1
0
mirror of https://github.com/danog/strum.git synced 2024-11-27 04:24:37 +01:00
Go to file
2018-06-23 16:13:17 -07:00
strum Managing Cargo.toml is a bit tedious when deploying packages that depend on each other 2018-06-23 16:13:17 -07:00
strum_macros Did a little bit of refactoring and added some docs around AsStaticStr 2018-06-23 16:02:27 -07:00
strum_tests Did a little bit of refactoring and added some docs around AsStaticStr 2018-06-23 16:02:27 -07:00
.gitignore Implemented initial version of macros and code 2017-02-04 18:52:48 -08:00
.travis.yml Fixed the Travis script 2017-02-11 22:51:53 -08:00
appveyor.yml Added an Appveyor.yml and fixed small issues in the Cargo.toml 2017-02-25 08:48:20 -08:00
Cargo.toml Revised documentation and it reads better now. Started writing a test crate. 2017-02-11 22:44:40 -08:00
LICENSE Initial commit 2017-02-04 18:50:41 -08:00
README.md Did a little bit of refactoring and added some docs around AsStaticStr 2018-06-23 16:02:27 -07:00
travis.sh Revised documentation and it reads better now. Started writing a test crate. 2017-02-11 22:44:40 -08:00

Strum

Build Status Latest Version Rust Documentation

Strum is a set of macros and traits for working with enums and strings easier in Rust.

Including Strum in Your Project

Import strum and strum_macros into your project by adding the following lines to your Cargo.toml. Strum_macros contains the macros needed to derive all the traits in Strum.

[dependencies]
strum = "0.9.1"
strum_macros = "0.9.1"

And add these lines to the root of your project, either lib.rs or main.rs.

// Strum contains all the trait definitions
extern crate strum;
#[macro_use]
extern crate strum_macros;

Contributing

Thanks for your interest in contributing. The project is divided into 3 parts, the traits are in the /strum folder. The procedural macros are in the /strum_macros folder, and the integration tests are in /strum_tests. If you are adding additional features to strum or strum_macros, you should make sure to run the tests and add new integration tests to make sure the features work as expected.

Debugging

To see the generated code, set the STRUM_DEBUG environment variable before compiling your code. STRUM_DEBUG=1 will dump all of the generated code for every type. STRUM_DEBUG=YourType will only dump the code generated on a type named YourType.

Strum Macros

Strum has implemented the following macros:

  1. EnumString: auto-derives std::str::FromStr on the enum. Each variant of the enum will match on it's own name. This can be overridden using serialize="DifferentName" or to_string="DifferentName" on the attribute as shown below. Multiple deserializations can be added to the same variant. If the variant contains additional data, they will be set to their default values upon deserialization.

    The default attribute can be applied to a tuple variant with a single data parameter. When a match isn't found, the given variant will be returned and the input string will be captured in the parameter.

    Here is an example of the code generated by deriving EnumString.

    extern crate strum;
    #[macro_use] extern crate strum_macros;
    #[derive(EnumString)]
    enum Color {
        Red,
    
        // The Default value will be inserted into range if we match "Green".
        Green { range:usize },
    
        // We can match on multiple different patterns.
        #[strum(serialize="blue",serialize="b")]
        Blue(usize),
    
        // Notice that we can disable certain variants from being found
        #[strum(disabled="true")]
        Yellow,
    }
    
    /*
    //The generated code will look like:
    impl std::str::FromStr for Color {
        type Err = ::strum::ParseError;
    
        fn from_str(s: &str) -> ::std::result::Result<Color, Self::Err> {
            match s {
                "Red" => ::std::result::Result::Ok(Color::Red),
                "Green" => ::std::result::Result::Ok(Color::Green { range:Default::default() }),
                "blue" | "b" => ::std::result::Result::Ok(Color::Blue(Default::default())),
                _ => ::std::result::Result::Err(::strum::ParseError::VariantNotFound),
            }
        }
    }
    */
    

    Note that the implementation of FromStr only matches on the name of the variant. Strum, where possible, avoids operations that have an unknown runtime cost, and parsing strings is potentially an expensive operation. If you do need that behavior, consider the more powerful Serde library for your serialization.

  2. Display / ToString: prints out the given enum. This enables you to perform round trip style conversions from enum into string and back again for unit style variants. ToString and Display choose which serialization to used based on the following criteria:

    1. If there is a to_string property, this value will be used. There can only be one per variant.
    2. Of the various serialize properties, the value with the longest length is chosen. If that behavior isn't desired, you should use to_string.
    3. The name of the variant will be used if there are no serialize or to_string attributes.

    ToString exists for legacy reasons. You should prefer using Display. All types that implement std::fmt::Display have a default implementation of ToString.

    // You need to bring the type into scope to use it!!!
    use std::string::ToString;
    
    #[derive(ToString,Debug)]
    enum Color {
        #[strum(serialize="redred")]
        Red,
        Green { range:usize },
        Blue(usize),
        Yellow,
    }
    
    // It's simple to iterate over the variants of an enum.
    fn debug_colors() {
        let red = Color::Red;
        assert_eq!(String::from("redred"), red.to_string());
    }
    
    fn main() {
        debug_colors();
    }
    
  3. AsRefStr: this derive implements AsRef<str> on your enum using the same rules as ToString for determining what string is returned. The difference is that as_ref() returns a &str instead of a String so you don't allocate any additional memory with each call.

  4. AsStaticStr: this is similar to AsRefStr, but returns a 'static reference to a string which is helpful in some scenarios. This macro implements strum::AsStaticRef<str> which adds a method .to_static() that returns a &'static str.

    extern crate strum;
    #[macro_use] extern crate strum_macros;
    
    use strum::AsStaticRef;
    
    #[derive(AsStaticStr)]
    enum State<'a> {
        Initial(&'a str),
        Finished
    }
    
    fn print_state<'a>(s:&'a str) {
        let state = State::Initial(s);
        // The following won't work because the lifetime is incorrect so we can use.as_static() instead.
        // let wrong: &'static str = state.as_ref();
        let right: &'static str = state.as_static();
        println!("{}", right); 
    }
    
    fn main() {
        print_state(&"hello world".to_string())
    }
    
  5. EnumIter: iterate over the variants of an Enum. Any additional data on your variants will be set to Default::default(). The macro implements strum::IntoEnumIter on your enum and creates a new type called YourEnumIter that is the iterator object. You cannot derive EnumIter on any type with a lifetime bound (<'a>) because the iterator would surely create unbounded lifetimes.

    // You need to bring the type into scope to use it!!!
    use strum::IntoEnumIterator;
    
    #[derive(EnumIter,Debug)]
    enum Color {
        Red,
        Green { range:usize },
        Blue(usize),
        Yellow,
    }
    
    // It's simple to iterate over the variants of an enum.
    fn debug_colors() {
        for color in Color::iter() {
            println!("My favorite color is {:?}", color);
        }
    }
    
    fn main() {
        debug_colors();
    }
    
  6. EnumMessage: encode strings into the enum itself. This macro implements the strum::EnumMessage trait. EnumMessage looks for #[strum(message="...")] attributes on your variants. You can also provided a detailed_message="..." attribute to create a seperate more detailed message than the first.

    The generated code will look something like:

    // You need to bring the type into scope to use it!!!
    use strum::EnumMessage;
    
    #[derive(EnumMessage,Debug)]
    enum Color {
        #[strum(message="Red",detailed_message="This is very red")]
        Red,
        #[strum(message="Simply Green")]
        Green { range:usize },
        #[strum(serialize="b",serialize="blue")]
        Blue(usize),
    }
    
    /*
    // Generated code
    impl ::strum::EnumMessage for Color {
        fn get_message(&self) -> ::std::option::Option<&str> {
            match self {
                &Color::Red => ::std::option::Option::Some("Red"),
                &Color::Green {..} => ::std::option::Option::Some("Simply Green"),
                _ => None
            }
        }
    
        fn get_detailed_message(&self) -> ::std::option::Option<&str> {
            match self {
                &Color::Red => ::std::option::Option::Some("This is very red"),
                &Color::Green {..}=> ::std::option::Option::Some("Simply Green"),
                _ => None
            }
        }
    
        fn get_serializations(&self) -> &[&str] {
            match self {
                &Color::Red => {
                    static ARR: [&'static str; 1] = ["Red"];
                    &ARR
                },
                &Color::Green {..}=> {
                    static ARR: [&'static str; 1] = ["Green"];
                    &ARR
                },
                &Color::Blue (..) => {
                    static ARR: [&'static str; 2] = ["b", "blue"];
                    &ARR
                },
            }
        }
    }
    */
    
  7. EnumProperty: Enables the encoding of arbitary constants into enum variants. This method currently only supports adding additional string values. Other types of literals are still experimental in the rustc compiler. The generated code works by nesting match statements. The first match statement matches on the type of the enum, and the inner match statement matches on the name of the property requested. This design works well for enums with a small number of variants and properties, but scales linearly with the number of variants so may not be the best choice in all situations.

    Here's an example:

    # extern crate strum;
    # #[macro_use] extern crate strum_macros;
    # use std::fmt::Debug;
    // You need to bring the type into scope to use it!!!
    use strum::EnumProperty;
    
    #[derive(EnumProperty,Debug)]
    enum Color {
        #[strum(props(Red="255",Blue="255",Green="255"))]
        White,
        #[strum(props(Red="0",Blue="0",Green="0"))]
        Black,
        #[strum(props(Red="0",Blue="255",Green="0"))]
        Blue,
        #[strum(props(Red="255",Blue="0",Green="0"))]
        Red,
        #[strum(props(Red="0",Blue="0",Green="255"))]
        Green,
    }
    
    fn main() {
        let my_color = Color::Red;
        let display = format!("My color is {:?}. It's RGB is {},{},{}", my_color
                                               , my_color.get_str("Red").unwrap()
                                               , my_color.get_str("Green").unwrap()
                                               , my_color.get_str("Blue").unwrap());
    }
    

Additional Attributes

Strum supports several custom attributes to modify the generated code. Custom attributes are applied to a variant by adding #[strum(parameter="value")] to the variant.

  • serialize="...": Changes the text that FromStr() looks for when parsing a string. This attribute can be applied multiple times to an element and the enum variant will be parsed if any of them match.

  • to_string="...": Similar to serialize. This value will be included when using FromStr(). More importantly, this specifies what text to use when calling variant.to_string() with the ToString derivation, or when calling variant.as_ref() with AsRefStr.

  • default="true": Applied to a single variant of an enum. The variant must be a Tuple-like variant with a single piece of data that can be create from a &str i.e. T: From<&str>. The generated code will now return the variant with the input string captured as shown below instead of failing.

    // Replaces this:
    _ => Err(strum::ParseError::VariantNotFound)
    // With this in generated code:
    default => Ok(Variant(default.into()))
    

    The plugin will fail if the data doesn't implement From<&str>. You can only have one default on your enum.

  • disabled="true": removes variant from generated code.

  • message="..": Adds a message to enum variant. This is used in conjunction with the EnumMessage trait to associate a message with a variant. If detailed_message is not provided, then message will also be returned when get_detailed_message() is called.

  • detailed_message="..": Adds a more detailed message to a variant. If this value is omitted, then message will be used in it's place.

  • props(key="value"): Enables associating additional information with a given variant.

Examples

Using EnumMessage for quickly implementing Error

extern crate strum;
#[macro_use]
extern crate strum_macros;
use std::error::Error;
use std::fmt::*;
use strum::EnumMessage;

#[derive(Debug, EnumMessage)]
enum ServerError {
    #[strum(message="A network error occured")]
    #[strum(detailed_message="Try checking your connection.")]
    NetworkError,
    #[strum(message="User input error.")]
    #[strum(detailed_message="There was an error parsing user input. Please try again.")]
    InvalidUserInputError,
}

impl Display for ServerError {
    fn fmt(&self, f: &mut Formatter) -> Result {
        write!(f, "{}", self.get_message().unwrap())
    }
}

impl Error for ServerError {
    fn description(&self) -> &str {
        self.get_detailed_message().unwrap()
    }
}

Using EnumString to tokenize a series of inputs:

extern crate strum;
#[macro_use]
extern crate strum_macros;
use std::str::FromStr;

#[derive(Eq, PartialEq, Debug, EnumString)]
enum Tokens {
    #[strum(serialize="fn")]
    Function,
    #[strum(serialize="(")]
    OpenParen,
    #[strum(serialize=")")]
    CloseParen,
    #[strum(default="true")]
    Ident(String)
}

fn main() {
    let toks = ["fn", "hello_world", "(", ")"].iter()
                   .map(|tok| Tokens::from_str(tok).unwrap())
                   .collect::<Vec<_>>();

    assert_eq!(toks, vec![Tokens::Function,
                          Tokens::Ident(String::from("hello_world")),
                          Tokens::OpenParen,
                          Tokens::CloseParen]);
}

Name

Strum is short for STRing enUM because it's a library for augmenting enums with additional information through strings.

Strumming is also a very whimsical motion, much like writing Rust code.