* @copyright 2017 Jim Wigginton * @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://pear.php.net/package/Math_BigInteger */ namespace tgseclib\Math\BigInteger\Engines; use ParagonIE\ConstantTime\Hex; use tgseclib\Exception\BadConfigurationException; use tgseclib\Crypt\Random; use tgseclib\Math\BigInteger; use tgseclib\Common\Functions\Strings; /** * Base Engine. * * @package Engine * @author Jim Wigginton * @access public */ abstract class Engine implements \Serializable { /** * Holds the BigInteger's value * * @var mixed */ protected $value; /** * Holds the BigInteger's sign * * @var bool */ protected $is_negative; /** * Precision * * @see static::setPrecision() */ protected $precision = -1; /** * Precision Bitmask * * @see static::setPrecision() */ protected $bitmask = false; /** * Recurring Modulo Function * * @var callable */ protected $reduce; /** * Default constructor * * @param mixed $x integer Base-10 number or base-$base number if $base set. * @param int $base */ public function __construct($x, $base) { if (!isset(static::$primes)) { static::$primes = [ 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 ]; static::$zero = new static(0); static::$one = new static(1); static::$two = new static(2); } // '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48 // '0' is the only value like this per http://php.net/empty if (empty($x) && (abs($base) != 256 || $x !== '0')) { return; } switch ($base) { case -256: case 256: if ($base == -256 && (ord($x[0]) & 0x80)) { $this->value = ~$x; $this->is_negative = true; } else { $this->value = $x; $this->is_negative = false; } static::initialize($base); if ($this->is_negative) { $temp = $this->add(new static('-1')); $this->value = $temp->value; } break; case -16: case 16: if ($base > 0 && $x[0] == '-') { $this->is_negative = true; $x = substr($x, 1); } $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x); $is_negative = false; if ($base < 0 && hexdec($x[0]) >= 8) { $this->is_negative = $is_negative = true; $x = Hex::encode(~Hex::decode($x)); } $this->value = $x; static::initialize($base); if ($is_negative) { $temp = $this->add(new static('-1')); $this->value = $temp->value; } break; case -10: case 10: // (?value = preg_replace('#(?value) || $this->value == '-') { $this->value = '0'; } static::initialize($base); break; case -2: case 2: if ($base > 0 && $x[0] == '-') { $this->is_negative = true; $x = substr($x, 1); } $x = preg_replace('#^([01]*).*#', '$1', $x); $temp = new static(Strings::bits2bin($x), 128 * $base); // ie. either -16 or +16 $this->value = $temp->value; if ($temp->is_negative) { $this->is_negative = true; } break; default: // base not supported, so we'll let $this == 0 } } /** * Sets engine type. * * Throws an exception if the type is invalid * * @param string $engine */ public static function setModExpEngine($engine) { $fqengine = '\\tgseclib\\Math\\BigInteger\\Engines\\' . static::ENGINE_DIR . '\\' . $engine; if (!class_exists($fqengine) || !method_exists($fqengine, 'isValidEngine')) { throw new \InvalidArgumentException("$engine is not a valid engine"); } if (!$fqengine::isValidEngine()) { throw new BadConfigurationException("$engine is not setup correctly on this system"); } static::$modexpEngine = $fqengine; } /** * Converts a BigInteger to a byte string (eg. base-256). * * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're * saved as two's compliment. * @return string */ protected function toBytesHelper() { $comparison = $this->compare(new static()); if ($comparison == 0) { return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : ''; } $temp = $comparison < 0 ? $this->add(new static(1)) : $this; $bytes = $temp->toBytes(); if (!strlen($bytes)) { // eg. if the number we're trying to convert is -1 $bytes = chr(0); } if (ord($bytes[0]) & 0x80) { $bytes = chr(0) . $bytes; } return $comparison < 0 ? ~$bytes : $bytes; } /** * Converts a BigInteger to a hex string (eg. base-16). * * @param bool $twos_compliment * @return string */ public function toHex($twos_compliment = false) { return Hex::encode($this->toBytes($twos_compliment)); } /** * Converts a BigInteger to a bit string (eg. base-2). * * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're * saved as two's compliment. * * @param bool $twos_compliment * @return string */ public function toBits($twos_compliment = false) { $hex = $this->toBytes($twos_compliment); $bits = Strings::bin2bits($hex); $result = $this->precision > 0 ? substr($bits, -$this->precision) : ltrim($bits, '0'); if ($twos_compliment && $this->compare(new static()) > 0 && $this->precision <= 0) { return '0' . $result; } return $result; } /** * Calculates modular inverses. * * Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. * * @param \tgseclib\Math\BigInteger\Engines\Engine $n * @return \tgseclib\Math\BigInteger\Engines\Engine|false * @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for more information. */ protected function modInverseHelper(Engine $n) { // $x mod -$n == $x mod $n. $n = $n->abs(); if ($this->compare(static::$zero) < 0) { $temp = $this->abs(); $temp = $temp->modInverse($n); return $this->normalize($n->subtract($temp)); } extract($this->extendedGCD($n)); /** * @var BigInteger $gcd * @var BigInteger $x */ if (!$gcd->equals(static::$one)) { return false; } $x = $x->compare(static::$zero) < 0 ? $x->add($n) : $x; return $this->compare(static::$zero) < 0 ? $this->normalize($n->subtract($x)) : $this->normalize($x); } /** * Serialize * * Will be called, automatically, when serialize() is called on a BigInteger object. * * @return string */ public function serialize() { $val = ['hex' => $this->toHex(true)]; if ($this->precision > 0) { $val['precision'] = $this->precision; } return serialize($val); } /** * Serialize * * Will be called, automatically, when unserialize() is called on a BigInteger object. * * @param string $serialized */ public function unserialize($serialized) { $r = unserialize($serialized); $temp = new static($r['hex'], -16); $this->value = $temp->value; $this->is_negative = $temp->is_negative; if (isset($r['precision'])) { // recalculate $this->bitmask $this->setPrecision($r['precision']); } } /** * Converts a BigInteger to a base-10 number. * * @return string */ public function __toString() { return $this->toString(); } /** * __debugInfo() magic method * * Will be called, automatically, when print_r() or var_dump() are called */ public function __debugInfo() { return [ 'value' => '0x' . $this->toHex(true), 'engine' => basename(static::class) ]; } /** * Set Precision * * Some bitwise operations give different results depending on the precision being used. Examples include left * shift, not, and rotates. * * @param int $bits */ public function setPrecision($bits) { if ($bits < 1) { $this->precision = -1; $this->bitmask = false; return; } $this->precision = $bits; $this->bitmask = static::setBitmask($bits); $temp = $this->normalize($this); $this->value = $temp->value; } /** * Get Precision * * Returns the precision if it exists, -1 if it doesn't * * @return int */ public function getPrecision() { return $this->precision; } /** * Set Bitmask * @return Engine * @param int $bits * @see self::setPrecision() */ protected static function setBitmask($bits) { return new static(chr((1 << ($bits & 0x7)) - 1) . str_repeat(chr(0xFF), $bits >> 3), 256); } /** * Logical Not * * @return Engine|string */ public function bitwise_not() { // calculuate "not" without regard to $this->precision // (will always result in a smaller number. ie. ~1 isn't 1111 1110 - it's 0) $temp = $this->toBytes(); if ($temp == '') { return $this->normalize(static::$zero); } $pre_msb = decbin(ord($temp[0])); $temp = ~$temp; $msb = decbin(ord($temp[0])); if (strlen($msb) == 8) { $msb = substr($msb, strpos($msb, '0')); } $temp[0] = chr(bindec($msb)); // see if we need to add extra leading 1's $current_bits = strlen($pre_msb) + 8 * strlen($temp) - 8; $new_bits = $this->precision - $current_bits; if ($new_bits <= 0) { return $this->normalize(new static($temp, 256)); } // generate as many leading 1's as we need to. $leading_ones = chr((1 << ($new_bits & 0x7)) - 1) . str_repeat(chr(0xFF), $new_bits >> 3); self::base256_lshift($leading_ones, $current_bits); $temp = str_pad($temp, strlen($leading_ones), chr(0), STR_PAD_LEFT); return $this->normalize(new static($leading_ones | $temp, 256)); } /** * Logical Left Shift * * Shifts binary strings $shift bits, essentially multiplying by 2**$shift. * * @param $x String * @param $shift Integer * @return string */ protected static function base256_lshift(&$x, $shift) { if ($shift == 0) { return; } $num_bytes = $shift >> 3; // eg. floor($shift/8) $shift &= 7; // eg. $shift % 8 $carry = 0; for ($i = strlen($x) - 1; $i >= 0; --$i) { $temp = ord($x[$i]) << $shift | $carry; $x[$i] = chr($temp); $carry = $temp >> 8; } $carry = ($carry != 0) ? chr($carry) : ''; $x = $carry . $x . str_repeat(chr(0), $num_bytes); } /** * Logical Left Rotate * * Instead of the top x bits being dropped they're appended to the shifted bit string. * * @param int $shift * @return \tgseclib\Math\BigInteger\Engines\Engine */ public function bitwise_leftRotate($shift) { $bits = $this->toBytes(); if ($this->precision > 0) { $precision = $this->precision; if (static::FAST_BITWISE) { $mask = $this->bitmask->toBytes(); } else { $mask = $this->bitmask->subtract(new static(1)); $mask = $mask->toBytes(); } } else { $temp = ord($bits[0]); for ($i = 0; $temp >> $i; ++$i) { } $precision = 8 * strlen($bits) - 8 + $i; $mask = chr((1 << ($precision & 0x7)) - 1) . str_repeat(chr(0xFF), $precision >> 3); } if ($shift < 0) { $shift+= $precision; } $shift%= $precision; if (!$shift) { return clone $this; } $left = $this->bitwise_leftShift($shift); $left = $left->bitwise_and(new static($mask, 256)); $right = $this->bitwise_rightShift($precision - $shift); $result = static::FAST_BITWISE ? $left->bitwise_or($right) : $left->add($right); return $this->normalize($result); } /** * Logical Right Rotate * * Instead of the bottom x bits being dropped they're prepended to the shifted bit string. * * @param int $shift * @return \tgseclib\Math\BigInteger\Engines\Engine */ public function bitwise_rightRotate($shift) { return $this->bitwise_leftRotate(-$shift); } /** * Returns the smallest and largest n-bit number * * @param int $bits * @return \tgseclib\Math\BigInteger\Engines\Engine[] */ public static function minMaxBits($bits) { $bytes = $bits >> 3; $min = str_repeat(chr(0), $bytes); $max = str_repeat(chr(0xFF), $bytes); $msb = $bits & 7; if ($msb) { $min = chr(1 << ($msb - 1)) . $min; $max = chr((1 << $msb) - 1) . $max; } else { $min[0] = chr(0x80); } return [ 'min' => new static($min, 256), 'max' => new static($max, 256) ]; } /** * Return the size of a BigInteger in bits * * @return int */ public function getLength() { return strlen($this->toBits()); } /** * Return the size of a BigInteger in bytes * * @return int */ public function getLengthInBytes() { return strlen($this->toBytes()); } /** * Performs some pre-processing for powMod * * @param Engine $e * @param Engine $n * @return bool|Engine */ protected function powModOuter(Engine $e, Engine $n) { $n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? $this->bitmask : $n->abs(); if ($e->compare(new static()) < 0) { $e = $e->abs(); $temp = $this->modInverse($n); if ($temp === false) { return false; } return $this->normalize($temp->powModInner($e, $n)); } return $this->powModInner($e, $n); } /** * Sliding Window k-ary Modular Exponentiation * * Based on {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} / * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}. In a departure from those algorithims, * however, this function performs a modular reduction after every multiplication and squaring operation. * As such, this function has the same preconditions that the reductions being used do. * * @param \tgseclib\Math\BigInteger\Engines\Engine $x * @param \tgseclib\Math\BigInteger\Engines\Engine $e * @param \tgseclib\Math\BigInteger\Engines\Engine $n * @param string $class * @return \tgseclib\Math\BigInteger\Engines\Engine */ protected static function slidingWindow(Engine $x, Engine $e, Engine $n, $class) { static $window_ranges = [7, 25, 81, 241, 673, 1793]; // from BigInteger.java's oddModPow function //static $window_ranges = [0, 7, 36, 140, 450, 1303, 3529]; // from MPM 7.3.1 $e_bits = $e->toBits(); $e_length = strlen($e_bits); // calculate the appropriate window size. // $window_size == 3 if $window_ranges is between 25 and 81, for example. for ($i = 0, $window_size = 1; $i < count($window_ranges) && $e_length > $window_ranges[$i]; ++$window_size, ++$i) { } $n_value = $n->value; if (method_exists(static::class, 'generateCustomReduction')) { static::generateCustomReduction($n, $class); } // precompute $this^0 through $this^$window_size $powers = []; $powers[1] = static::prepareReduce($x->value, $n_value, $class); $powers[2] = static::squareReduce($powers[1], $n_value, $class); // we do every other number since substr($e_bits, $i, $j+1) (see below) is supposed to end // in a 1. ie. it's supposed to be odd. $temp = 1 << ($window_size - 1); for ($i = 1; $i < $temp; ++$i) { $i2 = $i << 1; $powers[$i2 + 1] = static::multiplyReduce($powers[$i2 - 1], $powers[2], $n_value, $class); } $result = new $class(1); $result = static::prepareReduce($result->value, $n_value, $class); for ($i = 0; $i < $e_length;) { if (!$e_bits[$i]) { $result = static::squareReduce($result, $n_value, $class); ++$i; } else { for ($j = $window_size - 1; $j > 0; --$j) { if (!empty($e_bits[$i + $j])) { break; } } // eg. the length of substr($e_bits, $i, $j + 1) for ($k = 0; $k <= $j; ++$k) { $result = static::squareReduce($result, $n_value, $class); } $result = static::multiplyReduce($result, $powers[bindec(substr($e_bits, $i, $j + 1))], $n_value, $class); $i += $j + 1; } } $temp = new $class(); $temp->value = static::reduce($result, $n_value, $class); return $temp; } /** * Generates a random number of a certain size * * Bit length is equal to $size * * @param int $size * @return \tgseclib\Math\BigInteger\Engines\Engine */ public static function random($size) { extract(static::minMaxBits($size)); /** * @var BigInteger $min * @var BigInteger $max */ return static::randomRange($min, $max); } /** * Generates a random prime number of a certain size * * Bit length is equal to $size * * @param int $size * @return \tgseclib\Math\BigInteger\Engines\Engine */ public static function randomPrime($size) { extract(static::minMaxBits($size)); /** * @var BigInteger $min * @var BigInteger $max */ return static::randomRangePrime($min, $max); } /** * Performs some pre-processing for randomRangePrime * * @param Engine $min * @param Engine $max * @return bool|Engine */ protected static function randomRangePrimeOuter(Engine $min, Engine $max) { $compare = $max->compare($min); if (!$compare) { return $min->isPrime() ? $min : false; } elseif ($compare < 0) { // if $min is bigger then $max, swap $min and $max $temp = $max; $max = $min; $min = $temp; } $x = static::randomRange($min, $max); return static::randomRangePrimeInner($x, $min, $max); } /** * Generate a random number between a range * * Returns a random number between $min and $max where $min and $max * can be defined using one of the two methods: * * BigInteger::randomRange($min, $max) * BigInteger::randomRange($max, $min) * * @param Engine $min * @param Engine $max * @return Engine */ protected static function randomRangeHelper(Engine $min, Engine $max) { $compare = $max->compare($min); if (!$compare) { return $min; } elseif ($compare < 0) { // if $min is bigger then $max, swap $min and $max $temp = $max; $max = $min; $min = $temp; } if (!isset(static::$one)) { static::$one = new static(1); } $max = $max->subtract($min->subtract(static::$one)); $size = strlen(ltrim($max->toBytes(), chr(0))); /* doing $random % $max doesn't work because some numbers will be more likely to occur than others. eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145 would produce 5 whereas the only value of random that could produce 139 would be 139. ie. not all numbers would be equally likely. some would be more likely than others. creating a whole new random number until you find one that is within the range doesn't work because, for sufficiently small ranges, the likelihood that you'd get a number within that range would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability would be pretty high that $random would be greater than $max. phpseclib works around this using the technique described here: http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string */ $random_max = new static(chr(1) . str_repeat("\0", $size), 256); $random = new static(Random::string($size), 256); list($max_multiple) = $random_max->divide($max); $max_multiple = $max_multiple->multiply($max); while ($random->compare($max_multiple) >= 0) { $random = $random->subtract($max_multiple); $random_max = $random_max->subtract($max_multiple); $random = $random->bitwise_leftShift(8); $random = $random->add(new static(Random::string(1), 256)); $random_max = $random_max->bitwise_leftShift(8); list($max_multiple) = $random_max->divide($max); $max_multiple = $max_multiple->multiply($max); } list(, $random) = $random->divide($max); return $random->add($min); } /** * Performs some post-processing for randomRangePrime * * @param Engine $x * @param Engine $min * @param Engine $max * @return bool|Engine */ protected static function randomRangePrimeInner(Engine $x, Engine $min, Engine $max) { if (!isset(static::$two)) { static::$two = new static('2'); } $x->make_odd(); if ($x->compare($max) > 0) { // if $x > $max then $max is even and if $min == $max then no prime number exists between the specified range if ($min->equals($max)) { return false; } $x = clone $min; $x->make_odd(); } $initial_x = clone $x; while (true) { if ($x->isPrime()) { return $x; } $x = $x->add(static::$two); if ($x->compare($max) > 0) { $x = clone $min; if ($x->equals(static::$two)) { return $x; } $x->make_odd(); } if ($x->equals($initial_x)) { return false; } } } /** * Sets the $t parameter for primality testing * * @return int */ protected function setupIsPrime() { $length = $this->getLengthInBytes(); // see HAC 4.49 "Note (controlling the error probability)" // @codingStandardsIgnoreStart if ($length >= 163) { $t = 2; } // floor(1300 / 8) else if ($length >= 106) { $t = 3; } // floor( 850 / 8) else if ($length >= 81 ) { $t = 4; } // floor( 650 / 8) else if ($length >= 68 ) { $t = 5; } // floor( 550 / 8) else if ($length >= 56 ) { $t = 6; } // floor( 450 / 8) else if ($length >= 50 ) { $t = 7; } // floor( 400 / 8) else if ($length >= 43 ) { $t = 8; } // floor( 350 / 8) else if ($length >= 37 ) { $t = 9; } // floor( 300 / 8) else if ($length >= 31 ) { $t = 12; } // floor( 250 / 8) else if ($length >= 25 ) { $t = 15; } // floor( 200 / 8) else if ($length >= 18 ) { $t = 18; } // floor( 150 / 8) else { $t = 27; } // @codingStandardsIgnoreEnd return $t; } /** * Tests Primality * * Uses the {@link http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test Miller-Rabin primality test}. * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=8 HAC 4.24} for more info. * * @param int $t * @return bool */ protected function testPrimality($t) { if (!$this->testSmallPrimes()) { return false; } $n = clone $this; $n_1 = $n->subtract(static::$one); $n_2 = $n->subtract(static::$two); $r = clone $n_1; $s = static::scan1divide($r); for ($i = 0; $i < $t; ++$i) { $a = static::randomRange(static::$two, $n_2); $y = $a->modPow($r, $n); if (!$y->equals(static::$one) && !$y->equals($n_1)) { for ($j = 1; $j < $s && !$y->equals($n_1); ++$j) { $y = $y->modPow(static::$two, $n); if ($y->equals(static::$one)) { return false; } } if (!$y->equals($n_1)) { return false; } } } return true; } /** * Checks a numer to see if it's prime * * Assuming the $t parameter is not set, this function has an error rate of 2**-80. The main motivation for the * $t parameter is distributability. BigInteger::randomPrime() can be distributed across multiple pageloads * on a website instead of just one. * * @param int|bool $t * @return bool */ public function isPrime($t = false) { if (!$t) { $t = $this->setupIsPrime(); } return $this->testPrimality($t); } /** * Performs a few preliminary checks on root * * @param int $n * @return \tgseclib\Math\BigInteger\Engines\Engine */ protected function rootHelper($n) { if ($n < 1) { return clone static::$zero; } // we want positive exponents if ($this->compare(static::$one) < 0) { return clone static::$zero; } // we want positive numbers if ($this->compare(static::$two) < 0) { return clone static::$one; } // n-th root of 1 or 2 is 1 return $this->rootInner($n); } /** * Calculates the nth root of a biginteger. * * Returns the nth root of a positive biginteger, where n defaults to 2 * * @param int $n * @return \tgseclib\Math\BigInteger\Engines\Engine * @internal This function is based off of {@link http://mathforum.org/library/drmath/view/52605.html this page} and {@link http://stackoverflow.com/questions/11242920/calculating-nth-root-with-bcmath-in-php this stackoverflow question}. */ protected function rootInner($n) { $n = new static($n); // g is our guess number $g = static::$two; // while (g^n < num) g=g*2 while ($g->pow($n)->compare($this) < 0) { $g = $g->multiply(static::$two); } // if (g^n==num) num is a power of 2, we're lucky, end of job // == 0 bccomp(bcpow($g, $n), $n->value)==0 if ($g->pow($n)->equals($this) > 0) { $root = $g; return $this->normalize($root); } // if we're here num wasn't a power of 2 :( $og = $g; // og means original guess and here is our upper bound $g = $g->divide(static::$two)[0]; // g is set to be our lower bound $step = $og->subtract($g)->divide(static::$two)[0]; // step is the half of upper bound - lower bound $g = $g->add($step); // we start at lower bound + step , basically in the middle of our interval // while step>1 while ($step->compare(static::$one) == 1) { $guess = $g->pow($n); $step = $step->divide(static::$two)[0]; $comp = $guess->compare($this); // compare our guess with real number switch ($comp) { case -1: // if guess is lower we add the new step $g = $g->add($step); break; case 1: // if guess is higher we sub the new step $g = $g->subtract($step); break; case 0: // if guess is exactly the num we're done, we return the value $root = $g; break 2; } } if ($comp == 1) { $g = $g->subtract($step); } // whatever happened, g is the closest guess we can make so return it $root = $g; return $this->normalize($root); } /** * Calculates the nth root of a biginteger. * * @param int $n * @return Engine */ public function root($n = 2) { return $this->rootHelper($n); } /** * Return the minimum BigInteger between an arbitrary number of BigIntegers. * * @param array $nums * @return Engine */ protected static function minHelper(array $nums) { if (count($nums) == 1) { return $nums[0]; } $min = $nums[0]; for ($i = 1; $i < count($nums); $i++) { $min = $min->compare($nums[$i]) > 0 ? $nums[$i] : $min; } return $min; } /** * Return the minimum BigInteger between an arbitrary number of BigIntegers. * * @param array $nums * @return Engine */ protected static function maxHelper(array $nums) { if (count($nums) == 1) { return $nums[0]; } $max = $nums[0]; for ($i = 1; $i < count($nums); $i++) { $max = $max->compare($nums[$i]) < 0 ? $nums[$i] : $max; } return $max; } /** * Create Recurring Modulo Function * * Sometimes it may be desirable to do repeated modulos with the same number outside of * modular exponentiation * * @return callable */ public function createRecurringModuloFunction() { $class = static::class; $fqengine = !method_exists(static::$modexpEngine, 'reduce') ? '\\tgseclib\\Math\\BigInteger\\Engines\\' . static::ENGINE_DIR . '\\DefaultEngine' : static::$modexpEngine; if (method_exists($fqengine, 'generateCustomReduction')) { $func = $fqengine::generateCustomReduction($this, static::class); $this->reduce = eval('return function(' . static::class . ' $x) use ($func, $class) { $r = new $class(); $r->value = $func($x->value); return $r; };'); return clone $this->reduce; } $n = $this->value; $this->reduce = eval('return function(' . static::class . ' $x) use ($n, $fqengine, $class) { $r = new $class(); $r->value = $fqengine::reduce($x->value, $n, $class); return $r; };'); return clone $this->reduce; } /** * Calculates the greatest common divisor and Bezout's identity. * * @param Engine $n * @return Engine */ protected function extendedGCDHelper(Engine $n, Engine $stop = null) { $u = clone $this; $v = clone $n; $one = new static(1); $zero = new static(); $a = clone $one; $b = clone $zero; $c = clone $zero; $d = clone $one; while (!$v->equals($zero)) { list($q) = $u->divide($v); $temp = $u; $u = $v; $v = $temp->subtract($v->multiply($q)); $temp = $a; $a = $c; $c = $temp->subtract($a->multiply($q)); $temp = $b; $b = $d; $d = $temp->subtract($b->multiply($q)); } return [ 'gcd'=> $u, 'x' => $a, 'y' => $b ]; } /** * Bitwise Split * * Splits BigInteger's into chunks of $split bits * * @param int $split * @return \tgseclib\Math\BigInteger\Engine[] */ public function bitwise_split($split) { if ($split < 1) { throw new \RuntimeException('Offset must be greater than 1'); } $mask = static::$one->bitwise_leftShift($split)->subtract(static::$one); $num = clone $this; $vals = []; while (!$num->equals(static::$zero)) { $vals[] = $num->bitwise_and($mask); $num = $num->bitwise_rightShift($split); } return array_reverse($vals); } /** * Logical And * * @param Engine $x * @return Engine */ protected function bitwiseAndHelper(Engine $x) { $left = $this->toBytes(true); $right = $x->toBytes(true); $length = max(strlen($left), strlen($right)); $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); return $this->normalize(new static($left & $right, -256)); } /** * Logical Or * * @param Engine $x * @return Engine */ protected function bitwiseOrHelper(Engine $x) { $left = $this->toBytes(true); $right = $x->toBytes(true); $length = max(strlen($left), strlen($right)); $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); return $this->normalize(new static($left | $right, -256)); } /** * Logical Exclusive Or * * @param Engine $x * @return Engine */ protected function bitwiseXorHelper(Engine $x) { $left = $this->toBytes(true); $right = $x->toBytes(true); $length = max(strlen($left), strlen($right)); $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); return $this->normalize(new static($left ^ $right, -256)); } }