* @copyright 2015 Jim Wigginton * @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://phpseclib.sourceforge.net */ namespace tgseclib\Crypt\RSA; use tgseclib\Crypt\RSA; use tgseclib\Math\BigInteger; use tgseclib\File\ASN1; use tgseclib\Common\Functions\Strings; use tgseclib\Crypt\Hash; use tgseclib\Exceptions\NoKeyLoadedException; use tgseclib\Exception\UnsupportedFormatException; use tgseclib\Crypt\Random; use tgseclib\Crypt\Common; use tgseclib\Crypt\RSA\Formats\Keys\PSS; /** * Raw RSA Key Handler * * @package RSA * @author Jim Wigginton * @access public */ class PrivateKey extends RSA implements Common\PrivateKey { use Common\Traits\PasswordProtected; /** * Primes for Chinese Remainder Theorem (ie. p and q) * * @var array * @access private */ protected $primes; /** * Exponents for Chinese Remainder Theorem (ie. dP and dQ) * * @var array * @access private */ protected $exponents; /** * Coefficients for Chinese Remainder Theorem (ie. qInv) * * @var array * @access private */ protected $coefficients; /** * Public Exponent * * @var mixed * @access private */ protected $publicExponent = false; /** * RSADP * * See {@link http://tools.ietf.org/html/rfc3447#section-5.1.2 RFC3447#section-5.1.2}. * * @access private * @param \tgseclib\Math\BigInteger $c * @return bool|\tgseclib\Math\BigInteger */ private function rsadp($c) { if ($c->compare(self::$zero) < 0 || $c->compare($this->modulus) > 0) { return false; } return $this->exponentiate($c); } /** * RSASP1 * * See {@link http://tools.ietf.org/html/rfc3447#section-5.2.1 RFC3447#section-5.2.1}. * * @access private * @param \tgseclib\Math\BigInteger $m * @return bool|\tgseclib\Math\BigInteger */ private function rsasp1($m) { if ($m->compare(self::$zero) < 0 || $m->compare($this->modulus) > 0) { return false; } return $this->exponentiate($m); } /** * Exponentiate * * @param \tgseclib\Math\BigInteger $x * @return \tgseclib\Math\BigInteger */ protected function exponentiate(BigInteger $x) { switch (true) { case empty($this->primes): case $this->primes[1]->equals(self::$zero): case empty($this->coefficients): case $this->coefficients[2]->equals(self::$zero): case empty($this->exponents): case $this->exponents[1]->equals(self::$zero): return $x->modPow($this->exponent, $this->modulus); } $num_primes = count($this->primes); if (!static::$enableBlinding) { $m_i = [ 1 => $x->modPow($this->exponents[1], $this->primes[1]), 2 => $x->modPow($this->exponents[2], $this->primes[2]) ]; $h = $m_i[1]->subtract($m_i[2]); $h = $h->multiply($this->coefficients[2]); list(, $h) = $h->divide($this->primes[1]); $m = $m_i[2]->add($h->multiply($this->primes[2])); $r = $this->primes[1]; for ($i = 3; $i <= $num_primes; $i++) { $m_i = $x->modPow($this->exponents[$i], $this->primes[$i]); $r = $r->multiply($this->primes[$i - 1]); $h = $m_i->subtract($m); $h = $h->multiply($this->coefficients[$i]); list(, $h) = $h->divide($this->primes[$i]); $m = $m->add($r->multiply($h)); } } else { $smallest = $this->primes[1]; for ($i = 2; $i <= $num_primes; $i++) { if ($smallest->compare($this->primes[$i]) > 0) { $smallest = $this->primes[$i]; } } $r = BigInteger::randomRange(self::$one, $smallest->subtract(self::$one)); $m_i = [ 1 => $this->blind($x, $r, 1), 2 => $this->blind($x, $r, 2) ]; $h = $m_i[1]->subtract($m_i[2]); $h = $h->multiply($this->coefficients[2]); list(, $h) = $h->divide($this->primes[1]); $m = $m_i[2]->add($h->multiply($this->primes[2])); $r = $this->primes[1]; for ($i = 3; $i <= $num_primes; $i++) { $m_i = $this->blind($x, $r, $i); $r = $r->multiply($this->primes[$i - 1]); $h = $m_i->subtract($m); $h = $h->multiply($this->coefficients[$i]); list(, $h) = $h->divide($this->primes[$i]); $m = $m->add($r->multiply($h)); } } return $m; } /** * Performs RSA Blinding * * Protects against timing attacks by employing RSA Blinding. * Returns $x->modPow($this->exponents[$i], $this->primes[$i]) * * @access private * @param \tgseclib\Math\BigInteger $x * @param \tgseclib\Math\BigInteger $r * @param int $i * @return \tgseclib\Math\BigInteger */ private function blind($x, $r, $i) { $x = $x->multiply($r->modPow($this->publicExponent, $this->primes[$i])); $x = $x->modPow($this->exponents[$i], $this->primes[$i]); $r = $r->modInverse($this->primes[$i]); $x = $x->multiply($r); list(, $x) = $x->divide($this->primes[$i]); return $x; } /** * EMSA-PSS-ENCODE * * See {@link http://tools.ietf.org/html/rfc3447#section-9.1.1 RFC3447#section-9.1.1}. * * @return string * @access private * @param string $m * @throws \RuntimeException on encoding error * @param int $emBits */ private function emsa_pss_encode($m, $emBits) { // if $m is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. $emLen = ($emBits + 1) >> 3; // ie. ceil($emBits / 8) $sLen = $this->sLen !== null ? $this->sLen : $this->hLen; $mHash = $this->hash->hash($m); if ($emLen < $this->hLen + $sLen + 2) { return false; } $salt = Random::string($sLen); $m2 = "\0\0\0\0\0\0\0\0" . $mHash . $salt; $h = $this->hash->hash($m2); $ps = str_repeat(chr(0), $emLen - $sLen - $this->hLen - 2); $db = $ps . chr(1) . $salt; $dbMask = $this->mgf1($h, $emLen - $this->hLen - 1); $maskedDB = $db ^ $dbMask; $maskedDB[0] = ~chr(0xFF << ($emBits & 7)) & $maskedDB[0]; $em = $maskedDB . $h . chr(0xBC); return $em; } /** * RSASSA-PSS-SIGN * * See {@link http://tools.ietf.org/html/rfc3447#section-8.1.1 RFC3447#section-8.1.1}. * * @access private * @param string $m * @return bool|string */ private function rsassa_pss_sign($m) { // EMSA-PSS encoding $em = $this->emsa_pss_encode($m, 8 * $this->k - 1); // RSA signature $m = $this->os2ip($em); $s = $this->rsasp1($m); $s = $this->i2osp($s, $this->k); // Output the signature S return $s; } /** * RSASSA-PKCS1-V1_5-SIGN * * See {@link http://tools.ietf.org/html/rfc3447#section-8.2.1 RFC3447#section-8.2.1}. * * @access private * @param string $m * @throws \LengthException if the RSA modulus is too short * @return bool|string */ private function rsassa_pkcs1_v1_5_sign($m) { // EMSA-PKCS1-v1_5 encoding // If the encoding operation outputs "intended encoded message length too short," output "RSA modulus // too short" and stop. try { $em = $this->emsa_pkcs1_v1_5_encode($m, $this->k); } catch (\LengthException $e) { throw new \LengthException('RSA modulus too short'); } // RSA signature $m = $this->os2ip($em); $s = $this->rsasp1($m); $s = $this->i2osp($s, $this->k); // Output the signature S return $s; } /** * Create a signature * * @see self::verify() * @access public * @param string $message * @return string */ public function sign($message) { switch ($this->signaturePadding) { case self::SIGNATURE_PKCS1: case self::SIGNATURE_RELAXED_PKCS1: return $this->rsassa_pkcs1_v1_5_sign($message); //case self::SIGNATURE_PSS: default: return $this->rsassa_pss_sign($message); } } /** * RSAES-PKCS1-V1_5-DECRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.2.2 RFC3447#section-7.2.2}. * * For compatibility purposes, this function departs slightly from the description given in RFC3447. * The reason being that RFC2313#section-8.1 (PKCS#1 v1.5) states that ciphertext's encrypted by the * private key should have the second byte set to either 0 or 1 and that ciphertext's encrypted by the * public key should have the second byte set to 2. In RFC3447 (PKCS#1 v2.1), the second byte is supposed * to be 2 regardless of which key is used. For compatibility purposes, we'll just check to make sure the * second byte is 2 or less. If it is, we'll accept the decrypted string as valid. * * As a consequence of this, a private key encrypted ciphertext produced with \tgseclib\Crypt\RSA may not decrypt * with a strictly PKCS#1 v1.5 compliant RSA implementation. Public key encrypted ciphertext's should but * not private key encrypted ciphertext's. * * @access private * @param string $c * @return bool|string */ private function rsaes_pkcs1_v1_5_decrypt($c) { // Length checking if (strlen($c) != $this->k) { // or if k < 11 return false; } // RSA decryption $c = $this->os2ip($c); $m = $this->rsadp($c); $em = $this->i2osp($m, $this->k); if ($em === false) { return false; } // EME-PKCS1-v1_5 decoding if (ord($em[0]) != 0 || ord($em[1]) > 2) { return false; } $ps = substr($em, 2, strpos($em, chr(0), 2) - 2); $m = substr($em, strlen($ps) + 3); if (strlen($ps) < 8) { return false; } // Output M return $m; } /** * RSAES-OAEP-DECRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.1.2 RFC3447#section-7.1.2}. The fact that the error * messages aren't distinguishable from one another hinders debugging, but, to quote from RFC3447#section-7.1.2: * * Note. Care must be taken to ensure that an opponent cannot * distinguish the different error conditions in Step 3.g, whether by * error message or timing, or, more generally, learn partial * information about the encoded message EM. Otherwise an opponent may * be able to obtain useful information about the decryption of the * ciphertext C, leading to a chosen-ciphertext attack such as the one * observed by Manger [36]. * * @access private * @param string $c * @return bool|string */ private function rsaes_oaep_decrypt($c) { // Length checking // if $l is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. if (strlen($c) != $this->k || $this->k < 2 * $this->hLen + 2) { return false; } // RSA decryption $c = $this->os2ip($c); $m = $this->rsadp($c); $em = $this->i2osp($m, $this->k); if ($em === false) { return false; } // EME-OAEP decoding $lHash = $this->hash->hash($this->label); $y = ord($em[0]); $maskedSeed = substr($em, 1, $this->hLen); $maskedDB = substr($em, $this->hLen + 1); $seedMask = $this->mgf1($maskedDB, $this->hLen); $seed = $maskedSeed ^ $seedMask; $dbMask = $this->mgf1($seed, $this->k - $this->hLen - 1); $db = $maskedDB ^ $dbMask; $lHash2 = substr($db, 0, $this->hLen); $m = substr($db, $this->hLen); $hashesMatch = hash_equals($lHash, $lHash2); $leadingZeros = 1; $patternMatch = 0; $offset = 0; for ($i = 0; $i < strlen($m); $i++) { $patternMatch|= $leadingZeros & ($m[$i] === "\1"); $leadingZeros&= $m[$i] === "\0"; $offset+= $patternMatch ? 0 : 1; } // we do & instead of && to avoid https://en.wikipedia.org/wiki/Short-circuit_evaluation // to protect against timing attacks if (!$hashesMatch & !$patternMatch) { return false; } // Output the message M return substr($m, $offset + 1); } /** * Raw Encryption / Decryption * * Doesn't use padding and is not recommended. * * @access private * @param string $m * @return bool|string * @throws \LengthException if strlen($m) > $this->k */ private function raw_encrypt($m) { if (strlen($m) > $this->k) { throw new \LengthException('Message too long'); } $temp = $this->os2ip($m); $temp = $this->rsadp($temp); return $this->i2osp($temp, $this->k); } /** * Decryption * * @see self::encrypt() * @access public * @param string $ciphertext * @param int $padding optional * @return bool|string */ public function decrypt($ciphertext) { switch ($this->encryptionPadding) { case self::ENCRYPTION_NONE: return $this->raw_encrypt($ciphertext); case self::ENCRYPTION_PKCS1: return $this->rsaes_pkcs1_v1_5_decrypt($ciphertext); //case self::ENCRYPTION_OAEP: default: return $this->rsaes_oaep_decrypt($ciphertext); } } /** * Returns the public key * * @access public * @param string $type optional * @return mixed */ public function getPublicKey() { $type = self::validatePlugin('Keys', 'PKCS8', 'savePublicKey'); if (empty($this->modulus) || empty($this->publicExponent)) { return false; } $key = $type::savePublicKey($this->modulus, $this->publicExponent); return RSA::loadFormat('PKCS8', $key) ->withHash($this->hash->getHash()) ->withMGFHash($this->mgfHash->getHash()) ->withSaltLength($this->sLen) ->withLabel($this->label) ->withPadding($this->signaturePadding | $this->encryptionPadding); } /** * Returns the private key * * @param string $type * @param array $options optional * @return string */ public function toString($type, array $options = []) { $type = self::validatePlugin( 'Keys', $type, empty($this->primes) ? 'savePublicKey' : 'savePrivateKey' ); if ($type == PSS::class) { if ($this->signaturePadding == self::SIGNATURE_PSS) { $options+= [ 'hash' => $this->hash->getHash(), 'MGFHash' => $this->mgfHash->getHash(), 'saltLength' => $this->sLen ]; } else { throw new UnsupportedFormatException('The PSS format can only be used when the signature method has been explicitly set to PSS'); } } if (empty($this->primes)) { return $type::savePublicKey($this->modulus, $this->exponent, $options); } return $type::savePrivateKey($this->modulus, $this->publicExponent, $this->exponent, $this->primes, $this->exponents, $this->coefficients, $this->password, $options); /* $key = $type::savePrivateKey($this->modulus, $this->publicExponent, $this->exponent, $this->primes, $this->exponents, $this->coefficients, $this->password, $options); if ($key !== false || count($this->primes) == 2) { return $key; } $nSize = $this->getSize() >> 1; $primes = [1 => clone self::$one, clone self::$one]; $i = 1; foreach ($this->primes as $prime) { $primes[$i] = $primes[$i]->multiply($prime); if ($primes[$i]->getLength() >= $nSize) { $i++; } } $exponents = []; $coefficients = [2 => $primes[2]->modInverse($primes[1])]; foreach ($primes as $i => $prime) { $temp = $prime->subtract(self::$one); $exponents[$i] = $this->modulus->modInverse($temp); } return $type::savePrivateKey($this->modulus, $this->publicExponent, $this->exponent, $primes, $exponents, $coefficients, $this->password, $options); */ } }