mirror of
https://github.com/danog/libtgvoip.git
synced 2025-01-09 06:08:17 +01:00
5caaaafa42
I'm now using the entire audio processing module from WebRTC as opposed to individual DSP algorithms pulled from there before. Seems to work better this way.
276 lines
11 KiB
C++
276 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/vad/vad_audio_proc.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "common_audio/third_party/fft4g/fft4g.h"
|
|
#include "modules/audio_processing/vad/pitch_internal.h"
|
|
#include "modules/audio_processing/vad/pole_zero_filter.h"
|
|
#include "modules/audio_processing/vad/vad_audio_proc_internal.h"
|
|
#include "rtc_base/checks.h"
|
|
extern "C" {
|
|
#include "modules/audio_coding/codecs/isac/main/source/filter_functions.h"
|
|
#include "modules/audio_coding/codecs/isac/main/source/isac_vad.h"
|
|
#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
|
|
#include "modules/audio_coding/codecs/isac/main/source/structs.h"
|
|
}
|
|
|
|
namespace webrtc {
|
|
|
|
// The following structures are declared anonymous in iSAC's structs.h. To
|
|
// forward declare them, we use this derived class trick.
|
|
struct VadAudioProc::PitchAnalysisStruct : public ::PitchAnalysisStruct {};
|
|
struct VadAudioProc::PreFiltBankstr : public ::PreFiltBankstr {};
|
|
|
|
static constexpr float kFrequencyResolution =
|
|
kSampleRateHz / static_cast<float>(VadAudioProc::kDftSize);
|
|
static constexpr int kSilenceRms = 5;
|
|
|
|
// TODO(turajs): Make a Create or Init for VadAudioProc.
|
|
VadAudioProc::VadAudioProc()
|
|
: audio_buffer_(),
|
|
num_buffer_samples_(kNumPastSignalSamples),
|
|
log_old_gain_(-2),
|
|
old_lag_(50), // Arbitrary but valid as pitch-lag (in samples).
|
|
pitch_analysis_handle_(new PitchAnalysisStruct),
|
|
pre_filter_handle_(new PreFiltBankstr),
|
|
high_pass_filter_(PoleZeroFilter::Create(kCoeffNumerator,
|
|
kFilterOrder,
|
|
kCoeffDenominator,
|
|
kFilterOrder)) {
|
|
static_assert(kNumPastSignalSamples + kNumSubframeSamples ==
|
|
sizeof(kLpcAnalWin) / sizeof(kLpcAnalWin[0]),
|
|
"lpc analysis window incorrect size");
|
|
static_assert(kLpcOrder + 1 == sizeof(kCorrWeight) / sizeof(kCorrWeight[0]),
|
|
"correlation weight incorrect size");
|
|
|
|
// TODO(turajs): Are we doing too much in the constructor?
|
|
float data[kDftSize];
|
|
// Make FFT to initialize.
|
|
ip_[0] = 0;
|
|
WebRtc_rdft(kDftSize, 1, data, ip_, w_fft_);
|
|
// TODO(turajs): Need to initialize high-pass filter.
|
|
|
|
// Initialize iSAC components.
|
|
WebRtcIsac_InitPreFilterbank(pre_filter_handle_.get());
|
|
WebRtcIsac_InitPitchAnalysis(pitch_analysis_handle_.get());
|
|
}
|
|
|
|
VadAudioProc::~VadAudioProc() {}
|
|
|
|
void VadAudioProc::ResetBuffer() {
|
|
memcpy(audio_buffer_, &audio_buffer_[kNumSamplesToProcess],
|
|
sizeof(audio_buffer_[0]) * kNumPastSignalSamples);
|
|
num_buffer_samples_ = kNumPastSignalSamples;
|
|
}
|
|
|
|
int VadAudioProc::ExtractFeatures(const int16_t* frame,
|
|
size_t length,
|
|
AudioFeatures* features) {
|
|
features->num_frames = 0;
|
|
if (length != kNumSubframeSamples) {
|
|
return -1;
|
|
}
|
|
|
|
// High-pass filter to remove the DC component and very low frequency content.
|
|
// We have experienced that this high-pass filtering improves voice/non-voiced
|
|
// classification.
|
|
if (high_pass_filter_->Filter(frame, kNumSubframeSamples,
|
|
&audio_buffer_[num_buffer_samples_]) != 0) {
|
|
return -1;
|
|
}
|
|
|
|
num_buffer_samples_ += kNumSubframeSamples;
|
|
if (num_buffer_samples_ < kBufferLength) {
|
|
return 0;
|
|
}
|
|
RTC_DCHECK_EQ(num_buffer_samples_, kBufferLength);
|
|
features->num_frames = kNum10msSubframes;
|
|
features->silence = false;
|
|
|
|
Rms(features->rms, kMaxNumFrames);
|
|
for (size_t i = 0; i < kNum10msSubframes; ++i) {
|
|
if (features->rms[i] < kSilenceRms) {
|
|
// PitchAnalysis can cause NaNs in the pitch gain if it's fed silence.
|
|
// Bail out here instead.
|
|
features->silence = true;
|
|
ResetBuffer();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
PitchAnalysis(features->log_pitch_gain, features->pitch_lag_hz,
|
|
kMaxNumFrames);
|
|
FindFirstSpectralPeaks(features->spectral_peak, kMaxNumFrames);
|
|
ResetBuffer();
|
|
return 0;
|
|
}
|
|
|
|
// Computes |kLpcOrder + 1| correlation coefficients.
|
|
void VadAudioProc::SubframeCorrelation(double* corr,
|
|
size_t length_corr,
|
|
size_t subframe_index) {
|
|
RTC_DCHECK_GE(length_corr, kLpcOrder + 1);
|
|
double windowed_audio[kNumSubframeSamples + kNumPastSignalSamples];
|
|
size_t buffer_index = subframe_index * kNumSubframeSamples;
|
|
|
|
for (size_t n = 0; n < kNumSubframeSamples + kNumPastSignalSamples; n++)
|
|
windowed_audio[n] = audio_buffer_[buffer_index++] * kLpcAnalWin[n];
|
|
|
|
WebRtcIsac_AutoCorr(corr, windowed_audio,
|
|
kNumSubframeSamples + kNumPastSignalSamples, kLpcOrder);
|
|
}
|
|
|
|
// Compute |kNum10msSubframes| sets of LPC coefficients, one per 10 ms input.
|
|
// The analysis window is 15 ms long and it is centered on the first half of
|
|
// each 10ms sub-frame. This is equivalent to computing LPC coefficients for the
|
|
// first half of each 10 ms subframe.
|
|
void VadAudioProc::GetLpcPolynomials(double* lpc, size_t length_lpc) {
|
|
RTC_DCHECK_GE(length_lpc, kNum10msSubframes * (kLpcOrder + 1));
|
|
double corr[kLpcOrder + 1];
|
|
double reflec_coeff[kLpcOrder];
|
|
for (size_t i = 0, offset_lpc = 0; i < kNum10msSubframes;
|
|
i++, offset_lpc += kLpcOrder + 1) {
|
|
SubframeCorrelation(corr, kLpcOrder + 1, i);
|
|
corr[0] *= 1.0001;
|
|
// This makes Lev-Durb a bit more stable.
|
|
for (size_t k = 0; k < kLpcOrder + 1; k++) {
|
|
corr[k] *= kCorrWeight[k];
|
|
}
|
|
WebRtcIsac_LevDurb(&lpc[offset_lpc], reflec_coeff, corr, kLpcOrder);
|
|
}
|
|
}
|
|
|
|
// Fit a second order curve to these 3 points and find the location of the
|
|
// extremum. The points are inverted before curve fitting.
|
|
static float QuadraticInterpolation(float prev_val,
|
|
float curr_val,
|
|
float next_val) {
|
|
// Doing the interpolation in |1 / A(z)|^2.
|
|
float fractional_index = 0;
|
|
next_val = 1.0f / next_val;
|
|
prev_val = 1.0f / prev_val;
|
|
curr_val = 1.0f / curr_val;
|
|
|
|
fractional_index =
|
|
-(next_val - prev_val) * 0.5f / (next_val + prev_val - 2.f * curr_val);
|
|
RTC_DCHECK_LT(fabs(fractional_index), 1);
|
|
return fractional_index;
|
|
}
|
|
|
|
// 1 / A(z), where A(z) is defined by |lpc| is a model of the spectral envelope
|
|
// of the input signal. The local maximum of the spectral envelope corresponds
|
|
// with the local minimum of A(z). It saves complexity, as we save one
|
|
// inversion. Furthermore, we find the first local maximum of magnitude squared,
|
|
// to save on one square root.
|
|
void VadAudioProc::FindFirstSpectralPeaks(double* f_peak,
|
|
size_t length_f_peak) {
|
|
RTC_DCHECK_GE(length_f_peak, kNum10msSubframes);
|
|
double lpc[kNum10msSubframes * (kLpcOrder + 1)];
|
|
// For all sub-frames.
|
|
GetLpcPolynomials(lpc, kNum10msSubframes * (kLpcOrder + 1));
|
|
|
|
const size_t kNumDftCoefficients = kDftSize / 2 + 1;
|
|
float data[kDftSize];
|
|
|
|
for (size_t i = 0; i < kNum10msSubframes; i++) {
|
|
// Convert to float with zero pad.
|
|
memset(data, 0, sizeof(data));
|
|
for (size_t n = 0; n < kLpcOrder + 1; n++) {
|
|
data[n] = static_cast<float>(lpc[i * (kLpcOrder + 1) + n]);
|
|
}
|
|
// Transform to frequency domain.
|
|
WebRtc_rdft(kDftSize, 1, data, ip_, w_fft_);
|
|
|
|
size_t index_peak = 0;
|
|
float prev_magn_sqr = data[0] * data[0];
|
|
float curr_magn_sqr = data[2] * data[2] + data[3] * data[3];
|
|
float next_magn_sqr;
|
|
bool found_peak = false;
|
|
for (size_t n = 2; n < kNumDftCoefficients - 1; n++) {
|
|
next_magn_sqr =
|
|
data[2 * n] * data[2 * n] + data[2 * n + 1] * data[2 * n + 1];
|
|
if (curr_magn_sqr < prev_magn_sqr && curr_magn_sqr < next_magn_sqr) {
|
|
found_peak = true;
|
|
index_peak = n - 1;
|
|
break;
|
|
}
|
|
prev_magn_sqr = curr_magn_sqr;
|
|
curr_magn_sqr = next_magn_sqr;
|
|
}
|
|
float fractional_index = 0;
|
|
if (!found_peak) {
|
|
// Checking if |kNumDftCoefficients - 1| is the local minimum.
|
|
next_magn_sqr = data[1] * data[1];
|
|
if (curr_magn_sqr < prev_magn_sqr && curr_magn_sqr < next_magn_sqr) {
|
|
index_peak = kNumDftCoefficients - 1;
|
|
}
|
|
} else {
|
|
// A peak is found, do a simple quadratic interpolation to get a more
|
|
// accurate estimate of the peak location.
|
|
fractional_index =
|
|
QuadraticInterpolation(prev_magn_sqr, curr_magn_sqr, next_magn_sqr);
|
|
}
|
|
f_peak[i] = (index_peak + fractional_index) * kFrequencyResolution;
|
|
}
|
|
}
|
|
|
|
// Using iSAC functions to estimate pitch gains & lags.
|
|
void VadAudioProc::PitchAnalysis(double* log_pitch_gains,
|
|
double* pitch_lags_hz,
|
|
size_t length) {
|
|
// TODO(turajs): This can be "imported" from iSAC & and the next two
|
|
// constants.
|
|
RTC_DCHECK_GE(length, kNum10msSubframes);
|
|
const int kNumPitchSubframes = 4;
|
|
double gains[kNumPitchSubframes];
|
|
double lags[kNumPitchSubframes];
|
|
|
|
const int kNumSubbandFrameSamples = 240;
|
|
const int kNumLookaheadSamples = 24;
|
|
|
|
float lower[kNumSubbandFrameSamples];
|
|
float upper[kNumSubbandFrameSamples];
|
|
double lower_lookahead[kNumSubbandFrameSamples];
|
|
double upper_lookahead[kNumSubbandFrameSamples];
|
|
double lower_lookahead_pre_filter[kNumSubbandFrameSamples +
|
|
kNumLookaheadSamples];
|
|
|
|
// Split signal to lower and upper bands
|
|
WebRtcIsac_SplitAndFilterFloat(&audio_buffer_[kNumPastSignalSamples], lower,
|
|
upper, lower_lookahead, upper_lookahead,
|
|
pre_filter_handle_.get());
|
|
WebRtcIsac_PitchAnalysis(lower_lookahead, lower_lookahead_pre_filter,
|
|
pitch_analysis_handle_.get(), lags, gains);
|
|
|
|
// Lags are computed on lower-band signal with sampling rate half of the
|
|
// input signal.
|
|
GetSubframesPitchParameters(
|
|
kSampleRateHz / 2, gains, lags, kNumPitchSubframes, kNum10msSubframes,
|
|
&log_old_gain_, &old_lag_, log_pitch_gains, pitch_lags_hz);
|
|
}
|
|
|
|
void VadAudioProc::Rms(double* rms, size_t length_rms) {
|
|
RTC_DCHECK_GE(length_rms, kNum10msSubframes);
|
|
size_t offset = kNumPastSignalSamples;
|
|
for (size_t i = 0; i < kNum10msSubframes; i++) {
|
|
rms[i] = 0;
|
|
for (size_t n = 0; n < kNumSubframeSamples; n++, offset++)
|
|
rms[i] += audio_buffer_[offset] * audio_buffer_[offset];
|
|
rms[i] = sqrt(rms[i] / kNumSubframeSamples);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|