// Copyright 2009 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS-IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @fileoverview Defines a Long class for representing a 64-bit two's-complement * integer value, which faithfully simulates the behavior of a Java "long". This * implementation is derived from LongLib in GWT. */ /** * Represents a 64-bit two's-complement integer, given its low and high 32-bit * values as *signed* integers. See the from* functions below for more * convenient ways of constructing Longs. * * The internal representation of a long is the two given signed, 32-bit values. * We use 32-bit pieces because these are the size of integers on which * JavaScript performs bit-operations. For operations like addition and * multiplication, we split each number into 16-bit pieces, which can easily be * multiplied within JavaScript's floating-point representation without overflow * or change in sign. * * In the algorithms below, we frequently reduce the negative case to the * positive case by negating the input(s) and then post-processing the result. * Note that we must ALWAYS check specially whether those values are MIN_VALUE * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as * a positive number, it overflows back into a negative). Not handling this * case would often result in infinite recursion. * @final */ class Long { /** * @param {number} low The low (signed) 32 bits of the long. * @param {number} high The high (signed) 32 bits of the long. */ constructor(low, high) { /** * @const {number} * @private */ this.low_ = low | 0; // force into 32 signed bits. /** * @const {number} * @private */ this.high_ = high | 0; // force into 32 signed bits. } /** * GCD between current number and b * @param {Long} b Number * @returns Long */ gcd(b) { let a = this while (a.notEquals(ZERO_) && b.notEquals(ZERO_)) { while (b.and(ONE_).equals(ZERO_)) { b = b.shiftRight(1) } while (a.and(ONE_).equals(ZERO_)) { a = a.shiftRight(1) } if (a.compare(b) > 0) { a = a.subtract(b) } else { b = b.subtract(a) } } return b.equals(ZERO_) ? a : b } /** @return {number} The value, assuming it is a 32-bit integer. */ toInt() { return this.low_; } /** * @return {number} The closest floating-point representation to this value. */ toNumber() { return this.high_ * TWO_PWR_32_DBL_ + this.getLowBitsUnsigned(); } /** * @return {boolean} if can be exactly represented using number (i.e. * abs(value) < 2^53). */ isSafeInteger() { var top11Bits = this.high_ >> 21; // If top11Bits are all 0s, then the number is between [0, 2^53-1] return top11Bits == 0 // If top11Bits are all 1s, then the number is between [-1, -2^53] || (top11Bits == -1 // and exclude -2^53 && !(this.low_ == 0 && this.high_ == (0xffe00000 | 0))); } /** * @param {number=} opt_radix The radix in which the text should be written. * @return {string} The textual representation of this value. * @override */ toString(opt_radix) { var radix = opt_radix || 10; if (radix < 2 || 36 < radix) { throw new Error('radix out of range: ' + radix); } // We can avoid very expensive division based code path for some common // cases. if (this.isSafeInteger()) { var asNumber = this.toNumber(); // Shortcutting for radix 10 (common case) to avoid boxing via toString: // https://jsperf.com/tostring-vs-vs-if return radix == 10 ? ('' + asNumber) : asNumber.toString(radix); } // We need to split 64bit integer into: `a * radix**safeDigits + b` where // neither `a` nor `b` exceeds 53 bits, meaning that safeDigits can be any // number in a range: [(63 - 53) / log2(radix); 53 / log2(radix)]. // Other options that need to be benchmarked: // 11..16 - (radix >> 2); // 10..13 - (radix >> 3); // 10..11 - (radix >> 4); var safeDigits = 14 - (radix >> 2); var radixPowSafeDigits = Math.pow(radix, safeDigits); var radixToPower = Long.fromBits(radixPowSafeDigits, radixPowSafeDigits / TWO_PWR_32_DBL_); var remDiv = this.div(radixToPower); var val = Math.abs(this.subtract(remDiv.multiply(radixToPower)).toNumber()); var digits = radix == 10 ? ('' + val) : val.toString(radix); if (digits.length < safeDigits) { // Up to 13 leading 0s we might need to insert as the greatest safeDigits // value is 14 (for radix 2). digits = '0000000000000'.substr(digits.length - safeDigits) + digits; } val = remDiv.toNumber(); return (radix == 10 ? val : val.toString(radix)) + digits; } /** @return {number} The high 32-bits as a signed value. */ getHighBits() { return this.high_; } /** @return {number} The low 32-bits as a signed value. */ getLowBits() { return this.low_; } /** @return {number} The low 32-bits as an unsigned value. */ getLowBitsUnsigned() { // The right shifting fixes negative values in the case when // intval >= 2^31; for more details see // https://github.com/google/closure-library/pull/498 return this.low_ >>> 0; } /** * @return {number} Returns the number of bits needed to represent the * absolute value of this Long. */ getNumBitsAbs() { if (this.isNegative()) { if (this.equals(Long.getMinValue())) { return 64; } else { return this.negate().getNumBitsAbs(); } } else { var val = this.high_ != 0 ? this.high_ : this.low_; for (var bit = 31; bit > 0; bit--) { if ((val & (1 << bit)) != 0) { break; } } return this.high_ != 0 ? bit + 33 : bit + 1; } } /** @return {boolean} Whether this value is zero. */ isZero() { // Check low part first as there is high chance it's not 0. return this.low_ == 0 && this.high_ == 0; } /** @return {boolean} Whether this value is negative. */ isNegative() { return this.high_ < 0; } /** @return {boolean} Whether this value is odd. */ isOdd() { return (this.low_ & 1) == 1; } /** * @param {?Long} other Long to compare against. * @return {boolean} Whether this Long equals the other. */ equals(other) { // Compare low parts first as there is higher chance they are different. return (this.low_ == other.low_) && (this.high_ == other.high_); } /** * @param {?Long} other Long to compare against. * @return {boolean} Whether this Long does not equal the other. */ notEquals(other) { return !this.equals(other); } /** * @param {?Long} other Long to compare against. * @return {boolean} Whether this Long is less than the other. */ lessThan(other) { return this.compare(other) < 0; } /** * @param {?Long} other Long to compare against. * @return {boolean} Whether this Long is less than or equal to the other. */ lessThanOrEqual(other) { return this.compare(other) <= 0; } /** * @param {?Long} other Long to compare against. * @return {boolean} Whether this Long is greater than the other. */ greaterThan(other) { return this.compare(other) > 0; } /** * @param {?Long} other Long to compare against. * @return {boolean} Whether this Long is greater than or equal to the other. */ greaterThanOrEqual(other) { return this.compare(other) >= 0; } /** * Compares this Long with the given one. * @param {?Long} other Long to compare against. * @return {number} 0 if they are the same, 1 if the this is greater, and -1 * if the given one is greater. */ compare(other) { if (this.high_ == other.high_) { if (this.low_ == other.low_) { return 0; } return this.getLowBitsUnsigned() > other.getLowBitsUnsigned() ? 1 : -1; } return this.high_ > other.high_ ? 1 : -1; } /** @return {!Long} The negation of this value. */ negate() { var negLow = (~this.low_ + 1) | 0; var overflowFromLow = !negLow; var negHigh = (~this.high_ + overflowFromLow) | 0; return Long.fromBits(negLow, negHigh); } /** * Returns the sum of this and the given Long. * @param {?Long} other Long to add to this one. * @return {!Long} The sum of this and the given Long. */ add(other) { // Divide each number into 4 chunks of 16 bits, and then sum the chunks. var a48 = this.high_ >>> 16; var a32 = this.high_ & 0xFFFF; var a16 = this.low_ >>> 16; var a00 = this.low_ & 0xFFFF; var b48 = other.high_ >>> 16; var b32 = other.high_ & 0xFFFF; var b16 = other.low_ >>> 16; var b00 = other.low_ & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 + b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 + b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 + b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 + b48; c48 &= 0xFFFF; return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); } /** * Returns the difference of this and the given Long. * @param {?Long} other Long to subtract from this. * @return {!Long} The difference of this and the given Long. */ subtract(other) { return this.add(other.negate()); } /** * Returns the product of this and the given long. * @param {?Long} other Long to multiply with this. * @return {!Long} The product of this and the other. */ multiply(other) { if (this.isZero()) { return this; } if (other.isZero()) { return other; } // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products. // We can skip products that would overflow. var a48 = this.high_ >>> 16; var a32 = this.high_ & 0xFFFF; var a16 = this.low_ >>> 16; var a00 = this.low_ & 0xFFFF; var b48 = other.high_ >>> 16; var b32 = other.high_ & 0xFFFF; var b16 = other.low_ >>> 16; var b00 = other.low_ & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 * b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 * b00; c32 += c16 >>> 16; c16 &= 0xFFFF; c16 += a00 * b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 * b00; c48 += c32 >>> 16; c32 &= 0xFFFF; c32 += a16 * b16; c48 += c32 >>> 16; c32 &= 0xFFFF; c32 += a00 * b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; c48 &= 0xFFFF; return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); } /** * Returns this Long divided by the given one. * @param {?Long} other Long by which to divide. * @return {!Long} This Long divided by the given one. */ div(other) { if (other.isZero()) { throw new Error('division by zero'); } if (this.isNegative()) { if (this.equals(Long.getMinValue())) { if (other.equals(Long.getOne()) || other.equals(Long.getNegOne())) { return Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE } if (other.equals(Long.getMinValue())) { return Long.getOne(); } // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. var halfThis = this.shiftRight(1); var approx = halfThis.div(other).shiftLeft(1); if (approx.equals(Long.getZero())) { return other.isNegative() ? Long.getOne() : Long.getNegOne(); } var rem = this.subtract(other.multiply(approx)); var result = approx.add(rem.div(other)); return result; } if (other.isNegative()) { return this.negate().div(other.negate()); } return this.negate().div(other).negate(); } if (this.isZero()) { return Long.getZero(); } if (other.isNegative()) { if (other.equals(Long.getMinValue())) { return Long.getZero(); } return this.div(other.negate()).negate(); } // Repeat the following until the remainder is less than other: find a // floating-point that approximates remainder / other *from below*, add this // into the result, and subtract it from the remainder. It is critical that // the approximate value is less than or equal to the real value so that the // remainder never becomes negative. var res = Long.getZero(); var rem = this; while (rem.greaterThanOrEqual(other)) { // Approximate the result of division. This may be a little greater or // smaller than the actual value. var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); // We will tweak the approximate result by changing it in the 48-th digit // or the smallest non-fractional digit, whichever is larger. var log2 = Math.ceil(Math.log(approx) / Math.LN2); var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); // Decrease the approximation until it is smaller than the remainder. Note // that if it is too large, the product overflows and is negative. var approxRes = Long.fromNumber(approx); var approxRem = approxRes.multiply(other); while (approxRem.isNegative() || approxRem.greaterThan(rem)) { approx -= delta; approxRes = Long.fromNumber(approx); approxRem = approxRes.multiply(other); } // We know the answer can't be zero... and actually, zero would cause // infinite recursion since we would make no progress. if (approxRes.isZero()) { approxRes = Long.getOne(); } res = res.add(approxRes); rem = rem.subtract(approxRem); } return res; } /** * Returns this Long modulo the given one. * @param {?Long} other Long by which to mod. * @return {!Long} This Long modulo the given one. */ modulo(other) { return this.subtract(this.div(other).multiply(other)); } /** @return {!Long} The bitwise-NOT of this value. */ not() { return Long.fromBits(~this.low_, ~this.high_); } /** * Returns the bitwise-AND of this Long and the given one. * @param {?Long} other The Long with which to AND. * @return {!Long} The bitwise-AND of this and the other. */ and(other) { return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_); } /** * Returns the bitwise-OR of this Long and the given one. * @param {?Long} other The Long with which to OR. * @return {!Long} The bitwise-OR of this and the other. */ or(other) { return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_); } /** * Returns the bitwise-XOR of this Long and the given one. * @param {?Long} other The Long with which to XOR. * @return {!Long} The bitwise-XOR of this and the other. */ xor(other) { return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_); } /** * Returns this Long with bits shifted to the left by the given amount. * @param {number} numBits The number of bits by which to shift. * @return {!Long} This shifted to the left by the given amount. */ shiftLeft(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var low = this.low_; if (numBits < 32) { var high = this.high_; return Long.fromBits( low << numBits, (high << numBits) | (low >>> (32 - numBits))); } else { return Long.fromBits(0, low << (numBits - 32)); } } } /** * Returns this Long with bits shifted to the right by the given amount. * The new leading bits match the current sign bit. * @param {number} numBits The number of bits by which to shift. * @return {!Long} This shifted to the right by the given amount. */ shiftRight(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var high = this.high_; if (numBits < 32) { var low = this.low_; return Long.fromBits( (low >>> numBits) | (high << (32 - numBits)), high >> numBits); } else { return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1); } } } /** * Returns this Long with bits shifted to the right by the given amount, with * zeros placed into the new leading bits. * @param {number} numBits The number of bits by which to shift. * @return {!Long} This shifted to the right by the given amount, * with zeros placed into the new leading bits. */ shiftRightUnsigned(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var high = this.high_; if (numBits < 32) { var low = this.low_; return Long.fromBits( (low >>> numBits) | (high << (32 - numBits)), high >>> numBits); } else if (numBits == 32) { return Long.fromBits(high, 0); } else { return Long.fromBits(high >>> (numBits - 32), 0); } } } /** * Returns a Long representing the given (32-bit) integer value. * @param {number} value The 32-bit integer in question. * @return {!Long} The corresponding Long value. */ static fromInt(value) { var intValue = value | 0; if (-128 <= intValue && intValue < 128) { return getCachedIntValue_(intValue); } else { return new Long(intValue, intValue < 0 ? -1 : 0); } } /** * Returns a Long representing the given value. * NaN will be returned as zero. Infinity is converted to max value and * -Infinity to min value. * @param {number} value The number in question. * @return {!Long} The corresponding Long value. */ static fromNumber(value) { if (value > 0) { if (value >= TWO_PWR_63_DBL_) { return Long.getMaxValue(); } return new Long(value, value / TWO_PWR_32_DBL_); } else if (value < 0) { if (value <= -TWO_PWR_63_DBL_) { return Long.getMinValue(); } return new Long(-value, -value / TWO_PWR_32_DBL_).negate(); } else { // NaN or 0. return Long.getZero(); } } /** * Returns a Long representing the 64-bit integer that comes by concatenating * the given high and low bits. Each is assumed to use 32 bits. * @param {number} lowBits The low 32-bits. * @param {number} highBits The high 32-bits. * @return {!Long} The corresponding Long value. */ static fromBits(lowBits, highBits) { return new Long(lowBits, highBits); } /** * Returns a Long representation of the given string, written using the given * radix. * @param {string} str The textual representation of the Long. * @param {number=} opt_radix The radix in which the text is written. * @return {!Long} The corresponding Long value. */ static fromString(str, opt_radix) { if (str.charAt(0) == '-') { return Long.fromString(str.substring(1), opt_radix).negate(); } // We can avoid very expensive multiply based code path for some common // cases. var numberValue = parseInt(str, opt_radix || 10); if (numberValue <= MAX_SAFE_INTEGER_) { return new Long( (numberValue % TWO_PWR_32_DBL_) | 0, (numberValue / TWO_PWR_32_DBL_) | 0); } if (str.length == 0) { throw new Error('number format error: empty string'); } if (str.indexOf('-') >= 0) { throw new Error('number format error: interior "-" character: ' + str); } var radix = opt_radix || 10; if (radix < 2 || 36 < radix) { throw new Error('radix out of range: ' + radix); } // Do several (8) digits each time through the loop, so as to // minimize the calls to the very expensive emulated multiply. var radixToPower = Long.fromNumber(Math.pow(radix, 8)); var result = Long.getZero(); for (var i = 0; i < str.length; i += 8) { var size = Math.min(8, str.length - i); var value = parseInt(str.substring(i, i + size), radix); if (size < 8) { var power = Long.fromNumber(Math.pow(radix, size)); result = result.multiply(power).add(Long.fromNumber(value)); } else { result = result.multiply(radixToPower); result = result.add(Long.fromNumber(value)); } } return result; } /** * Returns the boolean value of whether the input string is within a Long's * range. Assumes an input string containing only numeric characters with an * optional preceding '-'. * @param {string} str The textual representation of the Long. * @param {number=} opt_radix The radix in which the text is written. * @return {boolean} Whether the string is within the range of a Long. */ static isStringInRange(str, opt_radix) { var radix = opt_radix || 10; if (radix < 2 || 36 < radix) { throw new Error('radix out of range: ' + radix); } var extremeValue = (str.charAt(0) == '-') ? MIN_VALUE_FOR_RADIX_[radix] : MAX_VALUE_FOR_RADIX_[radix]; if (str.length < extremeValue.length) { return true; } else if (str.length == extremeValue.length && str <= extremeValue) { return true; } else { return false; } } /** * @return {!Long} * @public */ static getZero() { return ZERO_; } /** * @return {!Long} * @public */ static getOne() { return ONE_; } /** * @return {!Long} * @public */ static getNegOne() { return NEG_ONE_; } /** * @return {!Long} * @public */ static getMaxValue() { return MAX_VALUE_; } /** * @return {!Long} * @public */ static getMinValue() { return MIN_VALUE_; } /** * @return {!Long} * @public */ static getTwoPwr24() { return TWO_PWR_24_; } } // NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the // from* methods on which they depend. /** * A cache of the Long representations of small integer values. * @type {!Object} * @private @const */ const IntCache_ = {}; /** * Returns a cached long number representing the given (32-bit) integer value. * @param {number} value The 32-bit integer in question. * @return {!Long} The corresponding Long value. * @private */ function getCachedIntValue_(value) { return IntCache_[value] || (IntCache_[value] = new Long(value, value < 0 ? -1 : 0)) } /** * The array of maximum values of a Long in string representation for a given * radix between 2 and 36, inclusive. * @private @const {!Array} */ const MAX_VALUE_FOR_RADIX_ = [ '', '', // unused '111111111111111111111111111111111111111111111111111111111111111', // base 2 '2021110011022210012102010021220101220221', // base 3 '13333333333333333333333333333333', // base 4 '1104332401304422434310311212', // base 5 '1540241003031030222122211', // base 6 '22341010611245052052300', // base 7 '777777777777777777777', // base 8 '67404283172107811827', // base 9 '9223372036854775807', // base 10 '1728002635214590697', // base 11 '41a792678515120367', // base 12 '10b269549075433c37', // base 13 '4340724c6c71dc7a7', // base 14 '160e2ad3246366807', // base 15 '7fffffffffffffff', // base 16 '33d3d8307b214008', // base 17 '16agh595df825fa7', // base 18 'ba643dci0ffeehh', // base 19 '5cbfjia3fh26ja7', // base 20 '2heiciiie82dh97', // base 21 '1adaibb21dckfa7', // base 22 'i6k448cf4192c2', // base 23 'acd772jnc9l0l7', // base 24 '64ie1focnn5g77', // base 25 '3igoecjbmca687', // base 26 '27c48l5b37oaop', // base 27 '1bk39f3ah3dmq7', // base 28 'q1se8f0m04isb', // base 29 'hajppbc1fc207', // base 30 'bm03i95hia437', // base 31 '7vvvvvvvvvvvv', // base 32 '5hg4ck9jd4u37', // base 33 '3tdtk1v8j6tpp', // base 34 '2pijmikexrxp7', // base 35 '1y2p0ij32e8e7' // base 36 ]; /** * The array of minimum values of a Long in string representation for a given * radix between 2 and 36, inclusive. * @private @const {!Array} */ const MIN_VALUE_FOR_RADIX_ = [ '', '', // unused '-1000000000000000000000000000000000000000000000000000000000000000', // base 2 '-2021110011022210012102010021220101220222', // base 3 '-20000000000000000000000000000000', // base 4 '-1104332401304422434310311213', // base 5 '-1540241003031030222122212', // base 6 '-22341010611245052052301', // base 7 '-1000000000000000000000', // base 8 '-67404283172107811828', // base 9 '-9223372036854775808', // base 10 '-1728002635214590698', // base 11 '-41a792678515120368', // base 12 '-10b269549075433c38', // base 13 '-4340724c6c71dc7a8', // base 14 '-160e2ad3246366808', // base 15 '-8000000000000000', // base 16 '-33d3d8307b214009', // base 17 '-16agh595df825fa8', // base 18 '-ba643dci0ffeehi', // base 19 '-5cbfjia3fh26ja8', // base 20 '-2heiciiie82dh98', // base 21 '-1adaibb21dckfa8', // base 22 '-i6k448cf4192c3', // base 23 '-acd772jnc9l0l8', // base 24 '-64ie1focnn5g78', // base 25 '-3igoecjbmca688', // base 26 '-27c48l5b37oaoq', // base 27 '-1bk39f3ah3dmq8', // base 28 '-q1se8f0m04isc', // base 29 '-hajppbc1fc208', // base 30 '-bm03i95hia438', // base 31 '-8000000000000', // base 32 '-5hg4ck9jd4u38', // base 33 '-3tdtk1v8j6tpq', // base 34 '-2pijmikexrxp8', // base 35 '-1y2p0ij32e8e8' // base 36 ]; /** * TODO(goktug): Replace with Number.MAX_SAFE_INTEGER when polyfil is guaranteed * to be removed. * @type {number} * @private @const */ const MAX_SAFE_INTEGER_ = 0x1fffffffffffff; // NOTE: the compiler should inline these constant values below and then remove // these variables, so there should be no runtime penalty for these. /** * Number used repeated below in calculations. This must appear before the * first call to any from* function above. * @const {number} * @private */ const TWO_PWR_32_DBL_ = 0x100000000; /** * @const {number} * @private */ const TWO_PWR_63_DBL_ = 0x8000000000000000; /** * @private @const {!Long} */ const ZERO_ = Long.fromBits(0, 0); /** * @private @const {!Long} */ const ONE_ = Long.fromBits(1, 0); /** * @private @const {!Long} */ const NEG_ONE_ = Long.fromBits(-1, -1); /** * @private @const {!Long} */ const MAX_VALUE_ = Long.fromBits(0xFFFFFFFF, 0x7FFFFFFF); /** * @private @const {!Long} */ const MIN_VALUE_ = Long.fromBits(0, 0x80000000); /** * @private @const {!Long} */ const TWO_PWR_24_ = Long.fromBits(1 << 24, 0); Long.ZERO = ZERO_ Long.ONE = ONE_