mirror of
https://github.com/danog/madelineTon.js.git
synced 2024-12-03 09:47:49 +01:00
926 lines
26 KiB
JavaScript
926 lines
26 KiB
JavaScript
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS-IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/**
|
|
* @fileoverview Defines a Long class for representing a 64-bit two's-complement
|
|
* integer value, which faithfully simulates the behavior of a Java "long". This
|
|
* implementation is derived from LongLib in GWT.
|
|
*/
|
|
|
|
/**
|
|
* Represents a 64-bit two's-complement integer, given its low and high 32-bit
|
|
* values as *signed* integers. See the from* functions below for more
|
|
* convenient ways of constructing Longs.
|
|
*
|
|
* The internal representation of a long is the two given signed, 32-bit values.
|
|
* We use 32-bit pieces because these are the size of integers on which
|
|
* JavaScript performs bit-operations. For operations like addition and
|
|
* multiplication, we split each number into 16-bit pieces, which can easily be
|
|
* multiplied within JavaScript's floating-point representation without overflow
|
|
* or change in sign.
|
|
*
|
|
* In the algorithms below, we frequently reduce the negative case to the
|
|
* positive case by negating the input(s) and then post-processing the result.
|
|
* Note that we must ALWAYS check specially whether those values are MIN_VALUE
|
|
* (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
|
|
* a positive number, it overflows back into a negative). Not handling this
|
|
* case would often result in infinite recursion.
|
|
* @final
|
|
*/
|
|
class Long {
|
|
/**
|
|
* @param {number} low The low (signed) 32 bits of the long.
|
|
* @param {number} high The high (signed) 32 bits of the long.
|
|
*/
|
|
constructor(low, high) {
|
|
/**
|
|
* @const {number}
|
|
* @private
|
|
*/
|
|
this.low_ = low | 0; // force into 32 signed bits.
|
|
|
|
/**
|
|
* @const {number}
|
|
* @private
|
|
*/
|
|
this.high_ = high | 0; // force into 32 signed bits.
|
|
}
|
|
|
|
|
|
/**
|
|
* GCD between current number and b
|
|
* @param {Long} b Number
|
|
* @returns Long
|
|
*/
|
|
gcd(b) {
|
|
let a = this
|
|
while (a.notEquals(ZERO_) && b.notEquals(ZERO_)) {
|
|
while (b.and(ONE_).equals(ZERO_)) {
|
|
b = b.shiftRight(1)
|
|
}
|
|
while (a.and(ONE_).equals(ZERO_)) {
|
|
a = a.shiftRight(1)
|
|
}
|
|
if (a.compare(b) > 0) {
|
|
a = a.subtract(b)
|
|
} else {
|
|
b = b.subtract(a)
|
|
}
|
|
}
|
|
return b.equals(ZERO_) ? a : b
|
|
}
|
|
|
|
/** @return {number} The value, assuming it is a 32-bit integer. */
|
|
toInt() {
|
|
return this.low_;
|
|
}
|
|
|
|
/**
|
|
* @return {number} The closest floating-point representation to this value.
|
|
*/
|
|
toNumber() {
|
|
return this.high_ * TWO_PWR_32_DBL_ + this.getLowBitsUnsigned();
|
|
}
|
|
|
|
/**
|
|
* @return {boolean} if can be exactly represented using number (i.e.
|
|
* abs(value) < 2^53).
|
|
*/
|
|
isSafeInteger() {
|
|
var top11Bits = this.high_ >> 21;
|
|
// If top11Bits are all 0s, then the number is between [0, 2^53-1]
|
|
return top11Bits == 0
|
|
// If top11Bits are all 1s, then the number is between [-1, -2^53]
|
|
||
|
|
(top11Bits == -1
|
|
// and exclude -2^53
|
|
&&
|
|
!(this.low_ == 0 && this.high_ == (0xffe00000 | 0)));
|
|
}
|
|
|
|
/**
|
|
* @param {number=} opt_radix The radix in which the text should be written.
|
|
* @return {string} The textual representation of this value.
|
|
* @override
|
|
*/
|
|
toString(opt_radix) {
|
|
var radix = opt_radix || 10;
|
|
if (radix < 2 || 36 < radix) {
|
|
throw new Error('radix out of range: ' + radix);
|
|
}
|
|
|
|
// We can avoid very expensive division based code path for some common
|
|
// cases.
|
|
if (this.isSafeInteger()) {
|
|
var asNumber = this.toNumber();
|
|
// Shortcutting for radix 10 (common case) to avoid boxing via toString:
|
|
// https://jsperf.com/tostring-vs-vs-if
|
|
return radix == 10 ? ('' + asNumber) : asNumber.toString(radix);
|
|
}
|
|
|
|
// We need to split 64bit integer into: `a * radix**safeDigits + b` where
|
|
// neither `a` nor `b` exceeds 53 bits, meaning that safeDigits can be any
|
|
// number in a range: [(63 - 53) / log2(radix); 53 / log2(radix)].
|
|
|
|
// Other options that need to be benchmarked:
|
|
// 11..16 - (radix >> 2);
|
|
// 10..13 - (radix >> 3);
|
|
// 10..11 - (radix >> 4);
|
|
var safeDigits = 14 - (radix >> 2);
|
|
|
|
var radixPowSafeDigits = Math.pow(radix, safeDigits);
|
|
var radixToPower =
|
|
Long.fromBits(radixPowSafeDigits, radixPowSafeDigits / TWO_PWR_32_DBL_);
|
|
|
|
var remDiv = this.div(radixToPower);
|
|
var val = Math.abs(this.subtract(remDiv.multiply(radixToPower)).toNumber());
|
|
var digits = radix == 10 ? ('' + val) : val.toString(radix);
|
|
|
|
if (digits.length < safeDigits) {
|
|
// Up to 13 leading 0s we might need to insert as the greatest safeDigits
|
|
// value is 14 (for radix 2).
|
|
digits = '0000000000000'.substr(digits.length - safeDigits) + digits;
|
|
}
|
|
|
|
val = remDiv.toNumber();
|
|
return (radix == 10 ? val : val.toString(radix)) + digits;
|
|
}
|
|
|
|
/** @return {number} The high 32-bits as a signed value. */
|
|
getHighBits() {
|
|
return this.high_;
|
|
}
|
|
|
|
/** @return {number} The low 32-bits as a signed value. */
|
|
getLowBits() {
|
|
return this.low_;
|
|
}
|
|
|
|
/** @return {number} The low 32-bits as an unsigned value. */
|
|
getLowBitsUnsigned() {
|
|
// The right shifting fixes negative values in the case when
|
|
// intval >= 2^31; for more details see
|
|
// https://github.com/google/closure-library/pull/498
|
|
return this.low_ >>> 0;
|
|
}
|
|
|
|
/**
|
|
* @return {number} Returns the number of bits needed to represent the
|
|
* absolute value of this Long.
|
|
*/
|
|
getNumBitsAbs() {
|
|
if (this.isNegative()) {
|
|
if (this.equals(Long.getMinValue())) {
|
|
return 64;
|
|
} else {
|
|
return this.negate().getNumBitsAbs();
|
|
}
|
|
} else {
|
|
var val = this.high_ != 0 ? this.high_ : this.low_;
|
|
for (var bit = 31; bit > 0; bit--) {
|
|
if ((val & (1 << bit)) != 0) {
|
|
break;
|
|
}
|
|
}
|
|
return this.high_ != 0 ? bit + 33 : bit + 1;
|
|
}
|
|
}
|
|
|
|
/** @return {boolean} Whether this value is zero. */
|
|
isZero() {
|
|
// Check low part first as there is high chance it's not 0.
|
|
return this.low_ == 0 && this.high_ == 0;
|
|
}
|
|
|
|
/** @return {boolean} Whether this value is negative. */
|
|
isNegative() {
|
|
return this.high_ < 0;
|
|
}
|
|
|
|
/** @return {boolean} Whether this value is odd. */
|
|
isOdd() {
|
|
return (this.low_ & 1) == 1;
|
|
}
|
|
|
|
/**
|
|
* @param {?Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long equals the other.
|
|
*/
|
|
equals(other) {
|
|
// Compare low parts first as there is higher chance they are different.
|
|
return (this.low_ == other.low_) && (this.high_ == other.high_);
|
|
}
|
|
|
|
/**
|
|
* @param {?Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long does not equal the other.
|
|
*/
|
|
notEquals(other) {
|
|
return !this.equals(other);
|
|
}
|
|
|
|
/**
|
|
* @param {?Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long is less than the other.
|
|
*/
|
|
lessThan(other) {
|
|
return this.compare(other) < 0;
|
|
}
|
|
|
|
/**
|
|
* @param {?Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long is less than or equal to the other.
|
|
*/
|
|
lessThanOrEqual(other) {
|
|
return this.compare(other) <= 0;
|
|
}
|
|
|
|
/**
|
|
* @param {?Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long is greater than the other.
|
|
*/
|
|
greaterThan(other) {
|
|
return this.compare(other) > 0;
|
|
}
|
|
|
|
/**
|
|
* @param {?Long} other Long to compare against.
|
|
* @return {boolean} Whether this Long is greater than or equal to the other.
|
|
*/
|
|
greaterThanOrEqual(other) {
|
|
return this.compare(other) >= 0;
|
|
}
|
|
|
|
/**
|
|
* Compares this Long with the given one.
|
|
* @param {?Long} other Long to compare against.
|
|
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
|
|
* if the given one is greater.
|
|
*/
|
|
compare(other) {
|
|
if (this.high_ == other.high_) {
|
|
if (this.low_ == other.low_) {
|
|
return 0;
|
|
}
|
|
return this.getLowBitsUnsigned() > other.getLowBitsUnsigned() ? 1 : -1;
|
|
}
|
|
return this.high_ > other.high_ ? 1 : -1;
|
|
}
|
|
|
|
/** @return {!Long} The negation of this value. */
|
|
negate() {
|
|
var negLow = (~this.low_ + 1) | 0;
|
|
var overflowFromLow = !negLow;
|
|
var negHigh = (~this.high_ + overflowFromLow) | 0;
|
|
return Long.fromBits(negLow, negHigh);
|
|
}
|
|
|
|
/**
|
|
* Returns the sum of this and the given Long.
|
|
* @param {?Long} other Long to add to this one.
|
|
* @return {!Long} The sum of this and the given Long.
|
|
*/
|
|
add(other) {
|
|
// Divide each number into 4 chunks of 16 bits, and then sum the chunks.
|
|
|
|
var a48 = this.high_ >>> 16;
|
|
var a32 = this.high_ & 0xFFFF;
|
|
var a16 = this.low_ >>> 16;
|
|
var a00 = this.low_ & 0xFFFF;
|
|
|
|
var b48 = other.high_ >>> 16;
|
|
var b32 = other.high_ & 0xFFFF;
|
|
var b16 = other.low_ >>> 16;
|
|
var b00 = other.low_ & 0xFFFF;
|
|
|
|
var c48 = 0,
|
|
c32 = 0,
|
|
c16 = 0,
|
|
c00 = 0;
|
|
c00 += a00 + b00;
|
|
c16 += c00 >>> 16;
|
|
c00 &= 0xFFFF;
|
|
c16 += a16 + b16;
|
|
c32 += c16 >>> 16;
|
|
c16 &= 0xFFFF;
|
|
c32 += a32 + b32;
|
|
c48 += c32 >>> 16;
|
|
c32 &= 0xFFFF;
|
|
c48 += a48 + b48;
|
|
c48 &= 0xFFFF;
|
|
return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
|
|
}
|
|
|
|
/**
|
|
* Returns the difference of this and the given Long.
|
|
* @param {?Long} other Long to subtract from this.
|
|
* @return {!Long} The difference of this and the given Long.
|
|
*/
|
|
subtract(other) {
|
|
return this.add(other.negate());
|
|
}
|
|
|
|
/**
|
|
* Returns the product of this and the given long.
|
|
* @param {?Long} other Long to multiply with this.
|
|
* @return {!Long} The product of this and the other.
|
|
*/
|
|
multiply(other) {
|
|
if (this.isZero()) {
|
|
return this;
|
|
}
|
|
if (other.isZero()) {
|
|
return other;
|
|
}
|
|
|
|
// Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
|
|
// We can skip products that would overflow.
|
|
|
|
var a48 = this.high_ >>> 16;
|
|
var a32 = this.high_ & 0xFFFF;
|
|
var a16 = this.low_ >>> 16;
|
|
var a00 = this.low_ & 0xFFFF;
|
|
|
|
var b48 = other.high_ >>> 16;
|
|
var b32 = other.high_ & 0xFFFF;
|
|
var b16 = other.low_ >>> 16;
|
|
var b00 = other.low_ & 0xFFFF;
|
|
|
|
var c48 = 0,
|
|
c32 = 0,
|
|
c16 = 0,
|
|
c00 = 0;
|
|
c00 += a00 * b00;
|
|
c16 += c00 >>> 16;
|
|
c00 &= 0xFFFF;
|
|
c16 += a16 * b00;
|
|
c32 += c16 >>> 16;
|
|
c16 &= 0xFFFF;
|
|
c16 += a00 * b16;
|
|
c32 += c16 >>> 16;
|
|
c16 &= 0xFFFF;
|
|
c32 += a32 * b00;
|
|
c48 += c32 >>> 16;
|
|
c32 &= 0xFFFF;
|
|
c32 += a16 * b16;
|
|
c48 += c32 >>> 16;
|
|
c32 &= 0xFFFF;
|
|
c32 += a00 * b32;
|
|
c48 += c32 >>> 16;
|
|
c32 &= 0xFFFF;
|
|
c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
|
|
c48 &= 0xFFFF;
|
|
return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
|
|
}
|
|
|
|
/**
|
|
* Returns this Long divided by the given one.
|
|
* @param {?Long} other Long by which to divide.
|
|
* @return {!Long} This Long divided by the given one.
|
|
*/
|
|
div(other) {
|
|
if (other.isZero()) {
|
|
throw new Error('division by zero');
|
|
}
|
|
if (this.isNegative()) {
|
|
if (this.equals(Long.getMinValue())) {
|
|
if (other.equals(Long.getOne()) || other.equals(Long.getNegOne())) {
|
|
return Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE
|
|
}
|
|
if (other.equals(Long.getMinValue())) {
|
|
return Long.getOne();
|
|
}
|
|
// At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
|
|
var halfThis = this.shiftRight(1);
|
|
var approx = halfThis.div(other).shiftLeft(1);
|
|
if (approx.equals(Long.getZero())) {
|
|
return other.isNegative() ? Long.getOne() : Long.getNegOne();
|
|
}
|
|
var rem = this.subtract(other.multiply(approx));
|
|
var result = approx.add(rem.div(other));
|
|
return result;
|
|
}
|
|
if (other.isNegative()) {
|
|
return this.negate().div(other.negate());
|
|
}
|
|
return this.negate().div(other).negate();
|
|
}
|
|
if (this.isZero()) {
|
|
return Long.getZero();
|
|
}
|
|
if (other.isNegative()) {
|
|
if (other.equals(Long.getMinValue())) {
|
|
return Long.getZero();
|
|
}
|
|
return this.div(other.negate()).negate();
|
|
}
|
|
|
|
// Repeat the following until the remainder is less than other: find a
|
|
// floating-point that approximates remainder / other *from below*, add this
|
|
// into the result, and subtract it from the remainder. It is critical that
|
|
// the approximate value is less than or equal to the real value so that the
|
|
// remainder never becomes negative.
|
|
var res = Long.getZero();
|
|
var rem = this;
|
|
while (rem.greaterThanOrEqual(other)) {
|
|
// Approximate the result of division. This may be a little greater or
|
|
// smaller than the actual value.
|
|
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
|
|
|
|
// We will tweak the approximate result by changing it in the 48-th digit
|
|
// or the smallest non-fractional digit, whichever is larger.
|
|
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
|
|
var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
|
|
|
|
// Decrease the approximation until it is smaller than the remainder. Note
|
|
// that if it is too large, the product overflows and is negative.
|
|
var approxRes = Long.fromNumber(approx);
|
|
var approxRem = approxRes.multiply(other);
|
|
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
|
|
approx -= delta;
|
|
approxRes = Long.fromNumber(approx);
|
|
approxRem = approxRes.multiply(other);
|
|
}
|
|
|
|
// We know the answer can't be zero... and actually, zero would cause
|
|
// infinite recursion since we would make no progress.
|
|
if (approxRes.isZero()) {
|
|
approxRes = Long.getOne();
|
|
}
|
|
|
|
res = res.add(approxRes);
|
|
rem = rem.subtract(approxRem);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* Returns this Long modulo the given one.
|
|
* @param {?Long} other Long by which to mod.
|
|
* @return {!Long} This Long modulo the given one.
|
|
*/
|
|
modulo(other) {
|
|
return this.subtract(this.div(other).multiply(other));
|
|
}
|
|
|
|
/** @return {!Long} The bitwise-NOT of this value. */
|
|
not() {
|
|
return Long.fromBits(~this.low_, ~this.high_);
|
|
}
|
|
|
|
/**
|
|
* Returns the bitwise-AND of this Long and the given one.
|
|
* @param {?Long} other The Long with which to AND.
|
|
* @return {!Long} The bitwise-AND of this and the other.
|
|
*/
|
|
and(other) {
|
|
return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_);
|
|
}
|
|
|
|
/**
|
|
* Returns the bitwise-OR of this Long and the given one.
|
|
* @param {?Long} other The Long with which to OR.
|
|
* @return {!Long} The bitwise-OR of this and the other.
|
|
*/
|
|
or(other) {
|
|
return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_);
|
|
}
|
|
|
|
/**
|
|
* Returns the bitwise-XOR of this Long and the given one.
|
|
* @param {?Long} other The Long with which to XOR.
|
|
* @return {!Long} The bitwise-XOR of this and the other.
|
|
*/
|
|
xor(other) {
|
|
return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_);
|
|
}
|
|
|
|
/**
|
|
* Returns this Long with bits shifted to the left by the given amount.
|
|
* @param {number} numBits The number of bits by which to shift.
|
|
* @return {!Long} This shifted to the left by the given amount.
|
|
*/
|
|
shiftLeft(numBits) {
|
|
numBits &= 63;
|
|
if (numBits == 0) {
|
|
return this;
|
|
} else {
|
|
var low = this.low_;
|
|
if (numBits < 32) {
|
|
var high = this.high_;
|
|
return Long.fromBits(
|
|
low << numBits, (high << numBits) | (low >>> (32 - numBits)));
|
|
} else {
|
|
return Long.fromBits(0, low << (numBits - 32));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns this Long with bits shifted to the right by the given amount.
|
|
* The new leading bits match the current sign bit.
|
|
* @param {number} numBits The number of bits by which to shift.
|
|
* @return {!Long} This shifted to the right by the given amount.
|
|
*/
|
|
shiftRight(numBits) {
|
|
numBits &= 63;
|
|
if (numBits == 0) {
|
|
return this;
|
|
} else {
|
|
var high = this.high_;
|
|
if (numBits < 32) {
|
|
var low = this.low_;
|
|
return Long.fromBits(
|
|
(low >>> numBits) | (high << (32 - numBits)), high >> numBits);
|
|
} else {
|
|
return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns this Long with bits shifted to the right by the given amount, with
|
|
* zeros placed into the new leading bits.
|
|
* @param {number} numBits The number of bits by which to shift.
|
|
* @return {!Long} This shifted to the right by the given amount,
|
|
* with zeros placed into the new leading bits.
|
|
*/
|
|
shiftRightUnsigned(numBits) {
|
|
numBits &= 63;
|
|
if (numBits == 0) {
|
|
return this;
|
|
} else {
|
|
var high = this.high_;
|
|
if (numBits < 32) {
|
|
var low = this.low_;
|
|
return Long.fromBits(
|
|
(low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
|
|
} else if (numBits == 32) {
|
|
return Long.fromBits(high, 0);
|
|
} else {
|
|
return Long.fromBits(high >>> (numBits - 32), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a Long representing the given (32-bit) integer value.
|
|
* @param {number} value The 32-bit integer in question.
|
|
* @return {!Long} The corresponding Long value.
|
|
*/
|
|
static fromInt(value) {
|
|
var intValue = value | 0;
|
|
|
|
if (-128 <= intValue && intValue < 128) {
|
|
return getCachedIntValue_(intValue);
|
|
} else {
|
|
return new Long(intValue, intValue < 0 ? -1 : 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a Long representing the given value.
|
|
* NaN will be returned as zero. Infinity is converted to max value and
|
|
* -Infinity to min value.
|
|
* @param {number} value The number in question.
|
|
* @return {!Long} The corresponding Long value.
|
|
*/
|
|
static fromNumber(value) {
|
|
if (value > 0) {
|
|
if (value >= TWO_PWR_63_DBL_) {
|
|
return Long.getMaxValue();
|
|
}
|
|
return new Long(value, value / TWO_PWR_32_DBL_);
|
|
} else if (value < 0) {
|
|
if (value <= -TWO_PWR_63_DBL_) {
|
|
return Long.getMinValue();
|
|
}
|
|
return new Long(-value, -value / TWO_PWR_32_DBL_).negate();
|
|
} else {
|
|
// NaN or 0.
|
|
return Long.getZero();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a Long representing the 64-bit integer that comes by concatenating
|
|
* the given high and low bits. Each is assumed to use 32 bits.
|
|
* @param {number} lowBits The low 32-bits.
|
|
* @param {number} highBits The high 32-bits.
|
|
* @return {!Long} The corresponding Long value.
|
|
*/
|
|
static fromBits(lowBits, highBits) {
|
|
return new Long(lowBits, highBits);
|
|
}
|
|
|
|
/**
|
|
* Returns a Long representation of the given string, written using the given
|
|
* radix.
|
|
* @param {string} str The textual representation of the Long.
|
|
* @param {number=} opt_radix The radix in which the text is written.
|
|
* @return {!Long} The corresponding Long value.
|
|
*/
|
|
static fromString(str, opt_radix) {
|
|
if (str.charAt(0) == '-') {
|
|
return Long.fromString(str.substring(1), opt_radix).negate();
|
|
}
|
|
|
|
// We can avoid very expensive multiply based code path for some common
|
|
// cases.
|
|
var numberValue = parseInt(str, opt_radix || 10);
|
|
if (numberValue <= MAX_SAFE_INTEGER_) {
|
|
return new Long(
|
|
(numberValue % TWO_PWR_32_DBL_) | 0,
|
|
(numberValue / TWO_PWR_32_DBL_) | 0);
|
|
}
|
|
|
|
if (str.length == 0) {
|
|
throw new Error('number format error: empty string');
|
|
}
|
|
if (str.indexOf('-') >= 0) {
|
|
throw new Error('number format error: interior "-" character: ' + str);
|
|
}
|
|
|
|
var radix = opt_radix || 10;
|
|
if (radix < 2 || 36 < radix) {
|
|
throw new Error('radix out of range: ' + radix);
|
|
}
|
|
|
|
// Do several (8) digits each time through the loop, so as to
|
|
// minimize the calls to the very expensive emulated multiply.
|
|
var radixToPower = Long.fromNumber(Math.pow(radix, 8));
|
|
|
|
var result = Long.getZero();
|
|
for (var i = 0; i < str.length; i += 8) {
|
|
var size = Math.min(8, str.length - i);
|
|
var value = parseInt(str.substring(i, i + size), radix);
|
|
if (size < 8) {
|
|
var power = Long.fromNumber(Math.pow(radix, size));
|
|
result = result.multiply(power).add(Long.fromNumber(value));
|
|
} else {
|
|
result = result.multiply(radixToPower);
|
|
result = result.add(Long.fromNumber(value));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns the boolean value of whether the input string is within a Long's
|
|
* range. Assumes an input string containing only numeric characters with an
|
|
* optional preceding '-'.
|
|
* @param {string} str The textual representation of the Long.
|
|
* @param {number=} opt_radix The radix in which the text is written.
|
|
* @return {boolean} Whether the string is within the range of a Long.
|
|
*/
|
|
static isStringInRange(str, opt_radix) {
|
|
var radix = opt_radix || 10;
|
|
if (radix < 2 || 36 < radix) {
|
|
throw new Error('radix out of range: ' + radix);
|
|
}
|
|
|
|
var extremeValue = (str.charAt(0) == '-') ? MIN_VALUE_FOR_RADIX_[radix] :
|
|
MAX_VALUE_FOR_RADIX_[radix];
|
|
|
|
if (str.length < extremeValue.length) {
|
|
return true;
|
|
} else if (str.length == extremeValue.length && str <= extremeValue) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @return {!Long}
|
|
* @public
|
|
*/
|
|
static getZero() {
|
|
return ZERO_;
|
|
}
|
|
|
|
/**
|
|
* @return {!Long}
|
|
* @public
|
|
*/
|
|
static getOne() {
|
|
return ONE_;
|
|
}
|
|
|
|
/**
|
|
* @return {!Long}
|
|
* @public
|
|
*/
|
|
static getNegOne() {
|
|
return NEG_ONE_;
|
|
}
|
|
|
|
/**
|
|
* @return {!Long}
|
|
* @public
|
|
*/
|
|
static getMaxValue() {
|
|
return MAX_VALUE_;
|
|
}
|
|
|
|
/**
|
|
* @return {!Long}
|
|
* @public
|
|
*/
|
|
static getMinValue() {
|
|
return MIN_VALUE_;
|
|
}
|
|
|
|
/**
|
|
* @return {!Long}
|
|
* @public
|
|
*/
|
|
static getTwoPwr24() {
|
|
return TWO_PWR_24_;
|
|
}
|
|
}
|
|
|
|
// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
|
|
// from* methods on which they depend.
|
|
|
|
|
|
/**
|
|
* A cache of the Long representations of small integer values.
|
|
* @type {!Object<number, !Long>}
|
|
* @private @const
|
|
*/
|
|
const IntCache_ = {};
|
|
|
|
|
|
/**
|
|
* Returns a cached long number representing the given (32-bit) integer value.
|
|
* @param {number} value The 32-bit integer in question.
|
|
* @return {!Long} The corresponding Long value.
|
|
* @private
|
|
*/
|
|
function getCachedIntValue_(value) {
|
|
return IntCache_[value] || (IntCache_[value] = new Long(value, value < 0 ? -1 : 0))
|
|
}
|
|
|
|
/**
|
|
* The array of maximum values of a Long in string representation for a given
|
|
* radix between 2 and 36, inclusive.
|
|
* @private @const {!Array<string>}
|
|
*/
|
|
const MAX_VALUE_FOR_RADIX_ = [
|
|
'', '', // unused
|
|
'111111111111111111111111111111111111111111111111111111111111111',
|
|
// base 2
|
|
'2021110011022210012102010021220101220221', // base 3
|
|
'13333333333333333333333333333333', // base 4
|
|
'1104332401304422434310311212', // base 5
|
|
'1540241003031030222122211', // base 6
|
|
'22341010611245052052300', // base 7
|
|
'777777777777777777777', // base 8
|
|
'67404283172107811827', // base 9
|
|
'9223372036854775807', // base 10
|
|
'1728002635214590697', // base 11
|
|
'41a792678515120367', // base 12
|
|
'10b269549075433c37', // base 13
|
|
'4340724c6c71dc7a7', // base 14
|
|
'160e2ad3246366807', // base 15
|
|
'7fffffffffffffff', // base 16
|
|
'33d3d8307b214008', // base 17
|
|
'16agh595df825fa7', // base 18
|
|
'ba643dci0ffeehh', // base 19
|
|
'5cbfjia3fh26ja7', // base 20
|
|
'2heiciiie82dh97', // base 21
|
|
'1adaibb21dckfa7', // base 22
|
|
'i6k448cf4192c2', // base 23
|
|
'acd772jnc9l0l7', // base 24
|
|
'64ie1focnn5g77', // base 25
|
|
'3igoecjbmca687', // base 26
|
|
'27c48l5b37oaop', // base 27
|
|
'1bk39f3ah3dmq7', // base 28
|
|
'q1se8f0m04isb', // base 29
|
|
'hajppbc1fc207', // base 30
|
|
'bm03i95hia437', // base 31
|
|
'7vvvvvvvvvvvv', // base 32
|
|
'5hg4ck9jd4u37', // base 33
|
|
'3tdtk1v8j6tpp', // base 34
|
|
'2pijmikexrxp7', // base 35
|
|
'1y2p0ij32e8e7' // base 36
|
|
];
|
|
|
|
|
|
/**
|
|
* The array of minimum values of a Long in string representation for a given
|
|
* radix between 2 and 36, inclusive.
|
|
* @private @const {!Array<string>}
|
|
*/
|
|
const MIN_VALUE_FOR_RADIX_ = [
|
|
'', '', // unused
|
|
'-1000000000000000000000000000000000000000000000000000000000000000',
|
|
// base 2
|
|
'-2021110011022210012102010021220101220222', // base 3
|
|
'-20000000000000000000000000000000', // base 4
|
|
'-1104332401304422434310311213', // base 5
|
|
'-1540241003031030222122212', // base 6
|
|
'-22341010611245052052301', // base 7
|
|
'-1000000000000000000000', // base 8
|
|
'-67404283172107811828', // base 9
|
|
'-9223372036854775808', // base 10
|
|
'-1728002635214590698', // base 11
|
|
'-41a792678515120368', // base 12
|
|
'-10b269549075433c38', // base 13
|
|
'-4340724c6c71dc7a8', // base 14
|
|
'-160e2ad3246366808', // base 15
|
|
'-8000000000000000', // base 16
|
|
'-33d3d8307b214009', // base 17
|
|
'-16agh595df825fa8', // base 18
|
|
'-ba643dci0ffeehi', // base 19
|
|
'-5cbfjia3fh26ja8', // base 20
|
|
'-2heiciiie82dh98', // base 21
|
|
'-1adaibb21dckfa8', // base 22
|
|
'-i6k448cf4192c3', // base 23
|
|
'-acd772jnc9l0l8', // base 24
|
|
'-64ie1focnn5g78', // base 25
|
|
'-3igoecjbmca688', // base 26
|
|
'-27c48l5b37oaoq', // base 27
|
|
'-1bk39f3ah3dmq8', // base 28
|
|
'-q1se8f0m04isc', // base 29
|
|
'-hajppbc1fc208', // base 30
|
|
'-bm03i95hia438', // base 31
|
|
'-8000000000000', // base 32
|
|
'-5hg4ck9jd4u38', // base 33
|
|
'-3tdtk1v8j6tpq', // base 34
|
|
'-2pijmikexrxp8', // base 35
|
|
'-1y2p0ij32e8e8' // base 36
|
|
];
|
|
|
|
/**
|
|
* TODO(goktug): Replace with Number.MAX_SAFE_INTEGER when polyfil is guaranteed
|
|
* to be removed.
|
|
* @type {number}
|
|
* @private @const
|
|
*/
|
|
const MAX_SAFE_INTEGER_ = 0x1fffffffffffff;
|
|
|
|
// NOTE: the compiler should inline these constant values below and then remove
|
|
// these variables, so there should be no runtime penalty for these.
|
|
|
|
/**
|
|
* Number used repeated below in calculations. This must appear before the
|
|
* first call to any from* function above.
|
|
* @const {number}
|
|
* @private
|
|
*/
|
|
const TWO_PWR_32_DBL_ = 0x100000000;
|
|
|
|
|
|
/**
|
|
* @const {number}
|
|
* @private
|
|
*/
|
|
const TWO_PWR_63_DBL_ = 0x8000000000000000;
|
|
|
|
|
|
/**
|
|
* @private @const {!Long}
|
|
*/
|
|
const ZERO_ = Long.fromBits(0, 0);
|
|
|
|
|
|
/**
|
|
* @private @const {!Long}
|
|
*/
|
|
const ONE_ = Long.fromBits(1, 0);
|
|
|
|
/**
|
|
* @private @const {!Long}
|
|
*/
|
|
const NEG_ONE_ = Long.fromBits(-1, -1);
|
|
|
|
/**
|
|
* @private @const {!Long}
|
|
*/
|
|
const MAX_VALUE_ = Long.fromBits(0xFFFFFFFF, 0x7FFFFFFF);
|
|
|
|
/**
|
|
* @private @const {!Long}
|
|
*/
|
|
const MIN_VALUE_ = Long.fromBits(0, 0x80000000);
|
|
|
|
/**
|
|
* @private @const {!Long}
|
|
*/
|
|
const TWO_PWR_24_ = Long.fromBits(1 << 24, 0);
|
|
|
|
Long.ZERO = ZERO_
|
|
Long.ONE = ONE_ |