1
0
mirror of https://github.com/danog/tgseclib.git synced 2024-11-27 12:44:38 +01:00

Merge remote-tracking branch 'origin/danog2'

This commit is contained in:
terrafrost 2016-09-23 10:20:07 -05:00
commit a862837a9a
2 changed files with 209 additions and 0 deletions

View File

@ -3703,4 +3703,177 @@ class BigInteger
// self::$base === 31
return ($x - ($x % $y)) / $y;
}
/**
* Calculates the nth root of a biginteger.
*
* Returns the nth root of a positive biginteger, where n defaults to 2
*
* Here's an example:
* <code>
* <?php
* $a = new \phpseclib\Math\BigInteger('625');
*
* $root = $a->root();
*
* echo $root->toString(); // outputs 25
* ?>
* </code>
*
* @param \phpseclib\Math\BigInteger $n
* @access public
* @return \phpseclib\Math\BigInteger
*
* @internal This function is based off of {@link http://mathforum.org/library/drmath/view/52605.html this page} and {@link http://stackoverflow.com/questions/11242920/calculating-nth-root-with-bcmath-in-php this stackoverflow question}.
*/
function root($n = null)
{
static $zero, $one, $two;
if (!isset($one)) {
$zero = new static(0);
$one = new static(1);
$two = new static(2);
}
if ($n === null) {
$n = $two;
}
if ($n->compare($one) == -1) {
return $zero;
} // we want positive exponents
if ($this->compare($one) == -1) {
return new static(0);
} // we want positive numbers
if ($this->compare($two) == -1) {
return $one;
} // n-th root of 1 or 2 is 1
$root = new static();
if (MATH_BIGINTEGER_MODE == self::MODE_GMP && function_exists('gmp_root')) {
$root->value = gmp_root($this->value, gmp_intval($n->value));
return $this->_normalize($root);
}
// g is our guess number
$g = $two;
// while (g^n < num) g=g*2
while ($g->pow($n)->compare($this) == -1) {
$g = $g->multiply($two);
}
// if (g^n==num) num is a power of 2, we're lucky, end of job
// == 0 bccomp(bcpow($g,$n), $n->value)==0
if ($g->pow($n)->equals($this)) {
$root = $g;
return $this->_normalize($root);
}
// if we're here num wasn't a power of 2 :(
$og = $g; // og means original guess and here is our upper bound
$g = $g->divide($two)[0]; // g is set to be our lower bound
$step = $og->subtract($g)->divide($two)[0]; // step is the half of upper bound - lower bound
$g = $g->add($step); // we start at lower bound + step , basically in the middle of our interval
// while step>1
while ($step->compare($one) == 1) {
$guess = $g->pow($n);
$step = $step->divide($two)[0];
$comp = $guess->compare($this); // compare our guess with real number
switch ($comp) {
case -1: // if guess is lower we add the new step
$g = $g->add($step);
break;
case 1: // if guess is higher we sub the new step
$g = $g->subtract($step);
break;
case 0: // if guess is exactly the num we're done, we return the value
$root = $g;
break 2;
}
}
if ($comp == 1) {
$g = $g->subtract($step);
}
// whatever happened, g is the closest guess we can make so return it
$root = $g;
return $this->_normalize($root);
}
/**
* Performs exponentiation.
*
* @param \phpseclib\Math\BigInteger $n
* @access public
* @return \phpseclib\Math\BigInteger
*/
function pow($n)
{
$zero = new static(0);
if ($n->compare($zero) == 0) {
return new static(1);
} // n^0 = 1
$res = new static();
switch (MATH_BIGINTEGER_MODE) {
case self::MODE_GMP:
$res->value = gmp_pow($this->value, gmp_intval($n->value));
return $this->_normalize($res);
case self::MODE_BCMATH:
$res->value = bcpow($this->value, $n->value);
return $this->_normalize($res);
default:
$one = new static(1);
$res = $this;
while (!$n->equals($one)) {
$res = $res->multiply($this);
$n = $n->subtract($one);
}
return $res;
}
}
/**
* Return the minimum BigInteger between an arbitrary number of BigIntegers.
*
* @param \phpseclib\Math\BigInteger ...$param
* @access public
* @return \phpseclib\Math\BigInteger
*/
static function min()
{
$args = func_get_args();
if (count($args) == 1) {
return $args[0];
}
$min = $args[0];
for ($i = 1; $i < count($args); $i++) {
$min = $min->compare($args[$i]) > 0 ? $args[$i] : $min;
}
return $min;
}
/**
* Return the maximum BigInteger between an arbitrary number of BigIntegers.
*
* @param \phpseclib\Math\BigInteger ...$param
* @access public
* @return \phpseclib\Math\BigInteger
*/
static function max()
{
$args = func_get_args();
if (count($args) == 1) {
return $args[0];
}
$max = $args[0];
for ($i = 1; $i < count($args); $i++) {
$max = $max->compare($args[$i]) < 0 ? $args[$i] : $max;
}
return $max;
}
}

View File

@ -380,4 +380,40 @@ abstract class Unit_Math_BigInteger_TestCase extends PhpseclibTestCase
$n = $this->getInstance(2);
$x->powMod($e, $n);
}
public function testRoot()
{
$bigInteger = new \phpseclib\Math\BigInteger('64000000'); // (20^2)^3
$three = new \phpseclib\Math\BigInteger('3');
$bigInteger = $bigInteger->root();
$this->assertSame('8000', (string) $bigInteger);
$bigInteger = $bigInteger->root($three);
$this->assertSame('20', (string) $bigInteger);
}
public function testPow()
{
$bigInteger = new \phpseclib\Math\BigInteger('20');
$two = new \phpseclib\Math\BigInteger('2');
$three = new \phpseclib\Math\BigInteger('3');
$bigInteger = $bigInteger->pow($two);
$this->assertSame('400', (string) $bigInteger);
$bigInteger = $bigInteger->pow($three);
$this->assertSame('64000000', (string) $bigInteger); // (20^2)^3
}
public function testMax()
{
$min = new \phpseclib\Math\BigInteger('20');
$max = new \phpseclib\Math\BigInteger('20000');
$this->assertSame((string) $max, (string) \phpseclib\Math\BigInteger::max($min, $max));
$this->assertSame((string) $max, (string) \phpseclib\Math\BigInteger::max($max, $min));
}
public function testMin()
{
$min = new \phpseclib\Math\BigInteger('20');
$max = new \phpseclib\Math\BigInteger('20000');
$this->assertSame((string) $min, (string) \phpseclib\Math\BigInteger::min($min, $max));
$this->assertSame((string) $min, (string) \phpseclib\Math\BigInteger::min($max, $min));
}
}