1
0
mirror of https://github.com/danog/libtgvoip.git synced 2024-11-30 04:39:03 +01:00
libtgvoip/VoIPController.cpp
2018-11-30 15:40:02 +03:00

3521 lines
108 KiB
C++
Executable File

//
// libtgvoip is free and unencumbered public domain software.
// For more information, see http://unlicense.org or the UNLICENSE file
// you should have received with this source code distribution.
//
#ifndef _WIN32
#include <unistd.h>
#include <sys/time.h>
#endif
#include <errno.h>
#include <string.h>
#include <wchar.h>
#include "VoIPController.h"
#include "logging.h"
#include "threading.h"
#include "Buffers.h"
#include "OpusEncoder.h"
#include "OpusDecoder.h"
#include "VoIPServerConfig.h"
#include "PrivateDefines.h"
#include "json11.hpp"
#include <assert.h>
#include <time.h>
#include <math.h>
#include <exception>
#include <stdexcept>
#include <algorithm>
#include <inttypes.h>
#include <float.h>
inline int pad4(int x){
int r=PAD4(x);
if(r==4)
return 0;
return r;
}
using namespace tgvoip;
using namespace std;
#ifdef __APPLE__
#include "os/darwin/AudioUnitIO.h"
#include <mach/mach_time.h>
double VoIPController::machTimebase=0;
uint64_t VoIPController::machTimestart=0;
#endif
#ifdef _WIN32
int64_t VoIPController::win32TimeScale = 0;
bool VoIPController::didInitWin32TimeScale = false;
#endif
#ifdef __ANDROID__
#include "os/android/JNIUtilities.h"
#include "os/android/AudioInputAndroid.h"
extern jclass jniUtilitiesClass;
#endif
#if defined(TGVOIP_USE_CALLBACK_AUDIO_IO)
#include "audio/AudioIOCallback.h"
#endif
#pragma mark - OpenSSL wrappers
#ifndef TGVOIP_USE_CUSTOM_CRYPTO
extern "C" {
#include <openssl/sha.h>
#include <openssl/aes.h>
#include <openssl/modes.h>
#include <openssl/rand.h>
}
void tgvoip_openssl_aes_ige_encrypt(uint8_t* in, uint8_t* out, size_t length, uint8_t* key, uint8_t* iv){
AES_KEY akey;
AES_set_encrypt_key(key, 32*8, &akey);
AES_ige_encrypt(in, out, length, &akey, iv, AES_ENCRYPT);
}
void tgvoip_openssl_aes_ige_decrypt(uint8_t* in, uint8_t* out, size_t length, uint8_t* key, uint8_t* iv){
AES_KEY akey;
AES_set_decrypt_key(key, 32*8, &akey);
AES_ige_encrypt(in, out, length, &akey, iv, AES_DECRYPT);
}
void tgvoip_openssl_rand_bytes(uint8_t* buffer, size_t len){
RAND_bytes(buffer, len);
}
void tgvoip_openssl_sha1(uint8_t* msg, size_t len, uint8_t* output){
SHA1(msg, len, output);
}
void tgvoip_openssl_sha256(uint8_t* msg, size_t len, uint8_t* output){
SHA256(msg, len, output);
}
void tgvoip_openssl_aes_ctr_encrypt(uint8_t* inout, size_t length, uint8_t* key, uint8_t* iv, uint8_t* ecount, uint32_t* num){
AES_KEY akey;
AES_set_encrypt_key(key, 32*8, &akey);
CRYPTO_ctr128_encrypt(inout, inout, length, &akey, iv, ecount, num, (block128_f) AES_encrypt);
}
void tgvoip_openssl_aes_cbc_encrypt(uint8_t* in, uint8_t* out, size_t length, uint8_t* key, uint8_t* iv){
AES_KEY akey;
AES_set_encrypt_key(key, 256, &akey);
AES_cbc_encrypt(in, out, length, &akey, iv, AES_ENCRYPT);
}
void tgvoip_openssl_aes_cbc_decrypt(uint8_t* in, uint8_t* out, size_t length, uint8_t* key, uint8_t* iv){
AES_KEY akey;
AES_set_decrypt_key(key, 256, &akey);
AES_cbc_encrypt(in, out, length, &akey, iv, AES_DECRYPT);
}
CryptoFunctions VoIPController::crypto={
tgvoip_openssl_rand_bytes,
tgvoip_openssl_sha1,
tgvoip_openssl_sha256,
tgvoip_openssl_aes_ige_encrypt,
tgvoip_openssl_aes_ige_decrypt,
tgvoip_openssl_aes_ctr_encrypt,
tgvoip_openssl_aes_cbc_encrypt,
tgvoip_openssl_aes_cbc_decrypt
};
#else
CryptoFunctions VoIPController::crypto; // set it yourself upon initialization
#endif
extern FILE* tgvoipLogFile;
#pragma mark - Public API
VoIPController::VoIPController() : activeNetItfName(""),
currentAudioInput("default"),
currentAudioOutput("default"),
proxyAddress(""),
proxyUsername(""),
proxyPassword(""){
seq=1;
lastRemoteSeq=0;
state=STATE_WAIT_INIT;
audioInput=NULL;
audioOutput=NULL;
encoder=NULL;
audioOutStarted=false;
audioTimestampIn=0;
audioTimestampOut=0;
stopping=false;
memset(recvPacketTimes, 0, sizeof(double)*32);
memset(&stats, 0, sizeof(TrafficStats));
lastRemoteAckSeq=0;
lastSentSeq=0;
recvLossCount=0;
packetsReceived=0;
waitingForAcks=false;
networkType=NET_TYPE_UNKNOWN;
echoCanceller=NULL;
dontSendPackets=0;
micMuted=false;
waitingForRelayPeerInfo=false;
allowP2p=true;
dataSavingMode=false;
publicEndpointsReqTime=0;
connectionInitTime=0;
lastRecvPacketTime=0;
dataSavingRequestedByPeer=false;
peerVersion=0;
conctl=new CongestionControl();
prevSendLossCount=0;
receivedInit=false;
receivedInitAck=false;
statsDump=NULL;
useTCP=false;
useUDP=true;
didAddTcpRelays=false;
udpPingCount=0;
lastUdpPingTime=0;
proxyProtocol=PROXY_NONE;
proxyPort=0;
resolvedProxyAddress=NULL;
selectCanceller=SocketSelectCanceller::Create();
udpSocket=NetworkSocket::Create(PROTO_UDP);
realUdpSocket=udpSocket;
udpConnectivityState=UDP_UNKNOWN;
echoCancellationStrength=1;
outputAGC=NULL;
outputAGCEnabled=false;
peerCapabilities=0;
callbacks={0};
didReceiveGroupCallKey=false;
didReceiveGroupCallKeyAck=false;
didSendGroupCallKey=false;
didSendUpgradeRequest=false;
didInvokeUpgradeCallback=false;
connectionMaxLayer=0;
useMTProto2=false;
setCurrentEndpointToTCP=false;
useIPv6=false;
peerIPv6Available=false;
shittyInternetMode=false;
didAddIPv6Relays=false;
didSendIPv6Endpoint=false;
unsentStreamPackets.store(0);
sendThread=NULL;
recvThread=NULL;
maxAudioBitrate=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_max_bitrate", 20000);
maxAudioBitrateGPRS=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_max_bitrate_gprs", 8000);
maxAudioBitrateEDGE=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_max_bitrate_edge", 16000);
maxAudioBitrateSaving=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_max_bitrate_saving", 8000);
initAudioBitrate=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_init_bitrate", 16000);
initAudioBitrateGPRS=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_init_bitrate_gprs", 8000);
initAudioBitrateEDGE=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_init_bitrate_edge", 8000);
initAudioBitrateSaving=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_init_bitrate_saving", 8000);
audioBitrateStepIncr=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_bitrate_step_incr", 1000);
audioBitrateStepDecr=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_bitrate_step_decr", 1000);
minAudioBitrate=(uint32_t) ServerConfig::GetSharedInstance()->GetInt("audio_min_bitrate", 8000);
relaySwitchThreshold=ServerConfig::GetSharedInstance()->GetDouble("relay_switch_threshold", 0.8);
p2pToRelaySwitchThreshold=ServerConfig::GetSharedInstance()->GetDouble("p2p_to_relay_switch_threshold", 0.6);
relayToP2pSwitchThreshold=ServerConfig::GetSharedInstance()->GetDouble("relay_to_p2p_switch_threshold", 0.8);
reconnectingTimeout=ServerConfig::GetSharedInstance()->GetDouble("reconnecting_state_timeout", 2.0);
needRateFlags=static_cast<uint32_t>(ServerConfig::GetSharedInstance()->GetInt("rate_flags", 0xFFFFFFFF));
rateMaxAcceptableRTT=ServerConfig::GetSharedInstance()->GetDouble("rate_min_rtt", 0.6);
rateMaxAcceptableSendLoss=ServerConfig::GetSharedInstance()->GetDouble("rate_min_send_loss", 0.2);
packetLossToEnableExtraEC=ServerConfig::GetSharedInstance()->GetDouble("packet_loss_for_extra_ec", 0.02);
#ifdef __APPLE__
machTimestart=0;
#endif
shared_ptr<Stream> stm=make_shared<Stream>();
stm->id=1;
stm->type=STREAM_TYPE_AUDIO;
stm->codec=CODEC_OPUS;
stm->enabled=1;
stm->frameDuration=60;
outgoingStreams.push_back(stm);
shared_ptr<Stream> vstm=make_shared<Stream>();
vstm->id=2;
vstm->type=STREAM_TYPE_VIDEO;
vstm->codec=CODEC_HEVC;
vstm->enabled=1;
outgoingStreams.push_back(vstm);
}
VoIPController::~VoIPController(){
LOGD("Entered VoIPController::~VoIPController");
if(!stopping){
LOGE("!!!!!!!!!!!!!!!!!!!! CALL controller->Stop() BEFORE DELETING THE CONTROLLER OBJECT !!!!!!!!!!!!!!!!!!!!!!!1");
abort();
}
LOGD("before close socket");
if(udpSocket)
delete udpSocket;
if(udpSocket!=realUdpSocket)
delete realUdpSocket;
LOGD("before delete audioIO");
if(audioIO){
delete audioIO;
audioInput=NULL;
audioOutput=NULL;
}
for(vector<shared_ptr<Stream>>::iterator _stm=incomingStreams.begin();_stm!=incomingStreams.end();++_stm){
shared_ptr<Stream> stm=*_stm;
LOGD("before stop decoder");
if(stm->decoder){
stm->decoder->Stop();
}
}
LOGD("before delete encoder");
if(encoder){
encoder->Stop();
delete encoder;
}
LOGD("before delete echo canceller");
if(echoCanceller){
echoCanceller->Stop();
delete echoCanceller;
}
delete conctl;
if(tgvoipLogFile){
FILE* log=tgvoipLogFile;
tgvoipLogFile=NULL;
fclose(log);
}
if(statsDump)
fclose(statsDump);
if(resolvedProxyAddress)
delete resolvedProxyAddress;
delete selectCanceller;
if(outputAGC)
delete outputAGC;
LOGD("Left VoIPController::~VoIPController");
}
void VoIPController::Stop(){
LOGD("Entered VoIPController::Stop");
stopping=true;
runReceiver=false;
LOGD("before shutdown socket");
if(udpSocket)
udpSocket->Close();
if(realUdpSocket!=udpSocket)
realUdpSocket->Close();
selectCanceller->CancelSelect();
Buffer emptyBuf(0);
//PendingOutgoingPacket emptyPacket{0, 0, 0, move(emptyBuf), 0};
//sendQueue->Put(move(emptyPacket));
LOGD("before join sendThread");
if(sendThread){
sendThread->Join();
delete sendThread;
}
LOGD("before join recvThread");
if(recvThread){
recvThread->Join();
delete recvThread;
}
LOGD("before stop messageThread");
messageThread.Stop();
{
LOGD("Before stop audio I/O");
MutexGuard m(audioIOMutex);
if(audioInput){
audioInput->Stop();
audioInput->SetCallback(NULL, NULL);
}
if(audioOutput){
audioOutput->Stop();
audioOutput->SetCallback(NULL, NULL);
}
}
LOGD("Left VoIPController::Stop [need rate = %d]", (int)needRate);
}
bool VoIPController::NeedRate(){
return needRate;
}
void VoIPController::SetRemoteEndpoints(vector<Endpoint> endpoints, bool allowP2p, int32_t connectionMaxLayer){
LOGW("Set remote endpoints, allowP2P=%d, connectionMaxLayer=%u", allowP2p ? 1 : 0, connectionMaxLayer);
preferredRelay=0;
{
MutexGuard m(endpointsMutex);
this->endpoints.clear();
didAddTcpRelays=false;
useTCP=true;
for(vector<Endpoint>::iterator itrtr=endpoints.begin();itrtr!=endpoints.end();++itrtr){
if(this->endpoints.find(itrtr->id)!=this->endpoints.end())
LOGE("Endpoint IDs are not unique!");
this->endpoints[itrtr->id]=*itrtr;
if(currentEndpoint==0)
currentEndpoint=itrtr->id;
if(itrtr->type==Endpoint::Type::TCP_RELAY)
didAddTcpRelays=true;
if(itrtr->type==Endpoint::Type::UDP_RELAY)
useTCP=false;
LOGV("Adding endpoint: %s:%d, %s", itrtr->address.ToString().c_str(), itrtr->port, itrtr->type==Endpoint::Type::UDP_RELAY ? "UDP" : "TCP");
}
}
preferredRelay=currentEndpoint;
this->allowP2p=allowP2p;
this->connectionMaxLayer=connectionMaxLayer;
if(connectionMaxLayer>=74){
useMTProto2=true;
}
AddIPv6Relays();
}
void VoIPController::Start(){
LOGW("Starting voip controller");
udpSocket->Open();
if(udpSocket->IsFailed()){
SetState(STATE_FAILED);
return;
}
//SendPacket(NULL, 0, currentEndpoint);
runReceiver=true;
recvThread=new Thread(bind(&VoIPController::RunRecvThread, this));
recvThread->SetName("VoipRecv");
recvThread->Start();
messageThread.Start();
}
void VoIPController::Connect(){
assert(state!=STATE_WAIT_INIT_ACK);
connectionInitTime=GetCurrentTime();
if(config.initTimeout==0.0){
LOGE("Init timeout is 0 -- did you forget to set config?");
config.initTimeout=30.0;
}
//InitializeTimers();
//SendInit();
sendThread=new Thread(bind(&VoIPController::RunSendThread, this));
sendThread->SetName("VoipSend");
sendThread->Start();
}
void VoIPController::SetEncryptionKey(char *key, bool isOutgoing){
memcpy(encryptionKey, key, 256);
uint8_t sha1[SHA1_LENGTH];
crypto.sha1((uint8_t*) encryptionKey, 256, sha1);
memcpy(keyFingerprint, sha1+(SHA1_LENGTH-8), 8);
uint8_t sha256[SHA256_LENGTH];
crypto.sha256((uint8_t*) encryptionKey, 256, sha256);
memcpy(callID, sha256+(SHA256_LENGTH-16), 16);
this->isOutgoing=isOutgoing;
}
void VoIPController::SetNetworkType(int type){
networkType=type;
UpdateDataSavingState();
UpdateAudioBitrateLimit();
myIPv6=IPv6Address();
string itfName=udpSocket->GetLocalInterfaceInfo(NULL, &myIPv6);
LOGI("set network type: %s, active interface %s", NetworkTypeToString(type).c_str(), activeNetItfName.c_str());
LOGI("Local IPv6 address: %s", myIPv6.ToString().c_str());
if(itfName!=activeNetItfName){
udpSocket->OnActiveInterfaceChanged();
LOGI("Active network interface changed: %s -> %s", activeNetItfName.c_str(), itfName.c_str());
bool isFirstChange=activeNetItfName.length()==0 && state!=STATE_ESTABLISHED && state!=STATE_RECONNECTING;
activeNetItfName=itfName;
if(IS_MOBILE_NETWORK(networkType)){
CellularCarrierInfo carrier=GetCarrierInfo();
if(!carrier.name.empty()){
LOGI("Carrier: %s [%s; mcc=%s, mnc=%s]", carrier.name.c_str(), carrier.countryCode.c_str(), carrier.mcc.c_str(), carrier.mnc.c_str());
}
}
if(isFirstChange)
return;
if(currentEndpoint){
const Endpoint& _currentEndpoint=endpoints.at(currentEndpoint);
const Endpoint& _preferredRelay=endpoints.at(preferredRelay);
if(_currentEndpoint.type!=Endpoint::Type::UDP_RELAY){
if(_preferredRelay.type==Endpoint::Type::UDP_RELAY)
currentEndpoint=preferredRelay;
MutexGuard m(endpointsMutex);
constexpr int64_t lanID=(int64_t)(FOURCC('L','A','N','4')) << 32;
endpoints.erase(lanID);
for(pair<const int64_t, Endpoint>& e:endpoints){
Endpoint& endpoint=e.second;
if(endpoint.type==Endpoint::Type::UDP_RELAY && useTCP){
useTCP=false;
if(_preferredRelay.type==Endpoint::Type::TCP_RELAY){
preferredRelay=currentEndpoint=endpoint.id;
}
}else if(endpoint.type==Endpoint::Type::TCP_RELAY && endpoint.socket){
endpoint.socket->Close();
delete endpoint.socket;
endpoint.socket=NULL;
}
//if(endpoint->type==Endpoint::Type::UDP_P2P_INET){
endpoint.averageRTT=0;
endpoint.rtts.Reset();
//}
}
}
}
lastUdpPingTime=0;
if(proxyProtocol==PROXY_SOCKS5)
InitUDPProxy();
if(allowP2p && currentEndpoint){
SendPublicEndpointsRequest();
}
BufferOutputStream s(4);
s.WriteInt32(dataSavingMode ? INIT_FLAG_DATA_SAVING_ENABLED : 0);
if(peerVersion<6){
SendPacketReliably(PKT_NETWORK_CHANGED, s.GetBuffer(), s.GetLength(), 1, 20);
}else{
Buffer buf(move(s));
SendExtra(buf, EXTRA_TYPE_NETWORK_CHANGED);
}
needReInitUdpProxy=true;
selectCanceller->CancelSelect();
didSendIPv6Endpoint=false;
AddIPv6Relays();
ResetUdpAvailability();
ResetEndpointPingStats();
}
}
double VoIPController::GetAverageRTT(){
if(lastSentSeq>=lastRemoteAckSeq){
uint32_t diff=lastSentSeq-lastRemoteAckSeq;
//LOGV("rtt diff=%u", diff);
if(diff<32){
double res=0;
int count=0;
/*for(i=diff;i<32;i++){
if(remoteAcks[i-diff]>0){
res+=(remoteAcks[i-diff]-sentPacketTimes[i]);
count++;
}
}*/
MutexGuard m(queuedPacketsMutex);
for(std::vector<RecentOutgoingPacket>::iterator itr=recentOutgoingPackets.begin();itr!=recentOutgoingPackets.end();++itr){
if(itr->ackTime>0){
res+=(itr->ackTime-itr->sendTime);
count++;
}
}
if(count>0)
res/=count;
return res;
}
}
return 999;
}
void VoIPController::SetMicMute(bool mute){
if(micMuted==mute)
return;
micMuted=mute;
if(audioInput){
if(mute)
audioInput->Stop();
else
audioInput->Start();
if(!audioInput->IsInitialized()){
lastError=ERROR_AUDIO_IO;
SetState(STATE_FAILED);
return;
}
}
if(echoCanceller)
echoCanceller->Enable(!mute);
if(state==STATE_ESTABLISHED){
for(shared_ptr<Stream>& s:outgoingStreams){
if(s->type==STREAM_TYPE_AUDIO){
s->enabled=!mute;
if(peerVersion<6){
unsigned char buf[2];
buf[0]=s->id;
buf[1]=(char) (mute ? 0 : 1);
SendPacketReliably(PKT_STREAM_STATE, buf, 2, .5f, 20);
}else{
SendStreamFlags(*s);
}
}
}
}
if(mute){
if(noStreamsNopID==MessageThread::INVALID_ID)
noStreamsNopID=messageThread.Post(std::bind(&VoIPController::SendNopPacket, this), 0.2, 0.2);
}else{
if(noStreamsNopID!=MessageThread::INVALID_ID){
messageThread.Cancel(noStreamsNopID);
noStreamsNopID=MessageThread::INVALID_ID;
}
}
}
string VoIPController::GetDebugString(){
string r="Remote endpoints: \n";
char buffer[2048];
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint>& _e:endpoints){
Endpoint& endpoint=_e.second;
const char* type;
switch(endpoint.type){
case Endpoint::Type::UDP_P2P_INET:
type="UDP_P2P_INET";
break;
case Endpoint::Type::UDP_P2P_LAN:
type="UDP_P2P_LAN";
break;
case Endpoint::Type::UDP_RELAY:
type="UDP_RELAY";
break;
case Endpoint::Type::TCP_RELAY:
type="TCP_RELAY";
break;
default:
type="UNKNOWN";
break;
}
snprintf(buffer, sizeof(buffer), "%s:%u %dms %d 0x%" PRIx64 " [%s%s]\n", endpoint.address.IsEmpty() ? ("["+endpoint.v6address.ToString()+"]").c_str() : endpoint.address.ToString().c_str(), endpoint.port, (int)(endpoint.averageRTT*1000), endpoint.udpPongCount, (uint64_t)endpoint.id, type, currentEndpoint==endpoint.id ? ", IN_USE" : "");
r+=buffer;
}
if(shittyInternetMode){
snprintf(buffer, sizeof(buffer), "ShittyInternetMode: level %d\n", extraEcLevel);
r+=buffer;
}
double avgLate[3];
shared_ptr<Stream> stm=GetStreamByType(STREAM_TYPE_AUDIO, false);
shared_ptr<JitterBuffer> jitterBuffer;
if(stm)
jitterBuffer=stm->jitterBuffer;
if(jitterBuffer)
jitterBuffer->GetAverageLateCount(avgLate);
else
memset(avgLate, 0, 3*sizeof(double));
snprintf(buffer, sizeof(buffer),
"Jitter buffer: %d/%.2f | %.1f, %.1f, %.1f\n"
"RTT avg/min: %d/%d\n"
"Congestion window: %d/%d bytes\n"
"Key fingerprint: %02hhX%02hhX%02hhX%02hhX%02hhX%02hhX%02hhX%02hhX%s\n"
"Last sent/ack'd seq: %u/%u\n"
"Last recvd seq: %u\n"
"Send/recv losses: %u/%u (%d%%)\n"
"Audio bitrate: %d kbit\n"
"Outgoing queue: %u\n"
// "Packet grouping: %d\n"
"Frame size out/in: %d/%d\n"
"Bytes sent/recvd: %llu/%llu",
jitterBuffer ? jitterBuffer->GetMinPacketCount() : 0, jitterBuffer ? jitterBuffer->GetAverageDelay() : 0, avgLate[0], avgLate[1], avgLate[2],
// (int)(GetAverageRTT()*1000), 0,
(int)(conctl->GetAverageRTT()*1000), (int)(conctl->GetMinimumRTT()*1000),
int(conctl->GetInflightDataSize()), int(conctl->GetCongestionWindow()),
keyFingerprint[0],keyFingerprint[1],keyFingerprint[2],keyFingerprint[3],keyFingerprint[4],keyFingerprint[5],keyFingerprint[6],keyFingerprint[7],
useMTProto2 ? " (MTProto2.0)" : "",
lastSentSeq, lastRemoteAckSeq, lastRemoteSeq,
conctl->GetSendLossCount(), recvLossCount, encoder ? encoder->GetPacketLoss() : 0,
encoder ? (encoder->GetBitrate()/1000) : 0,
static_cast<unsigned int>(unsentStreamPackets),
// audioPacketGrouping,
outgoingStreams[0]->frameDuration, incomingStreams.size()>0 ? incomingStreams[0]->frameDuration : 0,
(long long unsigned int)(stats.bytesSentMobile+stats.bytesSentWifi),
(long long unsigned int)(stats.bytesRecvdMobile+stats.bytesRecvdWifi));
r+=buffer;
return r;
}
const char* VoIPController::GetVersion(){
return LIBTGVOIP_VERSION;
}
int64_t VoIPController::GetPreferredRelayID(){
return preferredRelay;
}
int VoIPController::GetLastError(){
return lastError;
}
void VoIPController::GetStats(TrafficStats *stats){
memcpy(stats, &this->stats, sizeof(TrafficStats));
}
string VoIPController::GetDebugLog(){
vector<json11::Json> lpkts;
for(DebugLoggedPacket& lpkt:debugLoggedPackets){
lpkts.push_back(json11::Json::array{lpkt.timestamp, lpkt.seq, lpkt.length});
}
map<string, json11::Json> network{
{"type", NetworkTypeToString(networkType)}
};
if(IS_MOBILE_NETWORK(networkType)){
CellularCarrierInfo carrier=GetCarrierInfo();
if(!carrier.name.empty()){
network["carrier"]=carrier.name;
network["country"]=carrier.countryCode;
network["mcc"]=carrier.mcc;
network["mnc"]=carrier.mnc;
}
}
return json11::Json(json11::Json::object{
{"log_type", "out_packet_stats"},
{"libtgvoip_version", LIBTGVOIP_VERSION},
{"network", network},
{"protocol_version", std::min(peerVersion, PROTOCOL_VERSION)},
{"total_losses", json11::Json::object{
{"s", (int32_t)conctl->GetSendLossCount()},
{"r", (int32_t)recvLossCount}
}},
{"call_duration", GetCurrentTime()-connectionInitTime},
{"out_packet_stats", lpkts}
}).dump();
}
vector<AudioInputDevice> VoIPController::EnumerateAudioInputs(){
vector<AudioInputDevice> devs;
audio::AudioInput::EnumerateDevices(devs);
return devs;
}
vector<AudioOutputDevice> VoIPController::EnumerateAudioOutputs(){
vector<AudioOutputDevice> devs;
audio::AudioOutput::EnumerateDevices(devs);
return devs;
}
void VoIPController::SetCurrentAudioInput(string id){
currentAudioInput=id;
if(audioInput)
audioInput->SetCurrentDevice(id);
}
void VoIPController::SetCurrentAudioOutput(string id){
currentAudioOutput=id;
if(audioOutput)
audioOutput->SetCurrentDevice(id);
}
string VoIPController::GetCurrentAudioInputID(){
return currentAudioInput;
}
string VoIPController::GetCurrentAudioOutputID(){
return currentAudioOutput;
}
void VoIPController::SetProxy(int protocol, string address, uint16_t port, string username, string password){
proxyProtocol=protocol;
proxyAddress=address;
proxyPort=port;
proxyUsername=username;
proxyPassword=password;
}
int VoIPController::GetSignalBarsCount(){
return signalBarsHistory.NonZeroAverage();
}
void VoIPController::SetCallbacks(VoIPController::Callbacks callbacks){
this->callbacks=callbacks;
if(callbacks.connectionStateChanged)
callbacks.connectionStateChanged(this, state);
}
void VoIPController::SetAudioOutputGainControlEnabled(bool enabled){
LOGD("New output AGC state: %d", enabled);
outputAGCEnabled=enabled;
if(outputAGC)
outputAGC->SetPassThrough(!enabled);
}
uint32_t VoIPController::GetPeerCapabilities(){
return peerCapabilities;
}
void VoIPController::SendGroupCallKey(unsigned char *key){
if(!(peerCapabilities & TGVOIP_PEER_CAP_GROUP_CALLS)){
LOGE("Tried to send group call key but peer isn't capable of them");
return;
}
if(didSendGroupCallKey){
LOGE("Tried to send a group call key repeatedly");
return;
}
if(!isOutgoing){
LOGE("You aren't supposed to send group call key in an incoming call, use VoIPController::RequestCallUpgrade() instead");
return;
}
didSendGroupCallKey=true;
Buffer buf(256);
buf.CopyFrom(key, 0, 256);
SendExtra(buf, EXTRA_TYPE_GROUP_CALL_KEY);
}
void VoIPController::RequestCallUpgrade(){
if(!(peerCapabilities & TGVOIP_PEER_CAP_GROUP_CALLS)){
LOGE("Tried to send group call key but peer isn't capable of them");
return;
}
if(didSendUpgradeRequest){
LOGE("Tried to send upgrade request repeatedly");
return;
}
if(isOutgoing){
LOGE("You aren't supposed to send an upgrade request in an outgoing call, generate an encryption key and use VoIPController::SendGroupCallKey instead");
return;
}
didSendUpgradeRequest=true;
Buffer empty(0);
SendExtra(empty, EXTRA_TYPE_REQUEST_GROUP);
}
void VoIPController::SetEchoCancellationStrength(int strength){
echoCancellationStrength=strength;
if(echoCanceller)
echoCanceller->SetAECStrength(strength);
}
#if defined(TGVOIP_USE_CALLBACK_AUDIO_IO)
void VoIPController::SetAudioDataCallbacks(std::function<void(int16_t*, size_t)> input, std::function<void(int16_t*, size_t)> output){
audioInputDataCallback=input;
audioOutputDataCallback=output;
}
#endif
int VoIPController::GetConnectionState(){
return state;
}
void VoIPController::SetConfig(const Config& cfg){
config=cfg;
if(tgvoipLogFile){
fclose(tgvoipLogFile);
tgvoipLogFile=NULL;
}
if(!config.logFilePath.empty()){
#ifndef _WIN32
tgvoipLogFile=fopen(config.logFilePath.c_str(), "a");
#else
if(_wfopen_s(&tgvoipLogFile, config.logFilePath.c_str(), L"a")!=0){
tgvoipLogFile=NULL;
}
#endif
tgvoip_log_file_write_header(tgvoipLogFile);
}else{
tgvoipLogFile=NULL;
}
if(statsDump){
fclose(statsDump);
statsDump=NULL;
}
if(!config.statsDumpFilePath.empty()){
#ifndef _WIN32
statsDump=fopen(config.statsDumpFilePath.c_str(), "w");
#else
if(_wfopen_s(&statsDump, config.statsDumpFilePath.c_str(), L"w")!=0){
statsDump=NULL;
}
#endif
if(statsDump)
fprintf(statsDump, "Time\tRTT\tLRSeq\tLSSeq\tLASeq\tLostR\tLostS\tCWnd\tBitrate\tLoss%%\tJitter\tJDelay\tAJDelay\n");
//else
// LOGW("Failed to open stats dump file %s for writing", config.statsDumpFilePath.c_str());
}else{
statsDump=NULL;
}
UpdateDataSavingState();
UpdateAudioBitrateLimit();
}
#pragma mark - Internal intialization
void VoIPController::InitializeTimers(){
initTimeoutID=messageThread.Post([this]{
LOGW("Init timeout, disconnecting");
lastError=ERROR_TIMEOUT;
SetState(STATE_FAILED);
}, config.initTimeout);
if(!config.statsDumpFilePath.empty()){
messageThread.Post([this]{
if(statsDump && incomingStreams.size()==1){
shared_ptr<JitterBuffer>& jitterBuffer=incomingStreams[0]->jitterBuffer;
//fprintf(statsDump, "Time\tRTT\tLISeq\tLASeq\tCWnd\tBitrate\tJitter\tJDelay\tAJDelay\n");
fprintf(statsDump, "%.3f\t%.3f\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%.3f\t%.3f\t%.3f\n",
GetCurrentTime()-connectionInitTime,
endpoints.at(currentEndpoint).rtts[0],
lastRemoteSeq,
seq,
lastRemoteAckSeq,
recvLossCount,
conctl ? conctl->GetSendLossCount() : 0,
conctl ? (int)conctl->GetInflightDataSize() : 0,
encoder ? encoder->GetBitrate() : 0,
encoder ? encoder->GetPacketLoss() : 0,
jitterBuffer ? jitterBuffer->GetLastMeasuredJitter() : 0,
jitterBuffer ? jitterBuffer->GetLastMeasuredDelay()*0.06 : 0,
jitterBuffer ? jitterBuffer->GetAverageDelay()*0.06 : 0);
}
}, 0.1, 0.1);
}
udpConnectivityState=UDP_PING_PENDING;
udpPingTimeoutID=messageThread.Post(std::bind(&VoIPController::SendUdpPings, this), 0.0, 0.5);
messageThread.Post(std::bind(&VoIPController::SendRelayPings, this), 0.0, 2.0);
}
void VoIPController::RunSendThread(){
InitializeAudio();
InitializeTimers();
SendInit();
LOGI("=== send thread exiting ===");
}
#pragma mark - Miscellaneous
void VoIPController::SetState(int state){
this->state=state;
LOGV("Call state changed to %d", state);
stateChangeTime=GetCurrentTime();
messageThread.Post([this, state]{
if(callbacks.connectionStateChanged)
callbacks.connectionStateChanged(this, state);
});
if(state==STATE_ESTABLISHED){
SetMicMute(micMuted);
if(!wasEstablished){
wasEstablished=true;
messageThread.Post(std::bind(&VoIPController::UpdateRTT, this), 0.1, 0.5);
messageThread.Post(std::bind(&VoIPController::UpdateAudioBitrate, this), 0.0, 0.3);
messageThread.Post(std::bind(&VoIPController::UpdateCongestion, this), 0.0, 1.0);
messageThread.Post(std::bind(&VoIPController::UpdateSignalBars, this), 1.0, 1.0);
messageThread.Post(std::bind(&VoIPController::TickJitterBufferAngCongestionControl, this), 0.0, 0.1);
}
}
}
void VoIPController::SendStreamFlags(Stream& stream){
BufferOutputStream s(5);
s.WriteByte(stream.id);
uint32_t flags=0;
if(stream.enabled)
flags|=STREAM_FLAG_ENABLED;
if(stream.extraECEnabled)
flags|=STREAM_FLAG_EXTRA_EC;
s.WriteInt32(flags);
LOGV("My stream state: id %u flags %u", (unsigned int)stream.id, (unsigned int)flags);
Buffer buf(move(s));
SendExtra(buf, EXTRA_TYPE_STREAM_FLAGS);
}
shared_ptr<VoIPController::Stream> VoIPController::GetStreamByType(int type, bool outgoing){
shared_ptr<Stream> s;
for(shared_ptr<Stream>& ss:(outgoing ? outgoingStreams : incomingStreams)){
if(ss->type==type)
return ss;
}
return s;
}
CellularCarrierInfo VoIPController::GetCarrierInfo(){
#if defined(__APPLE__) && TARGET_OS_IOS
return DarwinSpecific::GetCarrierInfo();
#elif defined(__ANDROID__)
CellularCarrierInfo carrier;
jni::DoWithJNI([&carrier](JNIEnv* env){
jmethodID getCarrierInfoMethod=env->GetStaticMethodID(jniUtilitiesClass, "getCarrierInfo", "()[Ljava/lang/String;");
jobjectArray jinfo=(jobjectArray) env->CallStaticObjectMethod(jniUtilitiesClass, getCarrierInfoMethod);
if(jinfo && env->GetArrayLength(jinfo)==4){
carrier.name=jni::JavaStringToStdString(env, (jstring)env->GetObjectArrayElement(jinfo, 0));
carrier.countryCode=jni::JavaStringToStdString(env, (jstring)env->GetObjectArrayElement(jinfo, 1));
carrier.mcc=jni::JavaStringToStdString(env, (jstring)env->GetObjectArrayElement(jinfo, 2));
carrier.mnc=jni::JavaStringToStdString(env, (jstring)env->GetObjectArrayElement(jinfo, 3));
}else{
LOGW("Failed to get carrier info");
}
});
return carrier;
#else
return CellularCarrierInfo();
#endif
}
#pragma mark - Audio I/O
void VoIPController::AudioInputCallback(unsigned char* data, size_t length, unsigned char* secondaryData, size_t secondaryLength, void* param){
((VoIPController*)param)->HandleAudioInput(data, length, secondaryData, secondaryLength);
}
void VoIPController::HandleAudioInput(unsigned char *data, size_t len, unsigned char* secondaryData, size_t secondaryLen){
if(stopping)
return;
unsentStreamPacketsHistory.Add(static_cast<unsigned int>(unsentStreamPackets));
if(unsentStreamPacketsHistory.Average()>=2){
LOGW("Resetting stalled send queue");
sendQueue.clear();
unsentStreamPacketsHistory.Reset();
unsentStreamPackets=0;
}
if(waitingForAcks || dontSendPackets>0 || (unsigned int)unsentStreamPackets>=2){
LOGV("waiting for queue, dropping outgoing audio packet");
return;
}
//LOGV("Audio packet size %u", (unsigned int)len);
if(!receivedInitAck)
return;
BufferOutputStream pkt(1500);
bool hasExtraFEC=peerVersion>=7 && secondaryData && secondaryLen && shittyInternetMode;
unsigned char flags=(unsigned char) (len>255 || hasExtraFEC ? STREAM_DATA_FLAG_LEN16 : 0);
pkt.WriteByte((unsigned char) (1 | flags)); // streamID + flags
if(len>255 || hasExtraFEC){
int16_t lenAndFlags=static_cast<int16_t>(len);
if(hasExtraFEC)
lenAndFlags|=STREAM_DATA_XFLAG_EXTRA_FEC;
pkt.WriteInt16(lenAndFlags);
}else{
pkt.WriteByte((unsigned char) len);
}
pkt.WriteInt32(audioTimestampOut);
pkt.WriteBytes(data, len);
if(hasExtraFEC){
Buffer ecBuf(secondaryLen);
ecBuf.CopyFrom(secondaryData, 0, secondaryLen);
ecAudioPackets.push_back(move(ecBuf));
while(ecAudioPackets.size()>4)
ecAudioPackets.erase(ecAudioPackets.begin());
pkt.WriteByte((unsigned char)MIN(ecAudioPackets.size(), extraEcLevel));
for(vector<Buffer>::iterator ecData=ecAudioPackets.begin()+MAX(0, (int)ecAudioPackets.size()-extraEcLevel);ecData!=ecAudioPackets.end();++ecData){
pkt.WriteByte((unsigned char)ecData->Length());
pkt.WriteBytes(*ecData);
}
}
unsentStreamPackets++;
PendingOutgoingPacket p{
/*.seq=*/GenerateOutSeq(),
/*.type=*/PKT_STREAM_DATA,
/*.len=*/pkt.GetLength(),
/*.data=*/Buffer(move(pkt)),
/*.endpoint=*/0,
};
conctl->PacketSent(p.seq, p.len);
SendOrEnqueuePacket(move(p));
if(peerVersion<7 && secondaryData && secondaryLen && shittyInternetMode){
Buffer ecBuf(secondaryLen);
ecBuf.CopyFrom(secondaryData, 0, secondaryLen);
ecAudioPackets.push_back(move(ecBuf));
while(ecAudioPackets.size()>4)
ecAudioPackets.erase(ecAudioPackets.begin());
pkt=BufferOutputStream(1500);
pkt.WriteByte(outgoingStreams[0]->id);
pkt.WriteInt32(audioTimestampOut);
pkt.WriteByte((unsigned char)MIN(ecAudioPackets.size(), extraEcLevel));
for(vector<Buffer>::iterator ecData=ecAudioPackets.begin()+MAX(0, (int)ecAudioPackets.size()-extraEcLevel);ecData!=ecAudioPackets.end();++ecData){
pkt.WriteByte((unsigned char)ecData->Length());
pkt.WriteBytes(*ecData);
}
PendingOutgoingPacket p{
GenerateOutSeq(),
PKT_STREAM_EC,
pkt.GetLength(),
Buffer(move(pkt)),
0
};
SendOrEnqueuePacket(move(p));
}
audioTimestampOut+=outgoingStreams[0]->frameDuration;
}
void VoIPController::InitializeAudio(){
double t=GetCurrentTime();
shared_ptr<Stream>& outgoingAudioStream=outgoingStreams[0];
LOGI("before create audio io");
audioIO=audio::AudioIO::Create();
audioInput=audioIO->GetInput();
audioOutput=audioIO->GetOutput();
#ifdef __ANDROID__
audio::AudioInputAndroid* androidInput=dynamic_cast<audio::AudioInputAndroid*>(audioInput);
if(androidInput){
unsigned int effects=androidInput->GetEnabledEffects();
if(!(effects & audio::AudioInputAndroid::EFFECT_AEC)){
config.enableAEC=true;
LOGI("Forcing software AEC because built-in is not good");
}
if(!(effects & audio::AudioInputAndroid::EFFECT_NS)){
config.enableNS=true;
LOGI("Forcing software NS because built-in is not good");
}
}
#endif
LOGI("AEC: %d NS: %d AGC: %d", config.enableAEC, config.enableNS, config.enableAGC);
echoCanceller=new EchoCanceller(config.enableAEC, config.enableNS, config.enableAGC);
encoder=new OpusEncoder(audioInput, true);
encoder->SetCallback(AudioInputCallback, this);
encoder->SetOutputFrameDuration(outgoingAudioStream->frameDuration);
encoder->SetEchoCanceller(echoCanceller);
encoder->SetSecondaryEncoderEnabled(false);
#if defined(TGVOIP_USE_CALLBACK_AUDIO_IO)
dynamic_cast<audio::AudioInputCallback*>(audioInput)->SetDataCallback(audioInputDataCallback);
dynamic_cast<audio::AudioOutputCallback*>(audioOutput)->SetDataCallback(audioOutputDataCallback);
#endif
if(!audioOutput->IsInitialized()){
LOGE("Error initializing audio playback");
lastError=ERROR_AUDIO_IO;
SetState(STATE_FAILED);
return;
}
UpdateAudioBitrateLimit();
LOGI("Audio initialization took %f seconds", GetCurrentTime()-t);
}
void VoIPController::StartAudio(){
OnAudioOutputReady();
encoder->Start();
if(!micMuted){
audioInput->Start();
if(!audioInput->IsInitialized()){
LOGE("Erorr initializing audio capture");
lastError=ERROR_AUDIO_IO;
SetState(STATE_FAILED);
return;
}
}
}
void VoIPController::OnAudioOutputReady(){
LOGI("Audio I/O ready");
shared_ptr<Stream>& stm=incomingStreams[0];
outputAGC=new AutomaticGainControl();
outputAGC->SetPassThrough(!outputAGCEnabled);
stm->decoder=make_shared<OpusDecoder>(audioOutput, true, peerVersion>=6);
stm->decoder->AddAudioEffect(outputAGC);
stm->decoder->SetEchoCanceller(echoCanceller);
stm->decoder->SetJitterBuffer(stm->jitterBuffer);
stm->decoder->SetFrameDuration(stm->frameDuration);
stm->decoder->Start();
}
void VoIPController::UpdateAudioOutputState(){
bool areAnyAudioStreamsEnabled=false;
for(vector<shared_ptr<Stream>>::iterator s=incomingStreams.begin();s!=incomingStreams.end();++s){
if((*s)->type==STREAM_TYPE_AUDIO && (*s)->enabled)
areAnyAudioStreamsEnabled=true;
}
if(audioOutput){
LOGV("New audio output state: %d", areAnyAudioStreamsEnabled);
if(audioOutput->IsPlaying()!=areAnyAudioStreamsEnabled){
if(areAnyAudioStreamsEnabled)
audioOutput->Start();
else
audioOutput->Stop();
}
}
}
#pragma mark - Bandwidth management
void VoIPController::UpdateAudioBitrateLimit(){
if(encoder){
if(dataSavingMode || dataSavingRequestedByPeer){
maxBitrate=maxAudioBitrateSaving;
encoder->SetBitrate(initAudioBitrateSaving);
}else if(networkType==NET_TYPE_GPRS){
maxBitrate=maxAudioBitrateGPRS;
encoder->SetBitrate(initAudioBitrateGPRS);
}else if(networkType==NET_TYPE_EDGE){
maxBitrate=maxAudioBitrateEDGE;
encoder->SetBitrate(initAudioBitrateEDGE);
}else{
maxBitrate=maxAudioBitrate;
encoder->SetBitrate(initAudioBitrate);
}
encoder->SetVadMode(dataSavingMode || dataSavingRequestedByPeer);
if(echoCanceller)
echoCanceller->SetVoiceDetectionEnabled(dataSavingMode || dataSavingRequestedByPeer);
}
}
void VoIPController::UpdateDataSavingState(){
if(config.dataSaving==DATA_SAVING_ALWAYS){
dataSavingMode=true;
}else if(config.dataSaving==DATA_SAVING_MOBILE){
dataSavingMode=networkType==NET_TYPE_GPRS || networkType==NET_TYPE_EDGE ||
networkType==NET_TYPE_3G || networkType==NET_TYPE_HSPA || networkType==NET_TYPE_LTE || networkType==NET_TYPE_OTHER_MOBILE;
}else{
dataSavingMode=false;
}
LOGI("update data saving mode, config %d, enabled %d, reqd by peer %d", config.dataSaving, dataSavingMode, dataSavingRequestedByPeer);
}
#pragma mark - Networking & crypto
uint32_t VoIPController::GenerateOutSeq(){
return seq++;
}
void VoIPController::WritePacketHeader(uint32_t pseq, BufferOutputStream *s, unsigned char type, uint32_t length){
uint32_t acks=0;
int i;
for(i=0;i<32;i++){
if(recvPacketTimes[i]>0)
acks|=1;
if(i<31)
acks<<=1;
}
if(peerVersion>=8 || (!peerVersion && connectionMaxLayer>=92)){
s->WriteByte(type);
s->WriteInt32(lastRemoteSeq);
s->WriteInt32(pseq);
s->WriteInt32(acks);
MutexGuard m(queuedPacketsMutex);
if(currentExtras.empty()){
s->WriteByte(0);
}else{
s->WriteByte(XPFLAG_HAS_EXTRA);
s->WriteByte(static_cast<unsigned char>(currentExtras.size()));
for(vector<UnacknowledgedExtraData>::iterator x=currentExtras.begin(); x!=currentExtras.end(); ++x){
LOGV("Writing extra into header: type %u, length %lu", x->type, x->data.Length());
assert(x->data.Length()<=254);
s->WriteByte(static_cast<unsigned char>(x->data.Length()+1));
s->WriteByte(x->type);
s->WriteBytes(*x->data, x->data.Length());
if(x->firstContainingSeq==0)
x->firstContainingSeq=pseq;
}
}
}else{
if(state==STATE_WAIT_INIT || state==STATE_WAIT_INIT_ACK){
s->WriteInt32(TLID_DECRYPTED_AUDIO_BLOCK);
int64_t randomID;
crypto.rand_bytes((uint8_t *) &randomID, 8);
s->WriteInt64(randomID);
unsigned char randBytes[7];
crypto.rand_bytes(randBytes, 7);
s->WriteByte(7);
s->WriteBytes(randBytes, 7);
uint32_t pflags=PFLAG_HAS_RECENT_RECV | PFLAG_HAS_SEQ;
if(length>0)
pflags|=PFLAG_HAS_DATA;
if(state==STATE_WAIT_INIT || state==STATE_WAIT_INIT_ACK){
pflags|=PFLAG_HAS_CALL_ID | PFLAG_HAS_PROTO;
}
pflags|=((uint32_t) type) << 24;
s->WriteInt32(pflags);
if(pflags & PFLAG_HAS_CALL_ID){
s->WriteBytes(callID, 16);
}
s->WriteInt32(lastRemoteSeq);
s->WriteInt32(pseq);
s->WriteInt32(acks);
if(pflags & PFLAG_HAS_PROTO){
s->WriteInt32(PROTOCOL_NAME);
}
if(length>0){
if(length<=253){
s->WriteByte((unsigned char) length);
}else{
s->WriteByte(254);
s->WriteByte((unsigned char) (length & 0xFF));
s->WriteByte((unsigned char) ((length >> 8) & 0xFF));
s->WriteByte((unsigned char) ((length >> 16) & 0xFF));
}
}
}else{
s->WriteInt32(TLID_SIMPLE_AUDIO_BLOCK);
int64_t randomID;
crypto.rand_bytes((uint8_t *) &randomID, 8);
s->WriteInt64(randomID);
unsigned char randBytes[7];
crypto.rand_bytes(randBytes, 7);
s->WriteByte(7);
s->WriteBytes(randBytes, 7);
uint32_t lenWithHeader=length+13;
if(lenWithHeader>0){
if(lenWithHeader<=253){
s->WriteByte((unsigned char) lenWithHeader);
}else{
s->WriteByte(254);
s->WriteByte((unsigned char) (lenWithHeader & 0xFF));
s->WriteByte((unsigned char) ((lenWithHeader >> 8) & 0xFF));
s->WriteByte((unsigned char) ((lenWithHeader >> 16) & 0xFF));
}
}
s->WriteByte(type);
s->WriteInt32(lastRemoteSeq);
s->WriteInt32(pseq);
s->WriteInt32(acks);
if(peerVersion>=6){
MutexGuard m(queuedPacketsMutex);
if(currentExtras.empty()){
s->WriteByte(0);
}else{
s->WriteByte(XPFLAG_HAS_EXTRA);
s->WriteByte(static_cast<unsigned char>(currentExtras.size()));
for(vector<UnacknowledgedExtraData>::iterator x=currentExtras.begin(); x!=currentExtras.end(); ++x){
LOGV("Writing extra into header: type %u, length %lu", x->type, x->data.Length());
assert(x->data.Length()<=254);
s->WriteByte(static_cast<unsigned char>(x->data.Length()+1));
s->WriteByte(x->type);
s->WriteBytes(*x->data, x->data.Length());
if(x->firstContainingSeq==0)
x->firstContainingSeq=pseq;
}
}
}
}
}
MutexGuard m(queuedPacketsMutex);
recentOutgoingPackets.push_back(RecentOutgoingPacket{
pseq,
0,
GetCurrentTime(),
0
});
while(recentOutgoingPackets.size()>MAX_RECENT_PACKETS)
recentOutgoingPackets.erase(recentOutgoingPackets.begin());
lastSentSeq=pseq;
//LOGI("packet header size %d", s->GetLength());
}
void VoIPController::SendInit(){
{
MutexGuard m(endpointsMutex);
uint32_t initSeq=GenerateOutSeq();
for(pair<const int64_t, Endpoint>& _e:endpoints){
Endpoint& e=_e.second;
if(e.type==Endpoint::Type::TCP_RELAY && !useTCP)
continue;
BufferOutputStream out(1024);
out.WriteInt32(PROTOCOL_VERSION);
out.WriteInt32(MIN_PROTOCOL_VERSION);
uint32_t flags=0;
if(config.enableCallUpgrade)
flags|=INIT_FLAG_GROUP_CALLS_SUPPORTED;
if(dataSavingMode)
flags|=INIT_FLAG_DATA_SAVING_ENABLED;
out.WriteInt32(flags);
if(connectionMaxLayer<74){
out.WriteByte(2); // audio codecs count
out.WriteByte(CODEC_OPUS_OLD);
out.WriteByte(0);
out.WriteByte(0);
out.WriteByte(0);
out.WriteInt32(CODEC_OPUS);
out.WriteByte(0); // video codecs count (decode)
out.WriteByte(0); // video codecs count (encode)
}else{
out.WriteByte(1);
out.WriteInt32(CODEC_OPUS);
/*out.WriteByte(1);
out.WriteInt32(CODEC_AVC);
out.WriteByte(1);
out.WriteInt32(CODEC_AVC);*/
out.WriteByte(0);
out.WriteByte(0);
}
SendOrEnqueuePacket(PendingOutgoingPacket{
/*.seq=*/initSeq,
/*.type=*/PKT_INIT,
/*.len=*/out.GetLength(),
/*.data=*/Buffer(move(out)),
/*.endpoint=*/e.id
});
}
}
if(state==STATE_WAIT_INIT)
SetState(STATE_WAIT_INIT_ACK);
messageThread.Post([this]{
if(state==STATE_WAIT_INIT_ACK){
SendInit();
}
}, 0.5);
}
void VoIPController::InitUDPProxy(){
if(realUdpSocket!=udpSocket){
udpSocket->Close();
delete udpSocket;
udpSocket=realUdpSocket;
}
NetworkSocket* tcp=NetworkSocket::Create(PROTO_TCP);
tcp->Connect(resolvedProxyAddress, proxyPort);
vector<NetworkSocket*> writeSockets;
vector<NetworkSocket*> readSockets;
vector<NetworkSocket*> errorSockets;
while(!tcp->IsFailed() && !tcp->IsReadyToSend()){
writeSockets.push_back(tcp);
if(!NetworkSocket::Select(readSockets, writeSockets, errorSockets, selectCanceller)){
LOGW("Select canceled while waiting for proxy control socket to connect");
delete tcp;
return;
}
}
LOGV("UDP proxy control socket ready to send");
NetworkSocketSOCKS5Proxy* udpProxy=new NetworkSocketSOCKS5Proxy(tcp, realUdpSocket, proxyUsername, proxyPassword);
udpProxy->OnReadyToSend();
writeSockets.clear();
while(!udpProxy->IsFailed() && !tcp->IsFailed() && !udpProxy->IsReadyToSend()){
readSockets.clear();
errorSockets.clear();
readSockets.push_back(tcp);
errorSockets.push_back(tcp);
if(!NetworkSocket::Select(readSockets, writeSockets, errorSockets, selectCanceller)){
LOGW("Select canceled while waiting for UDP proxy to initialize");
delete udpProxy;
return;
}
if(!readSockets.empty())
udpProxy->OnReadyToReceive();
}
LOGV("UDP proxy initialized");
if(udpProxy->IsFailed()){
udpProxy->Close();
delete udpProxy;
useTCP=true;
useUDP=false;
udpConnectivityState=UDP_NOT_AVAILABLE;
}else{
udpSocket=udpProxy;
}
}
void VoIPController::RunRecvThread(){
LOGI("Receive thread starting");
Buffer buffer(1500);
NetworkPacket packet={0};
if(proxyProtocol==PROXY_SOCKS5){
resolvedProxyAddress=NetworkSocket::ResolveDomainName(proxyAddress);
if(!resolvedProxyAddress){
LOGW("Error resolving proxy address %s", proxyAddress.c_str());
SetState(STATE_FAILED);
return;
}
}
while(runReceiver){
if(proxyProtocol==PROXY_SOCKS5 && needReInitUdpProxy){
InitUDPProxy();
needReInitUdpProxy=false;
}
packet.data=*buffer;
packet.length=buffer.Length();
vector<NetworkSocket*> readSockets;
vector<NetworkSocket*> errorSockets;
vector<NetworkSocket*> writeSockets;
readSockets.push_back(udpSocket);
errorSockets.push_back(realUdpSocket);
if(!realUdpSocket->IsReadyToSend())
writeSockets.push_back(realUdpSocket);
{
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint>& _e:endpoints){
const Endpoint& e=_e.second;
if(e.type==Endpoint::Type::TCP_RELAY){
if(e.socket){
readSockets.push_back(e.socket);
errorSockets.push_back(e.socket);
if(!e.socket->IsReadyToSend()){
NetworkSocketSOCKS5Proxy* proxy=dynamic_cast<NetworkSocketSOCKS5Proxy*>(e.socket);
if(!proxy || proxy->NeedSelectForSending())
writeSockets.push_back(e.socket);
}
}
}
}
}
{
MutexGuard m(socketSelectMutex);
bool selRes=NetworkSocket::Select(readSockets, writeSockets, errorSockets, selectCanceller);
if(!selRes){
LOGV("Select canceled");
continue;
}
}
if(!runReceiver)
return;
if(!errorSockets.empty()){
if(find(errorSockets.begin(), errorSockets.end(), realUdpSocket)!=errorSockets.end()){
LOGW("UDP socket failed");
SetState(STATE_FAILED);
return;
}
MutexGuard m(endpointsMutex);
for(NetworkSocket*& socket:errorSockets){
for(pair<const int64_t, Endpoint>& _e:endpoints){
Endpoint& e=_e.second;
if(e.socket && e.socket==socket){
e.socket->Close();
delete e.socket;
e.socket=NULL;
LOGI("Closing failed TCP socket for %s:%u", e.GetAddress().ToString().c_str(), e.port);
}
}
}
continue;
}
for(NetworkSocket*& socket:readSockets){
//while(packet.length){
packet.length=1500;
socket->Receive(&packet);
if(!packet.address){
LOGE("Packet has null address. This shouldn't happen.");
continue;
}
size_t len=packet.length;
if(!len){
LOGE("Packet has zero length.");
continue;
}
//LOGV("Received %d bytes from %s:%d at %.5lf", len, packet.address->ToString().c_str(), packet.port, GetCurrentTime());
int64_t srcEndpointID=0;
IPv4Address *src4=dynamic_cast<IPv4Address *>(packet.address);
if(src4){
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint>& _e:endpoints){
const Endpoint& e=_e.second;
if(e.address==*src4 && e.port==packet.port){
if((e.type!=Endpoint::Type::TCP_RELAY && packet.protocol==PROTO_UDP) || (e.type==Endpoint::Type::TCP_RELAY && packet.protocol==PROTO_TCP)){
srcEndpointID=e.id;
break;
}
}
}
}else{
IPv6Address *src6=dynamic_cast<IPv6Address *>(packet.address);
if(src6){
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint> &_e:endpoints){
const Endpoint& e=_e.second;
if(e.v6address==*src6 && e.port==packet.port && e.IsIPv6Only()){
if((e.type!=Endpoint::Type::TCP_RELAY && packet.protocol==PROTO_UDP) || (e.type==Endpoint::Type::TCP_RELAY && packet.protocol==PROTO_TCP)){
srcEndpointID=e.id;
break;
}
}
}
}
}
if(!srcEndpointID){
LOGW("Received a packet from unknown source %s:%u", packet.address->ToString().c_str(), packet.port);
continue;
}
if(len<=0){
//LOGW("error receiving: %d / %s", errno, strerror(errno));
continue;
}
if(IS_MOBILE_NETWORK(networkType))
stats.bytesRecvdMobile+=(uint64_t) len;
else
stats.bytesRecvdWifi+=(uint64_t) len;
try{
ProcessIncomingPacket(packet, endpoints.at(srcEndpointID));
}catch(out_of_range& x){
LOGW("Error parsing packet: %s", x.what());
}
//}
}
for(vector<PendingOutgoingPacket>::iterator opkt=sendQueue.begin();opkt!=sendQueue.end();){
Endpoint* endpoint=GetEndpointForPacket(*opkt);
if(!endpoint){
opkt=sendQueue.erase(opkt);
LOGE("SendQueue contained packet for nonexistent endpoint");
continue;
}
bool canSend;
if(endpoint->type!=Endpoint::Type::TCP_RELAY)
canSend=realUdpSocket->IsReadyToSend();
else
canSend=endpoint->socket && endpoint->socket->IsReadyToSend();
if(canSend){
LOGI("Sending queued packet");
SendOrEnqueuePacket(move(*opkt), false);
opkt=sendQueue.erase(opkt);
}else{
++opkt;
}
}
}
LOGI("=== recv thread exiting ===");
}
void VoIPController::ProcessIncomingPacket(NetworkPacket &packet, Endpoint& srcEndpoint){
unsigned char* buffer=packet.data;
size_t len=packet.length;
BufferInputStream in(buffer, (size_t)len);
if(memcmp(buffer, srcEndpoint.type==Endpoint::Type::UDP_RELAY || srcEndpoint.type==Endpoint::Type::TCP_RELAY ? (void*)srcEndpoint.peerTag : (void*)callID, 16)!=0){
LOGW("Received packet has wrong peerTag");
return;
}
in.Seek(16);
if(in.Remaining()>=16 && (srcEndpoint.type==Endpoint::Type::UDP_RELAY || srcEndpoint.type==Endpoint::Type::TCP_RELAY)
&& *reinterpret_cast<uint64_t*>(buffer+16)==0xFFFFFFFFFFFFFFFFLL && *reinterpret_cast<uint32_t*>(buffer+24)==0xFFFFFFFF){
// relay special request response
in.Seek(16+12);
uint32_t tlid=(uint32_t) in.ReadInt32();
if(tlid==TLID_UDP_REFLECTOR_SELF_INFO){
if(srcEndpoint.type==Endpoint::Type::UDP_RELAY /*&& udpConnectivityState==UDP_PING_SENT*/ && in.Remaining()>=32){
int32_t date=in.ReadInt32();
int64_t queryID=in.ReadInt64();
unsigned char myIP[16];
in.ReadBytes(myIP, 16);
int32_t myPort=in.ReadInt32();
//udpConnectivityState=UDP_AVAILABLE;
LOGV("Received UDP ping reply from %s:%d: date=%d, queryID=%ld, my IP=%s, my port=%d", srcEndpoint.address.ToString().c_str(), srcEndpoint.port, date, (long int)queryID, IPv4Address(*reinterpret_cast<uint32_t*>(myIP+12)).ToString().c_str(), myPort);
srcEndpoint.udpPongCount++;
if(srcEndpoint.IsIPv6Only() && !didSendIPv6Endpoint){
IPv6Address realAddr(myIP);
if(realAddr==myIPv6){
LOGI("Public IPv6 matches local address");
useIPv6=true;
if(allowP2p){
didSendIPv6Endpoint=true;
BufferOutputStream o(18);
o.WriteBytes(myIP, 16);
o.WriteInt16(udpSocket->GetLocalPort());
Buffer b(move(o));
SendExtra(b, EXTRA_TYPE_IPV6_ENDPOINT);
}
}
}
}
}else if(tlid==TLID_UDP_REFLECTOR_PEER_INFO){
if(waitingForRelayPeerInfo && in.Remaining()>=16){
MutexGuard _m(endpointsMutex);
uint32_t myAddr=(uint32_t) in.ReadInt32();
uint32_t myPort=(uint32_t) in.ReadInt32();
uint32_t peerAddr=(uint32_t) in.ReadInt32();
uint32_t peerPort=(uint32_t) in.ReadInt32();
constexpr int64_t p2pID=(int64_t)(FOURCC('P','2','P','4')) << 32;
constexpr int64_t lanID=(int64_t)(FOURCC('L','A','N','4')) << 32;
if(currentEndpoint==p2pID || currentEndpoint==lanID)
currentEndpoint=preferredRelay;
endpoints.erase(lanID);
IPv4Address _peerAddr(peerAddr);
IPv6Address emptyV6(string("::0"));
unsigned char peerTag[16];
Endpoint p2p(p2pID, (uint16_t) peerPort, _peerAddr, emptyV6, Endpoint::Type::UDP_P2P_INET, peerTag);
endpoints[p2pID]=p2p;
LOGW("Received reflector peer info, my=%08X:%u, peer=%08X:%u", myAddr, myPort, peerAddr, peerPort);
if(myAddr==peerAddr){
LOGW("Detected LAN");
IPv4Address lanAddr(0);
udpSocket->GetLocalInterfaceInfo(&lanAddr, NULL);
BufferOutputStream pkt(8);
pkt.WriteInt32(lanAddr.GetAddress());
pkt.WriteInt32(udpSocket->GetLocalPort());
if(peerVersion<6){
SendPacketReliably(PKT_LAN_ENDPOINT, pkt.GetBuffer(), pkt.GetLength(), 0.5, 10);
}else{
Buffer buf(move(pkt));
SendExtra(buf, EXTRA_TYPE_LAN_ENDPOINT);
}
}
waitingForRelayPeerInfo=false;
}
}else{
LOGV("Received relay response with unknown tl id: 0x%08X", tlid);
}
return;
}
if(in.Remaining()<40){
LOGV("Received packet is too small");
return;
}
bool retryWith2=false;
size_t innerLen=0;
bool shortFormat=peerVersion>=8 || (!peerVersion && connectionMaxLayer>=92);
if(!useMTProto2){
unsigned char fingerprint[8], msgHash[16];
in.ReadBytes(fingerprint, 8);
in.ReadBytes(msgHash, 16);
unsigned char key[32], iv[32];
KDF(msgHash, isOutgoing ? 8 : 0, key, iv);
unsigned char aesOut[MSC_STACK_FALLBACK(in.Remaining(), 1500)];
if(in.Remaining()>sizeof(aesOut))
return;
crypto.aes_ige_decrypt((unsigned char *) buffer+in.GetOffset(), aesOut, in.Remaining(), key, iv);
BufferInputStream _in(aesOut, in.Remaining());
unsigned char sha[SHA1_LENGTH];
uint32_t _len=(uint32_t) _in.ReadInt32();
if(_len>_in.Remaining())
_len=(uint32_t)_in.Remaining();
crypto.sha1((uint8_t *) (aesOut), (size_t) (_len+4), sha);
if(memcmp(msgHash, sha+(SHA1_LENGTH-16), 16)!=0){
LOGW("Received packet has wrong hash after decryption");
if(state==STATE_WAIT_INIT || state==STATE_WAIT_INIT_ACK)
retryWith2=true;
else
return;
}else{
memcpy(buffer+in.GetOffset(), aesOut, in.Remaining());
in.ReadInt32();
}
}
if(useMTProto2 || retryWith2){
in.Seek(16); // peer tag
unsigned char fingerprint[8], msgKey[16];
if(!shortFormat){
in.ReadBytes(fingerprint, 8);
if(memcmp(fingerprint, keyFingerprint, 8)!=0){
LOGW("Received packet has wrong key fingerprint");
return;
}
}
in.ReadBytes(msgKey, 16);
unsigned char decrypted[1500];
unsigned char aesKey[32], aesIv[32];
KDF2(msgKey, isOutgoing ? 8 : 0, aesKey, aesIv);
size_t decryptedLen=in.Remaining();
if(decryptedLen>sizeof(decrypted))
return;
if(decryptedLen%16!=0){
LOGW("wrong decrypted length");
return;
}
crypto.aes_ige_decrypt(packet.data+in.GetOffset(), decrypted, decryptedLen, aesKey, aesIv);
in=BufferInputStream(decrypted, decryptedLen);
//LOGD("received packet length: %d", in.ReadInt32());
size_t sizeSize=shortFormat ? 0 : 4;
BufferOutputStream buf(decryptedLen+32);
size_t x=isOutgoing ? 8 : 0;
buf.WriteBytes(encryptionKey+88+x, 32);
buf.WriteBytes(decrypted+sizeSize, decryptedLen-sizeSize);
unsigned char msgKeyLarge[32];
crypto.sha256(buf.GetBuffer(), buf.GetLength(), msgKeyLarge);
if(memcmp(msgKey, msgKeyLarge+8, 16)!=0){
LOGW("Received packet has wrong hash");
return;
}
innerLen=(uint32_t) (shortFormat ? in.ReadInt16() : in.ReadInt32());
if(innerLen>decryptedLen-sizeSize){
LOGW("Received packet has wrong inner length (%d with total of %u)", (int)innerLen, (unsigned int)decryptedLen);
return;
}
if(decryptedLen-innerLen<(shortFormat ? 16 : 12)){
LOGW("Received packet has too little padding (%u)", (unsigned int)(decryptedLen-innerLen));
return;
}
memcpy(buffer, decrypted+(shortFormat ? 2 : 4), innerLen);
in=BufferInputStream(buffer, (size_t) innerLen);
if(retryWith2){
LOGD("Successfully decrypted packet in MTProto2.0 fallback, upgrading");
useMTProto2=true;
}
}
lastRecvPacketTime=GetCurrentTime();
if(state==STATE_RECONNECTING){
LOGI("Received a valid packet while reconnecting - setting state to established");
SetState(STATE_ESTABLISHED);
}
/*decryptedAudioBlock random_id:long random_bytes:string flags:# voice_call_id:flags.2?int128 in_seq_no:flags.4?int out_seq_no:flags.4?int
* recent_received_mask:flags.5?int proto:flags.3?int extra:flags.1?string raw_data:flags.0?string = DecryptedAudioBlock
simpleAudioBlock random_id:long random_bytes:string raw_data:string = DecryptedAudioBlock;
*/
uint32_t ackId, pseq, acks;
unsigned char type, pflags;
size_t packetInnerLen=0;
if(shortFormat){
type=in.ReadByte();
ackId=(uint32_t) in.ReadInt32();
pseq=(uint32_t) in.ReadInt32();
acks=(uint32_t) in.ReadInt32();
pflags=in.ReadByte();
packetInnerLen=innerLen-14;
}else{
uint32_t tlid=(uint32_t) in.ReadInt32();
if(tlid==TLID_DECRYPTED_AUDIO_BLOCK){
in.ReadInt64(); // random id
uint32_t randLen=(uint32_t) in.ReadTlLength();
in.Seek(in.GetOffset()+randLen+pad4(randLen));
uint32_t flags=(uint32_t) in.ReadInt32();
type=(unsigned char) ((flags >> 24) & 0xFF);
if(!(flags & PFLAG_HAS_SEQ && flags & PFLAG_HAS_RECENT_RECV)){
LOGW("Received packet doesn't have PFLAG_HAS_SEQ, PFLAG_HAS_RECENT_RECV, or both");
return;
}
if(flags & PFLAG_HAS_CALL_ID){
unsigned char pktCallID[16];
in.ReadBytes(pktCallID, 16);
if(memcmp(pktCallID, callID, 16)!=0){
LOGW("Received packet has wrong call id");
lastError=ERROR_UNKNOWN;
SetState(STATE_FAILED);
return;
}
}
ackId=(uint32_t) in.ReadInt32();
pseq=(uint32_t) in.ReadInt32();
acks=(uint32_t) in.ReadInt32();
if(flags & PFLAG_HAS_PROTO){
uint32_t proto=(uint32_t) in.ReadInt32();
if(proto!=PROTOCOL_NAME){
LOGW("Received packet uses wrong protocol");
lastError=ERROR_INCOMPATIBLE;
SetState(STATE_FAILED);
return;
}
}
if(flags & PFLAG_HAS_EXTRA){
uint32_t extraLen=(uint32_t) in.ReadTlLength();
in.Seek(in.GetOffset()+extraLen+pad4(extraLen));
}
if(flags & PFLAG_HAS_DATA){
packetInnerLen=in.ReadTlLength();
}
pflags=0;
}else if(tlid==TLID_SIMPLE_AUDIO_BLOCK){
in.ReadInt64(); // random id
uint32_t randLen=(uint32_t) in.ReadTlLength();
in.Seek(in.GetOffset()+randLen+pad4(randLen));
packetInnerLen=in.ReadTlLength();
type=in.ReadByte();
ackId=(uint32_t) in.ReadInt32();
pseq=(uint32_t) in.ReadInt32();
acks=(uint32_t) in.ReadInt32();
if(peerVersion>=6)
pflags=in.ReadByte();
else
pflags=0;
}else{
LOGW("Received a packet of unknown type %08X", tlid);
return;
}
}
packetsReceived++;
if(seqgt(pseq, lastRemoteSeq)){
uint32_t diff=pseq-lastRemoteSeq;
if(diff>31){
memset(recvPacketTimes, 0, 32*sizeof(double));
}else{
memmove(&recvPacketTimes[diff], recvPacketTimes, (32-diff)*sizeof(double));
if(diff>1){
memset(recvPacketTimes, 0, diff*sizeof(double));
}
recvPacketTimes[0]=GetCurrentTime();
}
lastRemoteSeq=pseq;
}else if(!seqgt(pseq, lastRemoteSeq) && lastRemoteSeq-pseq<32){
if(recvPacketTimes[lastRemoteSeq-pseq]!=0){
LOGW("Received duplicated packet for seq %u", pseq);
return;
}
recvPacketTimes[lastRemoteSeq-pseq]=GetCurrentTime();
}else if(lastRemoteSeq-pseq>=32){
LOGW("Packet %u is out of order and too late", pseq);
return;
}
if(seqgt(ackId, lastRemoteAckSeq)){
//uint32_t diff=ackId-lastRemoteAckSeq;
/*if(diff>31){
memset(remoteAcks, 0, 32*sizeof(double));
}else{
memmove(&remoteAcks[diff], remoteAcks, (32-diff)*sizeof(double));
if(diff>1){
memset(remoteAcks, 0, diff*sizeof(double));
}
remoteAcks[0]=GetCurrentTime();
}*/
MutexGuard _m(queuedPacketsMutex);
if(waitingForAcks && lastRemoteAckSeq>=firstSentPing){
rttHistory.Reset();
waitingForAcks=false;
dontSendPackets=10;
messageThread.Post([this]{
dontSendPackets=0;
}, 1.0);
LOGI("resuming sending");
}
lastRemoteAckSeq=ackId;
conctl->PacketAcknowledged(ackId);
unsigned int i;
for(i=0;i<31;i++){
for(vector<RecentOutgoingPacket>::iterator itr=recentOutgoingPackets.begin();itr!=recentOutgoingPackets.end();++itr){
if(itr->ackTime!=0)
continue;
if(((acks >> (31-i)) & 1) && itr->seq==ackId-(i+1)){
itr->ackTime=GetCurrentTime();
conctl->PacketAcknowledged(itr->seq);
}
}
/*if(remoteAcks[i+1]==0){
if((acks >> (31-i)) & 1){
remoteAcks[i+1]=GetCurrentTime();
conctl->PacketAcknowledged(ackId-(i+1));
}
}*/
}
for(i=0;i<queuedPackets.size();i++){
QueuedPacket& qp=queuedPackets[i];
int j;
bool didAck=false;
for(j=0;j<16;j++){
LOGD("queued packet %u, seq %u=%u", i, j, qp.seqs[j]);
if(qp.seqs[j]==0)
break;
int remoteAcksIndex=lastRemoteAckSeq-qp.seqs[j];
//LOGV("remote acks index %u, value %f", remoteAcksIndex, remoteAcksIndex>=0 && remoteAcksIndex<32 ? remoteAcks[remoteAcksIndex] : -1);
if(seqgt(lastRemoteAckSeq, qp.seqs[j]) && remoteAcksIndex>=0 && remoteAcksIndex<32){
for(RecentOutgoingPacket& opkt:recentOutgoingPackets){
if(opkt.seq==qp.seqs[j] && opkt.ackTime>0){
LOGD("did ack seq %u, removing", qp.seqs[j]);
didAck=true;
break;
}
}
if(didAck)
break;
}
}
if(didAck){
queuedPackets.erase(queuedPackets.begin()+i);
i--;
continue;
}
}
for(vector<UnacknowledgedExtraData>::iterator x=currentExtras.begin();x!=currentExtras.end();){
if(x->firstContainingSeq!=0 && (lastRemoteAckSeq==x->firstContainingSeq || seqgt(lastRemoteAckSeq, x->firstContainingSeq))){
LOGV("Peer acknowledged extra type %u length %lu", x->type, x->data.Length());
ProcessAcknowledgedOutgoingExtra(*x);
x=currentExtras.erase(x);
continue;
}
++x;
}
}
Endpoint* _currentEndpoint=&endpoints.at(currentEndpoint);
if(srcEndpoint.id!=currentEndpoint && (srcEndpoint.type==Endpoint::Type::UDP_RELAY || srcEndpoint.type==Endpoint::Type::TCP_RELAY) && ((_currentEndpoint->type!=Endpoint::Type::UDP_RELAY && _currentEndpoint->type!=Endpoint::Type::TCP_RELAY) || _currentEndpoint->averageRTT==0)){
if(seqgt(lastSentSeq-32, lastRemoteAckSeq)){
currentEndpoint=srcEndpoint.id;
_currentEndpoint=&srcEndpoint;
LOGI("Peer network address probably changed, switching to relay");
if(allowP2p)
SendPublicEndpointsRequest();
}
}
if(pflags & XPFLAG_HAS_EXTRA){
unsigned char extraCount=in.ReadByte();
for(int i=0;i<extraCount;i++){
size_t extraLen=in.ReadByte();
Buffer xbuffer(extraLen);
in.ReadBytes(*xbuffer, extraLen);
ProcessExtraData(xbuffer);
}
}
if(config.logPacketStats){
DebugLoggedPacket dpkt={
static_cast<int32_t>(pseq),
GetCurrentTime()-connectionInitTime,
static_cast<int32_t>(packet.length)
};
debugLoggedPackets.push_back(dpkt);
if(debugLoggedPackets.size()>=2500){
debugLoggedPackets.erase(debugLoggedPackets.begin(), debugLoggedPackets.begin()+500);
}
}
//LOGV("acks: %u -> %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf", lastRemoteAckSeq, remoteAcks[0], remoteAcks[1], remoteAcks[2], remoteAcks[3], remoteAcks[4], remoteAcks[5], remoteAcks[6], remoteAcks[7]);
//LOGD("recv: %u -> %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf, %.2lf", lastRemoteSeq, recvPacketTimes[0], recvPacketTimes[1], recvPacketTimes[2], recvPacketTimes[3], recvPacketTimes[4], recvPacketTimes[5], recvPacketTimes[6], recvPacketTimes[7]);
//LOGI("RTT = %.3lf", GetAverageRTT());
//LOGV("Packet %u type is %d", pseq, type);
if(type==PKT_INIT){
LOGD("Received init");
uint32_t ver=(uint32_t)in.ReadInt32();
if(!receivedInit)
peerVersion=ver;
LOGI("Peer version is %d", peerVersion);
uint32_t minVer=(uint32_t) in.ReadInt32();
if(minVer>PROTOCOL_VERSION || peerVersion<MIN_PROTOCOL_VERSION){
lastError=ERROR_INCOMPATIBLE;
SetState(STATE_FAILED);
return;
}
uint32_t flags=(uint32_t) in.ReadInt32();
if(!receivedInit){
if(flags & INIT_FLAG_DATA_SAVING_ENABLED){
dataSavingRequestedByPeer=true;
UpdateDataSavingState();
UpdateAudioBitrateLimit();
}
if(flags & INIT_FLAG_GROUP_CALLS_SUPPORTED){
peerCapabilities|=TGVOIP_PEER_CAP_GROUP_CALLS;
}
}
unsigned int i;
unsigned int numSupportedAudioCodecs=in.ReadByte();
for(i=0; i<numSupportedAudioCodecs; i++){
if(peerVersion<5)
in.ReadByte(); // ignore for now
else
in.ReadInt32();
}
unsigned int numSupportedVideoCodecs=in.ReadByte();
for(i=0; i<numSupportedVideoCodecs; i++){
if(peerVersion<5)
in.ReadByte(); // ignore for now
else
in.ReadInt32();
}
BufferOutputStream out(1024);
out.WriteInt32(PROTOCOL_VERSION);
out.WriteInt32(MIN_PROTOCOL_VERSION);
out.WriteByte((unsigned char) outgoingStreams.size());
for(vector<shared_ptr<Stream>>::iterator s=outgoingStreams.begin(); s!=outgoingStreams.end(); ++s){
out.WriteByte((*s)->id);
out.WriteByte((*s)->type);
if(peerVersion<5)
out.WriteByte((unsigned char) ((*s)->codec==CODEC_OPUS ? CODEC_OPUS_OLD : 0));
else
out.WriteInt32((*s)->codec);
out.WriteInt16((*s)->frameDuration);
out.WriteByte((unsigned char) ((*s)->enabled ? 1 : 0));
}
LOGI("Sending init ack");
SendOrEnqueuePacket(PendingOutgoingPacket{
/*.seq=*/GenerateOutSeq(),
/*.type=*/PKT_INIT_ACK,
/*.len=*/out.GetLength(),
/*.data=*/Buffer(move(out)),
/*.endpoint=*/0
});
if(!receivedInit){
receivedInit=true;
if((srcEndpoint.type==Endpoint::Type::UDP_RELAY && udpConnectivityState!=UDP_BAD && udpConnectivityState!=UDP_NOT_AVAILABLE) || srcEndpoint.type==Endpoint::Type::TCP_RELAY){
currentEndpoint=srcEndpoint.id;
if(srcEndpoint.type==Endpoint::Type::UDP_RELAY || (useTCP && srcEndpoint.type==Endpoint::Type::TCP_RELAY))
preferredRelay=srcEndpoint.id;
}
}
}
if(type==PKT_INIT_ACK){
LOGD("Received init ack");
if(!receivedInitAck){
receivedInitAck=true;
messageThread.Cancel(initTimeoutID);
initTimeoutID=MessageThread::INVALID_ID;
if(packetInnerLen>10){
peerVersion=in.ReadInt32();
uint32_t minVer=(uint32_t) in.ReadInt32();
if(minVer>PROTOCOL_VERSION || peerVersion<MIN_PROTOCOL_VERSION){
lastError=ERROR_INCOMPATIBLE;
SetState(STATE_FAILED);
return;
}
}else{
peerVersion=1;
}
LOGI("peer version from init ack %d", peerVersion);
unsigned char streamCount=in.ReadByte();
if(streamCount==0)
return;
int i;
shared_ptr<Stream> incomingAudioStream=NULL;
for(i=0; i<streamCount; i++){
shared_ptr<Stream> stm=make_shared<Stream>();
stm->id=in.ReadByte();
stm->type=in.ReadByte();
if(peerVersion<5){
unsigned char codec=in.ReadByte();
if(codec==CODEC_OPUS_OLD)
stm->codec=CODEC_OPUS;
}else{
stm->codec=(uint32_t) in.ReadInt32();
}
stm->frameDuration=(uint16_t) in.ReadInt16();
stm->enabled=in.ReadByte()==1;
if(stm->type==STREAM_TYPE_AUDIO){
stm->jitterBuffer=make_shared<JitterBuffer>(nullptr, stm->frameDuration);
if(stm->frameDuration>50)
stm->jitterBuffer->SetMinPacketCount((uint32_t) ServerConfig::GetSharedInstance()->GetInt("jitter_initial_delay_60", 2));
else if(stm->frameDuration>30)
stm->jitterBuffer->SetMinPacketCount((uint32_t) ServerConfig::GetSharedInstance()->GetInt("jitter_initial_delay_40", 4));
else
stm->jitterBuffer->SetMinPacketCount((uint32_t) ServerConfig::GetSharedInstance()->GetInt("jitter_initial_delay_20", 6));
stm->decoder=NULL;
}else if(stm->type==STREAM_TYPE_VIDEO){
if(!stm->packetReassembler){
stm->packetReassembler=make_shared<PacketReassembler>();
stm->packetReassembler->SetCallback(bind(&VoIPController::ProcessIncomingVideoFrame, this, placeholders::_1, placeholders::_2));
}
}else{
LOGW("Unknown incoming stream type: %d", stm->type);
continue;
}
incomingStreams.push_back(stm);
if(stm->type==STREAM_TYPE_AUDIO && !incomingAudioStream)
incomingAudioStream=stm;
}
if(!incomingAudioStream)
return;
if(peerVersion>=5 && !useMTProto2){
useMTProto2=true;
LOGD("MTProto2 wasn't initially enabled for whatever reason but peer supports it; upgrading");
}
/*{
MutexGuard m(audioIOMutex);
if(!audioInput){
StartAudio();
}
}*/
if(!audioStarted){
StartAudio();
audioStarted=true;
}
messageThread.Post([this]{
if(state==STATE_WAIT_INIT_ACK){
SetState(STATE_ESTABLISHED);
}
}, ServerConfig::GetSharedInstance()->GetDouble("established_delay_if_no_stream_data", 1.5));
if(allowP2p)
SendPublicEndpointsRequest();
}
}
if(type==PKT_STREAM_DATA || type==PKT_STREAM_DATA_X2 || type==PKT_STREAM_DATA_X3){
if(!receivedFirstStreamPacket){
receivedFirstStreamPacket=true;
if(state!=STATE_ESTABLISHED && receivedInitAck){
messageThread.Post([this](){
SetState(STATE_ESTABLISHED);
}, .5);
LOGW("First audio packet - setting state to ESTABLISHED");
}
}
int count;
switch(type){
case PKT_STREAM_DATA_X2:
count=2;
break;
case PKT_STREAM_DATA_X3:
count=3;
break;
case PKT_STREAM_DATA:
default:
count=1;
break;
}
int i;
if(srcEndpoint.type==Endpoint::Type::UDP_RELAY && srcEndpoint.id!=peerPreferredRelay){
peerPreferredRelay=srcEndpoint.id;
}
for(i=0;i<count;i++){
unsigned char streamID=in.ReadByte();
unsigned char flags=(unsigned char) (streamID & 0xC0);
streamID&=0x3F;
uint16_t sdlen=(uint16_t) (flags & STREAM_DATA_FLAG_LEN16 ? in.ReadInt16() : in.ReadByte());
uint32_t pts=(uint32_t) in.ReadInt32();
unsigned char fragmentCount=0;
unsigned char fragmentIndex=0;
//LOGD("stream data, pts=%d, len=%d, rem=%d", pts, sdlen, in.Remaining());
audioTimestampIn=pts;
if(!audioOutStarted && audioOutput){
MutexGuard m(audioIOMutex);
audioOutput->Start();
audioOutStarted=true;
}
bool fragmented=static_cast<bool>(sdlen & STREAM_DATA_XFLAG_FRAGMENTED);
bool extraFEC=static_cast<bool>(sdlen & STREAM_DATA_XFLAG_EXTRA_FEC);
if(fragmented){
fragmentIndex=in.ReadByte();
fragmentCount=in.ReadByte();
}
sdlen&=0x7FF;
if(in.GetOffset()+sdlen>len){
return;
}
shared_ptr<Stream> stm;
for(shared_ptr<Stream>& ss:incomingStreams){
if(ss->id==streamID){
stm=ss;
break;
}
}
if(stm && stm->type==STREAM_TYPE_AUDIO){
if(stm->jitterBuffer){
stm->jitterBuffer->HandleInput((unsigned char *) (buffer+in.GetOffset()), sdlen, pts, false);
if(extraFEC){
in.Seek(in.GetOffset()+sdlen);
unsigned int fecCount=in.ReadByte();
for(unsigned int j=0;j<fecCount;j++){
unsigned char dlen=in.ReadByte();
unsigned char data[256];
in.ReadBytes(data, dlen);
stm->jitterBuffer->HandleInput(data, dlen, pts-(fecCount-j-1)*stm->frameDuration, true);
}
}
}
}else if(stm && stm->type==STREAM_TYPE_VIDEO){
if(stm->packetReassembler){
Buffer pdata(sdlen);
pdata.CopyFrom(buffer+in.GetOffset(), 0, sdlen);
stm->packetReassembler->AddFragment(std::move(pdata), fragmentIndex, fragmentCount, pts);
}
//LOGV("Received video fragment %u of %u", fragmentIndex, fragmentCount);
}else{
LOGW("received packet for unknown stream %u", (unsigned int)streamID);
}
if(i<count-1)
in.Seek(in.GetOffset()+sdlen);
}
}
if(type==PKT_PING){
//LOGD("Received ping from %s:%d", srcEndpoint.address.ToString().c_str(), srcEndpoint.port);
if(srcEndpoint.type!=Endpoint::Type::UDP_RELAY && srcEndpoint.type!=Endpoint::Type::TCP_RELAY && !allowP2p){
LOGW("Received p2p ping but p2p is disabled by manual override");
return;
}
BufferOutputStream pkt(128);
pkt.WriteInt32(pseq);
SendOrEnqueuePacket(PendingOutgoingPacket{
/*.seq=*/GenerateOutSeq(),
/*.type=*/PKT_PONG,
/*.len=*/pkt.GetLength(),
/*.data=*/Buffer(move(pkt)),
/*.endpoint=*/srcEndpoint.id,
});
}
if(type==PKT_PONG){
if(packetInnerLen>=4){
uint32_t pingSeq=(uint32_t) in.ReadInt32();
if(pingSeq==srcEndpoint.lastPingSeq){
srcEndpoint.rtts.Add(GetCurrentTime()-srcEndpoint.lastPingTime);
srcEndpoint.averageRTT=srcEndpoint.rtts.NonZeroAverage();
LOGD("Current RTT via %s: %.3f, average: %.3f", packet.address->ToString().c_str(), srcEndpoint.rtts[0], srcEndpoint.averageRTT);
if(srcEndpoint.averageRTT>rateMaxAcceptableRTT)
needRate=true;
}
}
}
if(type==PKT_STREAM_STATE){
unsigned char id=in.ReadByte();
unsigned char enabled=in.ReadByte();
LOGV("Peer stream state: id %u flags %u", (int)id, (int)enabled);
for(vector<shared_ptr<Stream>>::iterator s=incomingStreams.begin();s!=incomingStreams.end();++s){
if((*s)->id==id){
(*s)->enabled=enabled==1;
UpdateAudioOutputState();
break;
}
}
}
if(type==PKT_LAN_ENDPOINT){
LOGV("received lan endpoint");
uint32_t peerAddr=(uint32_t) in.ReadInt32();
uint16_t peerPort=(uint16_t) in.ReadInt32();
MutexGuard m(endpointsMutex);
constexpr int64_t lanID=(int64_t)(FOURCC('L','A','N','4')) << 32;
IPv4Address v4addr(peerAddr);
IPv6Address v6addr(string("::0"));
unsigned char peerTag[16];
Endpoint lan(lanID, peerPort, v4addr, v6addr, Endpoint::Type::UDP_P2P_LAN, peerTag);
if(currentEndpoint==lanID)
currentEndpoint=preferredRelay;
endpoints[lanID]=lan;
}
if(type==PKT_NETWORK_CHANGED && _currentEndpoint->type!=Endpoint::Type::UDP_RELAY && _currentEndpoint->type!=Endpoint::Type::TCP_RELAY){
currentEndpoint=preferredRelay;
if(allowP2p)
SendPublicEndpointsRequest();
if(peerVersion>=2){
uint32_t flags=(uint32_t) in.ReadInt32();
dataSavingRequestedByPeer=(flags & INIT_FLAG_DATA_SAVING_ENABLED)==INIT_FLAG_DATA_SAVING_ENABLED;
UpdateDataSavingState();
UpdateAudioBitrateLimit();
ResetEndpointPingStats();
}
}
if(type==PKT_STREAM_EC){
unsigned char streamID=in.ReadByte();
uint32_t lastTimestamp=(uint32_t)in.ReadInt32();
unsigned char count=in.ReadByte();
for(shared_ptr<Stream>& stm:incomingStreams){
if(stm->id==streamID){
for(unsigned int i=0;i<count;i++){
unsigned char dlen=in.ReadByte();
unsigned char data[256];
in.ReadBytes(data, dlen);
if(stm->jitterBuffer){
stm->jitterBuffer->HandleInput(data, dlen, lastTimestamp-(count-i-1)*stm->frameDuration, true);
}
}
break;
}
}
}
}
void VoIPController::ProcessExtraData(Buffer &data){
BufferInputStream in(*data, data.Length());
unsigned char type=in.ReadByte();
unsigned char fullHash[SHA1_LENGTH];
crypto.sha1(*data, data.Length(), fullHash);
uint64_t hash=*reinterpret_cast<uint64_t*>(fullHash);
if(lastReceivedExtrasByType[type]==hash){
return;
}
lastReceivedExtrasByType[type]=hash;
if(type==EXTRA_TYPE_STREAM_FLAGS){
unsigned char id=in.ReadByte();
uint32_t flags=static_cast<uint32_t>(in.ReadInt32());
LOGV("Peer stream state: id %u flags %u", (unsigned int)id, (unsigned int)flags);
for(shared_ptr<Stream>& s:incomingStreams){
if(s->id==id){
s->enabled=(flags & STREAM_FLAG_ENABLED)==STREAM_FLAG_ENABLED;
if(flags & STREAM_FLAG_EXTRA_EC){
if(!s->extraECEnabled){
s->extraECEnabled=true;
if(s->jitterBuffer)
s->jitterBuffer->SetMinPacketCount(4);
}
}else{
if(s->extraECEnabled){
s->extraECEnabled=false;
if(s->jitterBuffer)
s->jitterBuffer->SetMinPacketCount(2);
}
}
UpdateAudioOutputState();
break;
}
}
}else if(type==EXTRA_TYPE_STREAM_CSD){
LOGI("Received codec specific data");
/*
os.WriteByte(stream.id);
os.WriteByte(static_cast<unsigned char>(stream.codecSpecificData.size()));
for(Buffer& b:stream.codecSpecificData){
assert(b.Length()<255);
os.WriteByte(static_cast<unsigned char>(b.Length()));
os.WriteBytes(b);
}
Buffer buf(move(os));
SendExtra(buf, EXTRA_TYPE_STREAM_CSD);
*/
unsigned char streamID=in.ReadByte();
for(shared_ptr<Stream>& stm:incomingStreams){
if(stm->id==streamID){
stm->codecSpecificData.clear();
stm->csdIsValid=false;
stm->width=static_cast<unsigned int>(in.ReadInt16());
stm->height=static_cast<unsigned int>(in.ReadInt16());
size_t count=(size_t)in.ReadByte();
for(size_t i=0;i<count;i++){
size_t len=(size_t)in.ReadByte();
Buffer csd(len);
in.ReadBytes(*csd, len);
stm->codecSpecificData.push_back(move(csd));
}
break;
}
}
}else if(type==EXTRA_TYPE_LAN_ENDPOINT){
if(!allowP2p)
return;
LOGV("received lan endpoint (extra)");
uint32_t peerAddr=(uint32_t) in.ReadInt32();
uint16_t peerPort=(uint16_t) in.ReadInt32();
MutexGuard m(endpointsMutex);
constexpr int64_t lanID=(int64_t)(FOURCC('L','A','N','4')) << 32;
if(currentEndpoint==lanID)
currentEndpoint=preferredRelay;
IPv4Address v4addr(peerAddr);
IPv6Address v6addr(string("::0"));
unsigned char peerTag[16];
Endpoint lan(lanID, peerPort, v4addr, v6addr, Endpoint::Type::UDP_P2P_LAN, peerTag);
endpoints[lanID]=lan;
}else if(type==EXTRA_TYPE_NETWORK_CHANGED){
LOGI("Peer network changed");
const Endpoint& _currentEndpoint=endpoints.at(currentEndpoint);
if(_currentEndpoint.type!=Endpoint::Type::UDP_RELAY && _currentEndpoint.type!=Endpoint::Type::TCP_RELAY)
currentEndpoint=preferredRelay;
if(allowP2p)
SendPublicEndpointsRequest();
uint32_t flags=(uint32_t) in.ReadInt32();
dataSavingRequestedByPeer=(flags & INIT_FLAG_DATA_SAVING_ENABLED)==INIT_FLAG_DATA_SAVING_ENABLED;
UpdateDataSavingState();
UpdateAudioBitrateLimit();
ResetEndpointPingStats();
}else if(type==EXTRA_TYPE_GROUP_CALL_KEY){
if(!didReceiveGroupCallKey && !didSendGroupCallKey){
unsigned char groupKey[256];
in.ReadBytes(groupKey, 256);
messageThread.Post([this, &groupKey]{
if(callbacks.groupCallKeyReceived)
callbacks.groupCallKeyReceived(this, groupKey);
});
didReceiveGroupCallKey=true;
}
}else if(type==EXTRA_TYPE_REQUEST_GROUP){
if(!didInvokeUpgradeCallback){
messageThread.Post([this]{
if(callbacks.upgradeToGroupCallRequested)
callbacks.upgradeToGroupCallRequested(this);
});
didInvokeUpgradeCallback=true;
}
}else if(type==EXTRA_TYPE_IPV6_ENDPOINT){
if(!allowP2p)
return;
unsigned char _addr[16];
in.ReadBytes(_addr, 16);
IPv6Address addr(_addr);
uint16_t port=static_cast<uint16_t>(in.ReadInt16());
MutexGuard m(endpointsMutex);
peerIPv6Available=true;
LOGV("Received peer IPv6 endpoint [%s]:%u", addr.ToString().c_str(), port);
constexpr int64_t p2pID=(int64_t)(FOURCC('P','2','P','6')) << 32;
Endpoint ep;
ep.type=Endpoint::Type::UDP_P2P_INET;
ep.port=port;
ep.v6address=addr;
ep.id=p2pID;
endpoints[p2pID]=ep;
if(!myIPv6.IsEmpty())
currentEndpoint=p2pID;
}
}
void VoIPController::ProcessAcknowledgedOutgoingExtra(UnacknowledgedExtraData &extra){
if(extra.type==EXTRA_TYPE_GROUP_CALL_KEY){
if(!didReceiveGroupCallKeyAck){
didReceiveGroupCallKeyAck=true;
messageThread.Post([this]{
if(callbacks.groupCallKeySent)
callbacks.groupCallKeySent(this);
});
}
}
}
Endpoint& VoIPController::GetRemoteEndpoint(){
return endpoints.at(currentEndpoint);
}
Endpoint* VoIPController::GetEndpointForPacket(const PendingOutgoingPacket& pkt){
Endpoint* endpoint=NULL;
if(pkt.endpoint){
try{
endpoint=&endpoints.at(pkt.endpoint);
}catch(out_of_range& x){
LOGW("Unable to send packet via nonexistent endpoint %" PRIu64, pkt.endpoint);
return NULL;
}
}
if(!endpoint)
endpoint=&endpoints.at(currentEndpoint);
return endpoint;
}
bool VoIPController::SendOrEnqueuePacket(PendingOutgoingPacket pkt, bool enqueue){
Endpoint* endpoint=GetEndpointForPacket(pkt);
if(!endpoint){
abort();
return false;
}
bool canSend;
if(endpoint->type!=Endpoint::Type::TCP_RELAY){
canSend=realUdpSocket->IsReadyToSend();
}else{
if(!endpoint->socket){
LOGV("Connecting to %s:%u", endpoint->GetAddress().ToString().c_str(), endpoint->port);
if(proxyProtocol==PROXY_NONE){
endpoint->socket=new NetworkSocketTCPObfuscated(NetworkSocket::Create(NetworkProtocol::PROTO_TCP));
endpoint->socket->Connect(&endpoint->GetAddress(), endpoint->port);
}else if(proxyProtocol==PROXY_SOCKS5){
NetworkSocket* tcp=NetworkSocket::Create(NetworkProtocol::PROTO_TCP);
tcp->Connect(resolvedProxyAddress, proxyPort);
NetworkSocketSOCKS5Proxy* proxy=new NetworkSocketSOCKS5Proxy(tcp, NULL, proxyUsername, proxyPassword);
endpoint->socket=proxy;
endpoint->socket->Connect(&endpoint->GetAddress(), endpoint->port);
}
selectCanceller->CancelSelect();
}
canSend=endpoint->socket && endpoint->socket->IsReadyToSend();
}
if(!canSend){
if(enqueue){
LOGW("Not ready to send - enqueueing");
sendQueue.push_back(move(pkt));
}
return false;
}
if((endpoint->type==Endpoint::Type::TCP_RELAY && useTCP) || (endpoint->type!=Endpoint::Type::TCP_RELAY && useUDP)){
//BufferOutputStream p(buf, sizeof(buf));
BufferOutputStream p(1500);
WritePacketHeader(pkt.seq, &p, pkt.type, (uint32_t)pkt.len);
p.WriteBytes(pkt.data);
SendPacket(p.GetBuffer(), p.GetLength(), *endpoint, pkt);
if(pkt.type==PKT_STREAM_DATA){
unsentStreamPackets--;
}
}
return true;
}
void VoIPController::SendPacket(unsigned char *data, size_t len, Endpoint& ep, PendingOutgoingPacket& srcPacket){
if(stopping)
return;
if(ep.type==Endpoint::Type::TCP_RELAY && !useTCP)
return;
BufferOutputStream out(len+128);
if(ep.type==Endpoint::Type::UDP_RELAY || ep.type==Endpoint::Type::TCP_RELAY)
out.WriteBytes((unsigned char*)ep.peerTag, 16);
else
out.WriteBytes(callID, 16);
if(len>0){
if(useMTProto2){
BufferOutputStream inner(len+128);
size_t sizeSize;
if(peerVersion>=8 || (!peerVersion && connectionMaxLayer>=92)){
inner.WriteInt16((uint16_t) len);
sizeSize=0;
}else{
inner.WriteInt32((uint32_t) len);
out.WriteBytes(keyFingerprint, 8);
sizeSize=4;
}
inner.WriteBytes(data, len);
size_t padLen=16-inner.GetLength()%16;
if(padLen<16)
padLen+=16;
unsigned char padding[32];
crypto.rand_bytes((uint8_t *) padding, padLen);
inner.WriteBytes(padding, padLen);
assert(inner.GetLength()%16==0);
unsigned char key[32], iv[32], msgKey[16];
BufferOutputStream buf(len+32);
size_t x=isOutgoing ? 0 : 8;
buf.WriteBytes(encryptionKey+88+x, 32);
buf.WriteBytes(inner.GetBuffer()+sizeSize, inner.GetLength()-sizeSize);
unsigned char msgKeyLarge[32];
crypto.sha256(buf.GetBuffer(), buf.GetLength(), msgKeyLarge);
memcpy(msgKey, msgKeyLarge+8, 16);
KDF2(msgKey, isOutgoing ? 0 : 8, key, iv);
out.WriteBytes(msgKey, 16);
//LOGV("<- MSG KEY: %08x %08x %08x %08x, hashed %u", *reinterpret_cast<int32_t*>(msgKey), *reinterpret_cast<int32_t*>(msgKey+4), *reinterpret_cast<int32_t*>(msgKey+8), *reinterpret_cast<int32_t*>(msgKey+12), inner.GetLength()-4);
unsigned char aesOut[MSC_STACK_FALLBACK(inner.GetLength(), 1500)];
crypto.aes_ige_encrypt(inner.GetBuffer(), aesOut, inner.GetLength(), key, iv);
out.WriteBytes(aesOut, inner.GetLength());
}else{
BufferOutputStream inner(len+128);
inner.WriteInt32((int32_t)len);
inner.WriteBytes(data, len);
if(inner.GetLength()%16!=0){
size_t padLen=16-inner.GetLength()%16;
unsigned char padding[16];
crypto.rand_bytes((uint8_t *) padding, padLen);
inner.WriteBytes(padding, padLen);
}
assert(inner.GetLength()%16==0);
unsigned char key[32], iv[32], msgHash[SHA1_LENGTH];
crypto.sha1((uint8_t *) inner.GetBuffer(), len+4, msgHash);
out.WriteBytes(keyFingerprint, 8);
out.WriteBytes((msgHash+(SHA1_LENGTH-16)), 16);
KDF(msgHash+(SHA1_LENGTH-16), isOutgoing ? 0 : 8, key, iv);
unsigned char aesOut[MSC_STACK_FALLBACK(inner.GetLength(), 1500)];
crypto.aes_ige_encrypt(inner.GetBuffer(), aesOut, inner.GetLength(), key, iv);
out.WriteBytes(aesOut, inner.GetLength());
}
}
//LOGV("Sending %d bytes to %s:%d", out.GetLength(), ep.address.ToString().c_str(), ep.port);
NetworkPacket pkt={0};
pkt.address=&ep.GetAddress();
pkt.port=ep.port;
pkt.length=out.GetLength();
pkt.data=out.GetBuffer();
pkt.protocol=ep.type==Endpoint::Type::TCP_RELAY ? PROTO_TCP : PROTO_UDP;
ActuallySendPacket(pkt, ep);
}
void VoIPController::ActuallySendPacket(NetworkPacket &pkt, Endpoint& ep){
//LOGI("Sending packet of %d bytes", pkt.length);
if(IS_MOBILE_NETWORK(networkType))
stats.bytesSentMobile+=(uint64_t)pkt.length;
else
stats.bytesSentWifi+=(uint64_t)pkt.length;
if(ep.type==Endpoint::Type::TCP_RELAY){
if(ep.socket && !ep.socket->IsFailed()){
ep.socket->Send(&pkt);
}
}else{
udpSocket->Send(&pkt);
}
}
std::string VoIPController::NetworkTypeToString(int type){
switch(type){
case NET_TYPE_WIFI:
return "wifi";
case NET_TYPE_GPRS:
return "gprs";
case NET_TYPE_EDGE:
return "edge";
case NET_TYPE_3G:
return "3g";
case NET_TYPE_HSPA:
return "hspa";
case NET_TYPE_LTE:
return "lte";
case NET_TYPE_ETHERNET:
return "ethernet";
case NET_TYPE_OTHER_HIGH_SPEED:
return "other_high_speed";
case NET_TYPE_OTHER_LOW_SPEED:
return "other_low_speed";
case NET_TYPE_DIALUP:
return "dialup";
case NET_TYPE_OTHER_MOBILE:
return "other_mobile";
default:
return "unknown";
}
}
void VoIPController::AddIPv6Relays(){
if(!myIPv6.IsEmpty() && !didAddIPv6Relays){
unordered_map<string, vector<Endpoint>> endpointsByAddress;
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint>& _e:endpoints){
Endpoint& e=_e.second;
if((e.type==Endpoint::Type::UDP_RELAY || e.type==Endpoint::Type::TCP_RELAY) && !e.v6address.IsEmpty() && !e.address.IsEmpty()){
endpointsByAddress[e.v6address.ToString()].push_back(e);
}
}
for(pair<const string, vector<Endpoint>>& addr:endpointsByAddress){
for(Endpoint& e:addr.second){
didAddIPv6Relays=true;
e.address=IPv4Address(0);
e.id=e.id ^ ((int64_t)(FOURCC('I','P','v','6')) << 32);
e.averageRTT=0;
e.lastPingSeq=0;
e.lastPingTime=0;
e.rtts.Reset();
e.udpPongCount=0;
endpoints[e.id]=e;
LOGD("Adding IPv6-only endpoint [%s]:%u", e.v6address.ToString().c_str(), e.port);
}
}
}
}
void VoIPController::AddTCPRelays(){
if(!didAddTcpRelays){
MutexGuard m(endpointsMutex);
vector<Endpoint> relays;
for(pair<const int64_t, Endpoint> &_e:endpoints){
Endpoint& e=_e.second;
if(e.type!=Endpoint::Type::UDP_RELAY)
continue;
Endpoint tcpRelay(e);
tcpRelay.type=Endpoint::Type::TCP_RELAY;
tcpRelay.averageRTT=0;
tcpRelay.lastPingSeq=0;
tcpRelay.lastPingTime=0;
tcpRelay.rtts.Reset();
tcpRelay.udpPongCount=0;
tcpRelay.id=tcpRelay.id ^ ((int64_t) (FOURCC('T', 'C', 'P', 0)) << 32);
if(setCurrentEndpointToTCP && endpoints.at(currentEndpoint).type!=Endpoint::Type::TCP_RELAY){
setCurrentEndpointToTCP=false;
currentEndpoint=tcpRelay.id;
preferredRelay=tcpRelay.id;
}
relays.push_back(tcpRelay);
}
for(Endpoint& e:relays){
endpoints[e.id]=move(e);
}
didAddTcpRelays=true;
}
}
#if defined(__APPLE__)
static void initMachTimestart() {
mach_timebase_info_data_t tb = { 0, 0 };
mach_timebase_info(&tb);
VoIPController::machTimebase = tb.numer;
VoIPController::machTimebase /= tb.denom;
VoIPController::machTimestart = mach_absolute_time();
}
#endif
double VoIPController::GetCurrentTime(){
#if defined(__linux__)
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec+(double)ts.tv_nsec/1000000000.0;
#elif defined(__APPLE__)
static pthread_once_t token = PTHREAD_ONCE_INIT;
pthread_once(&token, &initMachTimestart);
return (mach_absolute_time() - machTimestart) * machTimebase / 1000000000.0f;
#elif defined(_WIN32)
if(!didInitWin32TimeScale){
LARGE_INTEGER scale;
QueryPerformanceFrequency(&scale);
win32TimeScale=scale.QuadPart;
didInitWin32TimeScale=true;
}
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return (double)t.QuadPart/(double)win32TimeScale;
#endif
}
void VoIPController::KDF(unsigned char* msgKey, size_t x, unsigned char* aesKey, unsigned char* aesIv){
uint8_t sA[SHA1_LENGTH], sB[SHA1_LENGTH], sC[SHA1_LENGTH], sD[SHA1_LENGTH];
BufferOutputStream buf(128);
buf.WriteBytes(msgKey, 16);
buf.WriteBytes(encryptionKey+x, 32);
crypto.sha1(buf.GetBuffer(), buf.GetLength(), sA);
buf.Reset();
buf.WriteBytes(encryptionKey+32+x, 16);
buf.WriteBytes(msgKey, 16);
buf.WriteBytes(encryptionKey+48+x, 16);
crypto.sha1(buf.GetBuffer(), buf.GetLength(), sB);
buf.Reset();
buf.WriteBytes(encryptionKey+64+x, 32);
buf.WriteBytes(msgKey, 16);
crypto.sha1(buf.GetBuffer(), buf.GetLength(), sC);
buf.Reset();
buf.WriteBytes(msgKey, 16);
buf.WriteBytes(encryptionKey+96+x, 32);
crypto.sha1(buf.GetBuffer(), buf.GetLength(), sD);
buf.Reset();
buf.WriteBytes(sA, 8);
buf.WriteBytes(sB+8, 12);
buf.WriteBytes(sC+4, 12);
assert(buf.GetLength()==32);
memcpy(aesKey, buf.GetBuffer(), 32);
buf.Reset();
buf.WriteBytes(sA+8, 12);
buf.WriteBytes(sB, 8);
buf.WriteBytes(sC+16, 4);
buf.WriteBytes(sD, 8);
assert(buf.GetLength()==32);
memcpy(aesIv, buf.GetBuffer(), 32);
}
void VoIPController::KDF2(unsigned char* msgKey, size_t x, unsigned char *aesKey, unsigned char *aesIv){
uint8_t sA[32], sB[32];
BufferOutputStream buf(128);
buf.WriteBytes(msgKey, 16);
buf.WriteBytes(encryptionKey+x, 36);
crypto.sha256(buf.GetBuffer(), buf.GetLength(), sA);
buf.Reset();
buf.WriteBytes(encryptionKey+40+x, 36);
buf.WriteBytes(msgKey, 16);
crypto.sha256(buf.GetBuffer(), buf.GetLength(), sB);
buf.Reset();
buf.WriteBytes(sA, 8);
buf.WriteBytes(sB+8, 16);
buf.WriteBytes(sA+24, 8);
memcpy(aesKey, buf.GetBuffer(), 32);
buf.Reset();
buf.WriteBytes(sB, 8);
buf.WriteBytes(sA+8, 16);
buf.WriteBytes(sB+24, 8);
memcpy(aesIv, buf.GetBuffer(), 32);
}
void VoIPController::SendPublicEndpointsRequest(const Endpoint& relay){
if(!useUDP)
return;
LOGD("Sending public endpoints request to %s:%d", relay.address.ToString().c_str(), relay.port);
publicEndpointsReqTime=GetCurrentTime();
waitingForRelayPeerInfo=true;
unsigned char buf[32];
memcpy(buf, relay.peerTag, 16);
memset(buf+16, 0xFF, 16);
NetworkPacket pkt={0};
pkt.data=buf;
pkt.length=32;
pkt.address=(NetworkAddress*)&relay.address;
pkt.port=relay.port;
pkt.protocol=PROTO_UDP;
udpSocket->Send(&pkt);
}
Endpoint& VoIPController::GetEndpointByType(int type){
if(type==Endpoint::Type::UDP_RELAY && preferredRelay)
return endpoints.at(preferredRelay);
for(pair<const int64_t, Endpoint>& e:endpoints){
if(e.second.type==type)
return e.second;
}
throw out_of_range("no endpoint");
}
void VoIPController::SendPacketReliably(unsigned char type, unsigned char *data, size_t len, double retryInterval, double timeout){
LOGD("Send reliably, type=%u, len=%u, retry=%.3f, timeout=%.3f", type, unsigned(len), retryInterval, timeout);
QueuedPacket pkt;
if(data){
Buffer b(len);
b.CopyFrom(data, 0, len);
pkt.data=move(b);
}
pkt.type=type;
pkt.retryInterval=retryInterval;
pkt.timeout=timeout;
pkt.firstSentTime=0;
pkt.lastSentTime=0;
{
MutexGuard m(queuedPacketsMutex);
queuedPackets.push_back(move(pkt));
}
messageThread.Post(std::bind(&VoIPController::UpdateQueuedPackets, this));
if(timeout>0.0){
messageThread.Post(std::bind(&VoIPController::UpdateQueuedPackets, this), timeout);
}
}
void VoIPController::SendExtra(Buffer &data, unsigned char type){
MutexGuard m(queuedPacketsMutex);
LOGV("Sending extra type %u length %lu", type, data.Length());
for(vector<UnacknowledgedExtraData>::iterator x=currentExtras.begin();x!=currentExtras.end();++x){
if(x->type==type){
x->firstContainingSeq=0;
x->data=move(data);
return;
}
}
UnacknowledgedExtraData xd={type, move(data), 0};
currentExtras.push_back(move(xd));
}
void VoIPController::DebugCtl(int request, int param){
if(request==1){ // set bitrate
maxBitrate=param;
if(encoder){
encoder->SetBitrate(maxBitrate);
}
}else if(request==2){ // set packet loss
if(encoder){
encoder->SetPacketLoss(param);
}
}else if(request==3){ // force enable/disable p2p
allowP2p=param==1;
/*if(!allowP2p && currentEndpoint && currentEndpoint->type!=Endpoint::Type::UDP_RELAY){
currentEndpoint=preferredRelay;
}else if(allowP2p){
SendPublicEndpointsRequest();
}*/
BufferOutputStream s(4);
s.WriteInt32(dataSavingMode ? INIT_FLAG_DATA_SAVING_ENABLED : 0);
SendPacketReliably(PKT_NETWORK_CHANGED, s.GetBuffer(), s.GetLength(), 1, 20);
}else if(request==4){
if(echoCanceller)
echoCanceller->Enable(param==1);
}
}
void VoIPController::SendUdpPing(Endpoint& endpoint){
if(endpoint.type!=Endpoint::Type::UDP_RELAY)
return;
BufferOutputStream p(1024);
p.WriteBytes(endpoint.peerTag, 16);
p.WriteInt32(-1);
p.WriteInt32(-1);
p.WriteInt32(-1);
p.WriteInt32(-2);
int64_t id;
crypto.rand_bytes(reinterpret_cast<uint8_t*>(&id), 8);
p.WriteInt64(id);
NetworkPacket pkt={0};
pkt.address=&endpoint.GetAddress();
pkt.port=endpoint.port;
pkt.protocol=PROTO_UDP;
pkt.data=p.GetBuffer();
pkt.length=p.GetLength();
udpSocket->Send(&pkt);
LOGV("Sending UDP ping to %s:%d, id %" PRId64, endpoint.GetAddress().ToString().c_str(), endpoint.port, id);
}
void VoIPController::ResetUdpAvailability(){
LOGI("Resetting UDP availability");
if(udpPingTimeoutID!=MessageThread::INVALID_ID){
messageThread.Cancel(udpPingTimeoutID);
}
{
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint>& e:endpoints){
e.second.udpPongCount=0;
}
}
udpPingCount=0;
udpConnectivityState=UDP_PING_PENDING;
udpPingTimeoutID=messageThread.Post(std::bind(&VoIPController::SendUdpPings, this), 0.0, 0.5);
}
void VoIPController::ResetEndpointPingStats(){
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint>& e:endpoints){
e.second.averageRTT=0.0;
e.second.rtts.Reset();
}
}
#pragma mark - Video
void VoIPController::SetVideoSource(video::VideoSource *source){
if(videoSource)
videoSource->SetCallback(nullptr);
videoSource=source;
if(videoSource)
videoSource->SetCallback(bind(&VoIPController::SendVideoFrame, this, placeholders::_1, placeholders::_2));
}
void VoIPController::SetVideoRenderer(video::VideoRenderer *renderer){
videoRenderer=renderer;
}
void VoIPController::SetVideoCodecSpecificData(const std::vector<Buffer>& data){
outgoingStreams[1]->codecSpecificData.clear();
for(const Buffer& csd:data){
outgoingStreams[1]->codecSpecificData.push_back(Buffer::CopyOf(csd));
}
LOGI("Set outgoing video stream CSD");
}
void VoIPController::SendVideoFrame(const Buffer &frame, int32_t flags){
LOGI("Send video frame %u", (unsigned int)frame.Length());
shared_ptr<Stream> stm=GetStreamByType(STREAM_TYPE_VIDEO, true);
if(stm){
if(firstVideoFrameTime==0.0)
firstVideoFrameTime=GetCurrentTime();
uint32_t pts=(uint32_t)round((GetCurrentTime()-firstVideoFrameTime)*1000);
if(!stm->csdIsValid){
vector<Buffer>& csd=videoSource->GetCodecSpecificData();
stm->codecSpecificData.clear();
for(Buffer& b:csd){
stm->codecSpecificData.push_back(Buffer::CopyOf(b));
}
stm->csdIsValid=true;
stm->width=videoSource->GetFrameWidth();
stm->height=videoSource->GetFrameHeight();
SendStreamCSD(*stm);
}
size_t segmentCount=frame.Length()/1024;
if(frame.Length()%1024>0)
segmentCount++;
for(size_t seg=0;seg<segmentCount;seg++){
BufferOutputStream pkt(1500);
size_t offset=seg*1024;
size_t len=MIN(1024, frame.Length()-offset);
unsigned char pflags=STREAM_DATA_FLAG_LEN16;
//pflags |= STREAM_DATA_FLAG_HAS_MORE_FLAGS;
pkt.WriteByte((unsigned char) (stm->id | pflags)); // streamID + flags
int16_t lengthAndFlags=static_cast<int16_t>(len & 0x7FF);
if(segmentCount>1)
lengthAndFlags |= STREAM_DATA_XFLAG_FRAGMENTED;
pkt.WriteInt16(lengthAndFlags);
//pkt.WriteInt32(audioTimestampOut);
pkt.WriteInt32(pts);
if(segmentCount>1){
pkt.WriteByte((unsigned char)seg);
pkt.WriteByte((unsigned char)segmentCount);
}
//LOGV("Sending segment %u of %u", (unsigned int)seg, (unsigned int)segmentCount);
pkt.WriteBytes(frame, offset, len);
PendingOutgoingPacket p{
/*.seq=*/GenerateOutSeq(),
/*.type=*/PKT_STREAM_DATA,
/*.len=*/pkt.GetLength(),
/*.data=*/Buffer(move(pkt)),
/*.endpoint=*/0,
};
SendOrEnqueuePacket(move(p));
}
}
}
void VoIPController::SendStreamCSD(VoIPController::Stream &stream){
assert(stream.csdIsValid);
BufferOutputStream os(256);
os.WriteByte(stream.id);
os.WriteInt16((int16_t)stream.width);
os.WriteInt16((int16_t)stream.height);
os.WriteByte(static_cast<unsigned char>(stream.codecSpecificData.size()));
for(Buffer& b:stream.codecSpecificData){
assert(b.Length()<255);
os.WriteByte(static_cast<unsigned char>(b.Length()));
os.WriteBytes(b);
}
Buffer buf(move(os));
SendExtra(buf, EXTRA_TYPE_STREAM_CSD);
}
void VoIPController::ProcessIncomingVideoFrame(Buffer frame, uint32_t pts){
//LOGI("Incoming video frame size %u pts %u", (unsigned int)frame.Length(), pts);
if(frame.Length()==0){
LOGE("EMPTY FRAME");
}
if(videoRenderer){
shared_ptr<Stream> stm=GetStreamByType(STREAM_TYPE_VIDEO, false);
if(!stm->csdIsValid){
videoRenderer->Reset(CODEC_HEVC, stm->width, stm->height, stm->codecSpecificData);
stm->csdIsValid=true;
}
videoRenderer->DecodeAndDisplay(frame, pts);
}
}
#pragma mark - Timer methods
void VoIPController::SendUdpPings(){
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint>& e:endpoints){
if(e.second.type==Endpoint::Type::UDP_RELAY){
SendUdpPing(e.second);
}
}
if(udpConnectivityState==UDP_UNKNOWN || udpConnectivityState==UDP_PING_PENDING)
udpConnectivityState=UDP_PING_SENT;
udpPingCount++;
if(udpPingCount==4 || udpPingCount==10){
messageThread.CancelSelf();
udpPingTimeoutID=messageThread.Post(std::bind(&VoIPController::EvaluateUdpPingResults, this), 1.0);
}
}
void VoIPController::EvaluateUdpPingResults(){
double avgPongs=0;
int count=0;
for(pair<const int64_t, Endpoint>& _e:endpoints){
Endpoint& e=_e.second;
if(e.type==Endpoint::Type::UDP_RELAY){
if(e.udpPongCount>0){
avgPongs+=(double) e.udpPongCount;
count++;
}
}
}
if(count>0)
avgPongs/=(double)count;
else
avgPongs=0.0;
LOGI("UDP ping reply count: %.2f", avgPongs);
bool configUseTCP=ServerConfig::GetSharedInstance()->GetBoolean("use_tcp", true);
if(configUseTCP){
if(avgPongs==0.0 || (udpConnectivityState==UDP_BAD && avgPongs<7.0)){
if(needRateFlags & NEED_RATE_FLAG_UDP_NA)
needRate=true;
udpConnectivityState=UDP_NOT_AVAILABLE;
useTCP=true;
AddTCPRelays();
useUDP=false;
waitingForRelayPeerInfo=false;
if(endpoints.at(currentEndpoint).type!=Endpoint::Type::TCP_RELAY)
setCurrentEndpointToTCP=true;
}else if(avgPongs<3.0){
if(needRateFlags & NEED_RATE_FLAG_UDP_BAD)
needRate=true;
udpConnectivityState=UDP_BAD;
useTCP=true;
AddTCPRelays();
setCurrentEndpointToTCP=true;
udpPingTimeoutID=messageThread.Post(std::bind(&VoIPController::SendUdpPings, this), 0.5, 0.5);
}else{
udpPingTimeoutID=MessageThread::INVALID_ID;
udpConnectivityState=UDP_AVAILABLE;
}
}else{
udpPingTimeoutID=MessageThread::INVALID_ID;
udpConnectivityState=UDP_NOT_AVAILABLE;
}
}
void VoIPController::SendRelayPings(){
MutexGuard m(endpointsMutex);
if((state==STATE_ESTABLISHED || state==STATE_RECONNECTING) && endpoints.size()>1){
Endpoint* _preferredRelay=&endpoints.at(preferredRelay);
Endpoint* _currentEndpoint=&endpoints.at(currentEndpoint);
Endpoint* minPingRelay=_preferredRelay;
double minPing=_preferredRelay->averageRTT*(_preferredRelay->type==Endpoint::Type::TCP_RELAY ? 2 : 1);
if(minPing==0.0) // force the switch to an available relay, if any
minPing=DBL_MAX;
for(pair<const int64_t, Endpoint>& _endpoint:endpoints){
Endpoint& endpoint=_endpoint.second;
if(endpoint.type==Endpoint::Type::TCP_RELAY && !useTCP)
continue;
if(GetCurrentTime()-endpoint.lastPingTime>=10){
LOGV("Sending ping to %s", endpoint.GetAddress().ToString().c_str());
SendOrEnqueuePacket(PendingOutgoingPacket{
/*.seq=*/(endpoint.lastPingSeq=GenerateOutSeq()),
/*.type=*/PKT_PING,
/*.len=*/0,
/*.data=*/Buffer(),
/*.endpoint=*/endpoint.id
});
endpoint.lastPingTime=GetCurrentTime();
}
if(endpoint.type==Endpoint::Type::UDP_RELAY || (useTCP && endpoint.type==Endpoint::Type::TCP_RELAY)){
double k=endpoint.type==Endpoint::Type::UDP_RELAY ? 1 : 2;
if(endpoint.averageRTT>0 && endpoint.averageRTT*k<minPing*relaySwitchThreshold){
minPing=endpoint.averageRTT*k;
minPingRelay=&endpoint;
}
}
}
if(minPingRelay->id!=preferredRelay){
preferredRelay=minPingRelay->id;
_preferredRelay=minPingRelay;
LOGV("set preferred relay to %s", _preferredRelay->address.ToString().c_str());
if(_currentEndpoint->type==Endpoint::Type::UDP_RELAY || _currentEndpoint->type==Endpoint::Type::TCP_RELAY){
currentEndpoint=preferredRelay;
_currentEndpoint=_preferredRelay;
}
}
if(_currentEndpoint->type==Endpoint::Type::UDP_RELAY){
constexpr int64_t p2pID=(int64_t)(FOURCC('P','2','P','4')) << 32;
constexpr int64_t lanID=(int64_t)(FOURCC('L','A','N','4')) << 32;
if(endpoints.find(p2pID)!=endpoints.end()){
Endpoint& p2p=endpoints[p2pID];
if(endpoints.find(lanID)!=endpoints.end() && endpoints[lanID].averageRTT>0 && endpoints[lanID].averageRTT<minPing*relayToP2pSwitchThreshold){
currentEndpoint=lanID;
LOGI("Switching to p2p (LAN)");
}else{
if(p2p.averageRTT>0 && p2p.averageRTT<minPing*relayToP2pSwitchThreshold){
currentEndpoint=p2pID;
LOGI("Switching to p2p (Inet)");
}
}
}
}else{
if(minPing>0 && minPing<_currentEndpoint->averageRTT*p2pToRelaySwitchThreshold){
LOGI("Switching to relay");
currentEndpoint=preferredRelay;
}
}
}
}
void VoIPController::UpdateRTT(){
rttHistory.Add(GetAverageRTT());
//double v=rttHistory.Average();
if(rttHistory[0]>10.0 && rttHistory[8]>10.0 && (networkType==NET_TYPE_EDGE || networkType==NET_TYPE_GPRS)){
waitingForAcks=true;
}else{
waitingForAcks=false;
}
//LOGI("%.3lf/%.3lf, rtt diff %.3lf, waiting=%d, queue=%d", rttHistory[0], rttHistory[8], v, waitingForAcks, sendQueue->Size());
for(vector<shared_ptr<Stream>>::iterator stm=incomingStreams.begin();stm!=incomingStreams.end();++stm){
if((*stm)->jitterBuffer){
int lostCount=(*stm)->jitterBuffer->GetAndResetLostPacketCount();
if(lostCount>0 || (lostCount<0 && recvLossCount>((uint32_t) -lostCount)))
recvLossCount+=lostCount;
}
}
}
void VoIPController::UpdateCongestion(){
if(conctl && encoder){
uint32_t sendLossCount=conctl->GetSendLossCount();
sendLossCountHistory.Add(sendLossCount-prevSendLossCount);
prevSendLossCount=sendLossCount;
double packetsPerSec=1000/(double) outgoingStreams[0]->frameDuration;
double avgSendLossCount=sendLossCountHistory.Average()/packetsPerSec;
//LOGV("avg send loss: %.3f%%", avgSendLossCount*100);
if(avgSendLossCount>packetLossToEnableExtraEC && networkType!=NET_TYPE_GPRS && networkType!=NET_TYPE_EDGE){
if(!shittyInternetMode){
// Shitty Internet Mode™. Redundant redundancy you can trust.
shittyInternetMode=true;
for(shared_ptr<Stream> &s:outgoingStreams){
if(s->type==STREAM_TYPE_AUDIO){
s->extraECEnabled=true;
SendStreamFlags(*s);
break;
}
}
if(encoder)
encoder->SetSecondaryEncoderEnabled(true);
LOGW("Enabling extra EC");
if(needRateFlags & NEED_RATE_FLAG_SHITTY_INTERNET_MODE)
needRate=true;
}
}
if(avgSendLossCount>0.08){
encoder->SetPacketLoss(40);
extraEcLevel=4;
}else if(avgSendLossCount>0.075){
encoder->SetPacketLoss(35);
extraEcLevel=3;
}else if(avgSendLossCount>0.05){
encoder->SetPacketLoss(30);
extraEcLevel=3;
}else if(avgSendLossCount>0.03){
encoder->SetPacketLoss(25);
extraEcLevel=2;
}else if(avgSendLossCount>0.02){
encoder->SetPacketLoss(20);
extraEcLevel=2;
}else if(avgSendLossCount>0.01){
encoder->SetPacketLoss(17);
}else{
encoder->SetPacketLoss(15);
}
if(avgSendLossCount>rateMaxAcceptableSendLoss)
needRate=true;
if((avgSendLossCount<packetLossToEnableExtraEC || networkType==NET_TYPE_EDGE || networkType==NET_TYPE_GPRS) && shittyInternetMode){
shittyInternetMode=false;
for(shared_ptr<Stream> &s:outgoingStreams){
if(s->type==STREAM_TYPE_AUDIO){
s->extraECEnabled=false;
SendStreamFlags(*s);
break;
}
}
if(encoder)
encoder->SetSecondaryEncoderEnabled(false);
LOGW("Disabling extra EC");
}
}
}
void VoIPController::UpdateAudioBitrate(){
if(encoder && conctl){
double time=GetCurrentTime();
if((audioInput && !audioInput->IsInitialized()) || (audioOutput && !audioOutput->IsInitialized())){
LOGE("Audio I/O failed");
lastError=ERROR_AUDIO_IO;
SetState(STATE_FAILED);
}
int act=conctl->GetBandwidthControlAction();
if(shittyInternetMode){
encoder->SetBitrate(8000);
}else if(act==TGVOIP_CONCTL_ACT_DECREASE){
uint32_t bitrate=encoder->GetBitrate();
if(bitrate>8000)
encoder->SetBitrate(bitrate<(minAudioBitrate+audioBitrateStepDecr) ? minAudioBitrate : (bitrate-audioBitrateStepDecr));
}else if(act==TGVOIP_CONCTL_ACT_INCREASE){
uint32_t bitrate=encoder->GetBitrate();
if(bitrate<maxBitrate)
encoder->SetBitrate(bitrate+audioBitrateStepIncr);
}
if(state==STATE_ESTABLISHED && time-lastRecvPacketTime>=reconnectingTimeout){
SetState(STATE_RECONNECTING);
if(needRateFlags & NEED_RATE_FLAG_RECONNECTING)
needRate=true;
ResetUdpAvailability();
}
if(state==STATE_ESTABLISHED || state==STATE_RECONNECTING){
if(time-lastRecvPacketTime>=config.recvTimeout){
const Endpoint& _currentEndpoint=endpoints.at(currentEndpoint);
if(_currentEndpoint.type!=Endpoint::Type::UDP_RELAY && _currentEndpoint.type!=Endpoint::Type::TCP_RELAY){
LOGW("Packet receive timeout, switching to relay");
currentEndpoint=preferredRelay;
for(pair<const int64_t, Endpoint>& _e:endpoints){
Endpoint& e=_e.second;
if(e.type==Endpoint::Type::UDP_P2P_INET || e.type==Endpoint::Type::UDP_P2P_LAN){
e.averageRTT=0;
e.rtts.Reset();
}
}
if(allowP2p){
SendPublicEndpointsRequest();
}
UpdateDataSavingState();
UpdateAudioBitrateLimit();
BufferOutputStream s(4);
s.WriteInt32(dataSavingMode ? INIT_FLAG_DATA_SAVING_ENABLED : 0);
if(peerVersion<6){
SendPacketReliably(PKT_NETWORK_CHANGED, s.GetBuffer(), s.GetLength(), 1, 20);
}else{
Buffer buf(move(s));
SendExtra(buf, EXTRA_TYPE_NETWORK_CHANGED);
}
lastRecvPacketTime=time;
}else{
LOGW("Packet receive timeout, disconnecting");
lastError=ERROR_TIMEOUT;
SetState(STATE_FAILED);
}
}
}
}
}
void VoIPController::UpdateSignalBars(){
int prevSignalBarCount=GetSignalBarsCount();
double packetsPerSec=1000/(double) outgoingStreams[0]->frameDuration;
double avgSendLossCount=sendLossCountHistory.Average()/packetsPerSec;
int signalBarCount=4;
if(state==STATE_RECONNECTING || waitingForAcks)
signalBarCount=1;
if(endpoints.at(currentEndpoint).type==Endpoint::Type::TCP_RELAY){
signalBarCount=MIN(signalBarCount, 3);
}
if(avgSendLossCount>0.1){
signalBarCount=1;
}else if(avgSendLossCount>0.0625){
signalBarCount=MIN(signalBarCount, 2);
}else if(avgSendLossCount>0.025){
signalBarCount=MIN(signalBarCount, 3);
}
for(shared_ptr<Stream>& stm:incomingStreams){
if(stm->jitterBuffer){
double avgLateCount[3];
stm->jitterBuffer->GetAverageLateCount(avgLateCount);
if(avgLateCount[2]>=0.2)
signalBarCount=1;
else if(avgLateCount[2]>=0.1)
signalBarCount=MIN(signalBarCount, 2);
}
}
signalBarsHistory.Add(static_cast<unsigned char>(signalBarCount));
//LOGV("Signal bar count history %08X", *reinterpret_cast<uint32_t *>(&signalBarsHistory));
int _signalBarCount=GetSignalBarsCount();
if(_signalBarCount!=prevSignalBarCount){
LOGD("SIGNAL BAR COUNT CHANGED: %d", _signalBarCount);
if(callbacks.signalBarCountChanged)
callbacks.signalBarCountChanged(this, _signalBarCount);
}
}
void VoIPController::UpdateQueuedPackets(){
vector<PendingOutgoingPacket> packetsToSend;
{
MutexGuard m(queuedPacketsMutex);
for(std::vector<QueuedPacket>::iterator qp=queuedPackets.begin(); qp!=queuedPackets.end();){
if(qp->timeout>0 && qp->firstSentTime>0 && GetCurrentTime()-qp->firstSentTime>=qp->timeout){
LOGD("Removing queued packet because of timeout");
qp=queuedPackets.erase(qp);
continue;
}
if(GetCurrentTime()-qp->lastSentTime>=qp->retryInterval){
messageThread.Post(std::bind(&VoIPController::UpdateQueuedPackets, this), qp->retryInterval);
uint32_t seq=GenerateOutSeq();
qp->seqs.Add(seq);
qp->lastSentTime=GetCurrentTime();
//LOGD("Sending queued packet, seq=%u, type=%u, len=%u", seq, qp.type, qp.data.Length());
Buffer buf(qp->data.Length());
if(qp->firstSentTime==0)
qp->firstSentTime=qp->lastSentTime;
if(qp->data.Length())
buf.CopyFrom(qp->data, qp->data.Length());
packetsToSend.push_back(PendingOutgoingPacket{
/*.seq=*/seq,
/*.type=*/qp->type,
/*.len=*/qp->data.Length(),
/*.data=*/move(buf),
/*.endpoint=*/0
});
}
++qp;
}
}
for(PendingOutgoingPacket& pkt:packetsToSend){
SendOrEnqueuePacket(move(pkt));
}
}
void VoIPController::SendNopPacket(){
SendOrEnqueuePacket(PendingOutgoingPacket{
/*.seq=*/(firstSentPing=GenerateOutSeq()),
/*.type=*/PKT_NOP,
/*.len=*/0,
/*.data=*/Buffer(),
/*.endpoint=*/0
});
}
void VoIPController::SendPublicEndpointsRequest(){
if(!allowP2p)
return;
LOGI("Sending public endpoints request");
MutexGuard m(endpointsMutex);
for(pair<const int64_t, Endpoint>& e:endpoints){
if(e.second.type==Endpoint::Type::UDP_RELAY && !e.second.IsIPv6Only()){
SendPublicEndpointsRequest(e.second);
}
}
publicEndpointsReqCount++;
if(publicEndpointsReqCount<10){
messageThread.Post([this]{
if(waitingForRelayPeerInfo){
LOGW("Resending peer relay info request");
SendPublicEndpointsRequest();
}
}, 5.0);
}else{
publicEndpointsReqCount=0;
}
}
void VoIPController::TickJitterBufferAngCongestionControl(){
// TODO get rid of this and update states of these things internally and retroactively
for(shared_ptr<Stream>& stm:incomingStreams){
if(stm->jitterBuffer){
stm->jitterBuffer->Tick();
}
}
if(conctl){
conctl->Tick();
}
}
#pragma mark - Endpoint
Endpoint::Endpoint(int64_t id, uint16_t port, IPv4Address& _address, IPv6Address& _v6address, Type type, unsigned char peerTag[16]) : address(_address), v6address(_v6address){
this->id=id;
this->port=port;
this->type=type;
memcpy(this->peerTag, peerTag, 16);
if(type==Type::UDP_RELAY && ServerConfig::GetSharedInstance()->GetBoolean("force_tcp", false))
this->type=Type::TCP_RELAY;
lastPingSeq=0;
lastPingTime=0;
averageRTT=0;
socket=NULL;
udpPongCount=0;
}
Endpoint::Endpoint() : address(0), v6address(string("::0")) {
lastPingSeq=0;
lastPingTime=0;
averageRTT=0;
socket=NULL;
udpPongCount=0;
}
const NetworkAddress &Endpoint::GetAddress() const{
return IsIPv6Only() ? (NetworkAddress&)v6address : (NetworkAddress&)address;
}
NetworkAddress &Endpoint::GetAddress(){
return IsIPv6Only() ? (NetworkAddress&)v6address : (NetworkAddress&)address;
}
bool Endpoint::IsIPv6Only() const{
return address.IsEmpty() && !v6address.IsEmpty();
}
Endpoint::~Endpoint(){
if(socket){
socket->Close();
delete socket;
}
}