1
0
mirror of https://github.com/danog/psalm.git synced 2025-01-21 21:31:13 +01:00

Add section on template covariance

This commit is contained in:
Matthew Brown 2019-12-19 10:36:14 +00:00
parent ab03ac06f4
commit 7b6061efe3

View File

@ -269,6 +269,150 @@ class Baz extends Foo {
}
```
## Template covariance
Imagine you have code like this:
```php
class Animal {}
class Dog extends Animal {}
class Cat extends Animal {}
/**
* @template T
*/
class Collection {
/**
* @var array<int, T>
*/
public array $list;
/**
* @param array<int, T> $list
*/
public function __construct(array $list) {
$this->list = $list;
}
/**
* @param T $t
*/
public function add($t) : void {
$this->list[] = $t;
}
}
/**
* @param Collection<Animal> $collection
*/
function addAnimal(Collection $collection) : void {
$collection->add(new Cat());
}
/**
* @param Collection<Dog> $dog_collection
*/
function takesDogList(Collection $dog_collection) : void {
addAnimal($dog_collection);
}
```
That last call `addAnimal($doc_collection)` breaks the type of the collection suddenly a collection of dogs becomes a collection of dogs _or_ cats. That is bad.
To prevent this, Psalm emits an error when calling `addAnimal($dog_collection)` saying "addAnimal expects a `Collection<Animal>`, but `Collection<Dog>` was passed". If you haven't encountered this rule before it's probably confusing to you any function that accepted an `Animal` would be happy to accept a subtype thereof. But as we see in the example above, doing so can lead to problems.
But there are also times where it's perfectly safe to pass template param subtypes:
```php
abstract class Animal {
abstract public function getNoise() : string;
}
class Dog extends Animal {
public function getNoise() : string { return "woof"; }
}
class Cat extends Animal {
public function getNoise() : string { return "miaow"; }
}
/**
* @template T
*/
class Collection {
/** @var array<int, T> */
public array $list = [];
}
/**
* @param Collection<Animal> $collection
*/
function getNoises(Collection $collection) : void {
foreach ($collection->list as $animal) {
echo $animal->getNoise();
}
}
/**
* @param Collection<Dog> $dog_collection
*/
function takesDogList(Collection $dog_collection) : void {
getNoises($dog_collection);
}
```
Here we're not doing anything bad we're just iterating over an array of objects. But Psalm still gives that same basic error "getNoises expects a `Collection<Animal>`, but `Collection<Dog>` was passed".
We can tell Psalm that it's safe to pass subtypes for the templated param `T` by using the annotation `@template-covariant T`:
```php
/**
* @template-covariant T
*/
class Collection {
/** @var array<int, T> */
public array $list = [];
}
```
Doing this for the above example produces no errors: https://psalm.dev/r/5254af7a8b
But `@template-covariant` doesn't get rid of _all_ errors if you add it to the first example, you get a new error https://psalm.dev/r/0fcd699231 complaining that you're attempting to use a covaraint template parameter for function input. Thats no good, as it means you're likely altering the collection somehow (which is, again, a violation).
### But what about immutability?
Psalm has [comprehensive support for declaring functional immutability](https://psalm.dev/articles/immutability-and-beyond).
If we make sure that the class is immutable, we can declare a class with an `add` method that still takes a covariant param as input, but which does not modify the collection at all, instead returning a new one:
```php
/**
* @template-covariant T
* @psalm-immutable
*/
class Collection {
/**
* @var array<int, T>
*/
public array $list = [];
/**
* @param array<int, T> $list
*/
public function __construct(array $list) {
$this->list = $list;
}
/**
* @param T $t
* @return Collection<T>
*/
public function add($t) : Collection {
return new Collection(array_merge($this->list, [$t]));
}
}
```
This is perfectly valid, and Psalm won't complain.
## Builtin templated classes and interfaces
Psalm has support for a number of builtin classes and interfaces that you can extend/implement in your own code.