1
0
mirror of https://github.com/danog/tgseclib.git synced 2024-12-12 09:09:50 +01:00
tgseclib/phpseclib/Math/BigInteger/Engines/PHP/Reductions/Montgomery.php

130 lines
4.6 KiB
PHP
Raw Normal View History

<?php
/**
* PHP Montgomery Modular Exponentiation Engine
*
* PHP version 5 and 7
*
* @category Math
* @package BigInteger
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
2019-12-18 14:00:20 +01:00
namespace tgseclib\Math\BigInteger\Engines\PHP\Reductions;
2019-12-18 14:00:20 +01:00
use tgseclib\Math\BigInteger\Engines\PHP\Montgomery as Progenitor;
/**
* PHP Montgomery Modular Exponentiation Engine
*
* @package PHP
* @author Jim Wigginton <terrafrost@php.net>
* @access public
*/
abstract class Montgomery extends Progenitor
{
/**
* Prepare a number for use in Montgomery Modular Reductions
*
* @param array $x
* @param array $n
* @param string $class
* @return array
*/
protected static function prepareReduce(array $x, array $n, $class)
{
$lhs = new $class();
$lhs->value = array_merge(self::array_repeat(0, count($n)), $x);
$rhs = new $class();
$rhs->value = $n;
list(, $temp) = $lhs->divide($rhs);
return $temp->value;
}
/**
* Montgomery Multiply
*
* Interleaves the montgomery reduction and long multiplication algorithms together as described in
* {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=13 HAC 14.36}
*
* @param array $x
* @param array $n
* @param string $class
* @return array
*/
protected static function reduce(array $x, array $n, $class)
{
static $cache = [
self::VARIABLE => [],
self::DATA => []
];
if (($key = array_search($n, $cache[self::VARIABLE])) === false) {
$key = count($cache[self::VARIABLE]);
$cache[self::VARIABLE][] = $x;
$cache[self::DATA][] = self::modInverse67108864($n, $class);
}
$k = count($n);
$result = [self::VALUE => $x];
for ($i = 0; $i < $k; ++$i) {
$temp = $result[self::VALUE][$i] * $cache[self::DATA][$key];
$temp = $temp - $class::BASE_FULL * ($class::BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31));
$temp = $class::regularMultiply([$temp], $n);
$temp = array_merge(self::array_repeat(0, $i), $temp);
$result = $class::addHelper($result[self::VALUE], false, $temp, false);
}
$result[self::VALUE] = array_slice($result[self::VALUE], $k);
if (self::compareHelper($result, false, $n, false) >= 0) {
$result = $class::subtractHelper($result[self::VALUE], false, $n, false);
}
return $result[self::VALUE];
}
/**
* Modular Inverse of a number mod 2**26 (eg. 67108864)
*
* Based off of the bnpInvDigit function implemented and justified in the following URL:
*
* {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js}
*
* The following URL provides more info:
*
* {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85}
*
* As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For
* instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields
* int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't
* auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that
* the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the
* maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to
* 40 bits, which only 64-bit floating points will support.
*
* Thanks to Pedro Gimeno Fortea for input!
*
* @param array $x
* @param string $class
* @return int
*/
protected static function modInverse67108864(array $x, $class) // 2**26 == 67,108,864
{
$x = -$x[0];
$result = $x & 0x3; // x**-1 mod 2**2
$result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4
$result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8
$result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16
$result = $class::BASE == 26 ?
fmod($result * (2 - fmod($x * $result, $class::BASE_FULL)), $class::BASE_FULL) : // x**-1 mod 2**26
($result * (2 - ($x * $result) % $class::BASE_FULL)) % $class::BASE_FULL;
return $result & $class::MAX_DIGIT;
}
}