the signal based on the estimate of the noise spectrum and the
|
|
// signal spectrum estimate.
|
|
const SignalType signal_type = ClassifySignal(
|
|
signal_spectrum, noise_spectrum_estimator_.GetNoiseSpectrum(),
|
|
data_dumper_);
|
|
|
|
// Update the noise spectrum based on the signal spectrum.
|
|
noise_spectrum_estimator_.Update(signal_spectrum,
|
|
initialization_frames_left_ > 0);
|
|
|
|
// Update the number of frames until a reliable signal spectrum is achieved.
|
|
initialization_frames_left_ = std::max(0, initialization_frames_left_ - 1);
|
|
|
|
if (last_signal_type_ == signal_type) {
|
|
consistent_classification_counter_ =
|
|
std::max(0, consistent_classification_counter_ - 1);
|
|
} else {
|
|
last_signal_type_ = signal_type;
|
|
consistent_classification_counter_ = 3;
|
|
}
|
|
|
|
if (consistent_classification_counter_ > 0) {
|
|
return SignalClassifier::SignalType::kNonStationary;
|
|
}
|
|
return signal_type;
|
|
}
|
|
|
|
} // namespace webrtc
|