* @copyright 2017 Jim Wigginton * @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://pear.php.net/package/Math_BigInteger */ namespace phpseclib\Crypt\ECDSA\BaseCurves; use phpseclib\Common\Functions\Strings; use phpseclib\Math\BinaryField; use phpseclib\Math\BigInteger; use phpseclib\Math\BinaryField\Integer as BinaryInteger; /** * Curves over y^2 + x*y = x^3 + a*x^2 + b * * @package Binary * @author Jim Wigginton * @access public */ class Binary extends Base { /** * Binary Field Integer factory * * @var \phpseclib\Math\BinaryFields */ protected $factory; /** * Cofficient for x^1 * * @var object */ protected $a; /** * Cofficient for x^0 * * @var object */ protected $b; /** * Base Point * * @var object */ protected $p; /** * The number one over the specified finite field * * @var object */ protected $one; /** * The modulo * * @var BigInteger */ protected $modulo; /** * The Order * * @var BigInteger */ protected $order; /** * Sets the modulo */ public function setModulo(...$modulo) { $this->modulo = $modulo; $this->factory = new BinaryField(...$modulo); $this->one = $this->factory->newInteger("\1"); } /** * Set coefficients a and b * * @param string $a * @param string $b */ public function setCoefficients($a, $b) { if (!isset($this->factory)) { throw new \RuntimeException('setModulo needs to be called before this method'); } $this->a = $this->factory->newInteger(pack('H*', $a)); $this->b = $this->factory->newInteger(pack('H*', $b)); } /** * Set x and y coordinates for the base point * * @param string|BinaryInteger $x * @param string|BinaryInteger $y */ public function setBasePoint($x, $y) { switch (true) { case !is_string($x) && !$x instanceof BinaryInteger: throw new \UnexpectedValueException('Argument 1 passed to Binary::setBasePoint() must be a string or an instance of BinaryField\Integer'); case !is_string($y) && !$y instanceof BinaryInteger: throw new \UnexpectedValueException('Argument 2 passed to Binary::setBasePoint() must be a string or an instance of BinaryField\Integer'); } if (!isset($this->factory)) { throw new \RuntimeException('setModulo needs to be called before this method'); } $this->p = [ is_string($x) ? $this->factory->newInteger(pack('H*', $x)) : $x, is_string($y) ? $this->factory->newInteger(pack('H*', $y)) : $y ]; } /** * Retrieve the base point as an array * * @return array */ public function getBasePoint() { if (!isset($this->factory)) { throw new \RuntimeException('setModulo needs to be called before this method'); } /* if (!isset($this->p)) { throw new \RuntimeException('setBasePoint needs to be called before this method'); } */ return $this->p; } /** * Adds two points on the curve * * @return FiniteField[] */ public function addPoint(array $p, array $q) { if (!isset($this->factory)) { throw new \RuntimeException('setModulo needs to be called before this method'); } if (!count($p) || !count($q)) { if (count($q)) { return $q; } if (count($p)) { return $p; } return []; } if (!isset($p[2]) || !isset($q[2])) { throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa'); } if ($p[0]->equals($q[0])) { return !$p[1]->equals($q[1]) ? [] : $this->doublePoint($p); } // formulas from http://hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html list($x1, $y1, $z1) = $p; list($x2, $y2, $z2) = $q; $o1 = $z1->multiply($z1); $b = $x2->multiply($o1); if ($z2->equals($this->one)) { $d = $y2->multiply($o1)->multiply($z1); $e = $x1->add($b); $f = $y1->add($d); $z3 = $e->multiply($z1); $h = $f->multiply($x2)->add($z3->multiply($y2)); $i = $f->add($z3); $g = $z3->multiply($z3); $p1 = $this->a->multiply($g); $p2 = $f->multiply($i); $p3 = $e->multiply($e)->multiply($e); $x3 = $p1->add($p2)->add($p3); $y3 = $i->multiply($x3)->add($g->multiply($h)); return [$x3, $y3, $z3]; } $o2 = $z2->multiply($z2); $a = $x1->multiply($o2); $c = $y1->multiply($o2)->multiply($z2); $d = $y2->multiply($o1)->multiply($z1); $e = $a->add($b); $f = $c->add($d); $g = $e->multiply($z1); $h = $f->multiply($x2)->add($g->multiply($y2)); $z3 = $g->multiply($z2); $i = $f->add($z3); $p1 = $this->a->multiply($z3->multiply($z3)); $p2 = $f->multiply($i); $p3 = $e->multiply($e)->multiply($e); $x3 = $p1->add($p2)->add($p3); $y3 = $i->multiply($x3)->add($g->multiply($g)->multiply($h)); return [$x3, $y3, $z3]; } /** * Doubles a point on a curve * * @return FiniteField[] */ public function doublePoint(array $p) { if (!isset($this->factory)) { throw new \RuntimeException('setModulo needs to be called before this method'); } if (!count($p)) { return []; } if (!isset($p[2])) { throw new \RuntimeException('Affine coordinates need to be manually converted to "Jacobi" coordinates or vice versa'); } // formulas from http://hyperelliptic.org/EFD/g12o/auto-shortw-jacobian.html list($x1, $y1, $z1) = $p; $a = $x1->multiply($x1); $b = $a->multiply($a); if ($z1->equals($this->one)) { $x3 = $b->add($this->b); $z3 = clone $x1; $p1 = $a->add($y1)->add($z3)->multiply($this->b); $p2 = $a->add($y1)->multiply($b); $y3 = $p1->add($p2); return [$x3, $y3, $z3]; } $c = $z1->multiply($z1); $d = $c->multiply($c); $x3 = $b->add($this->b->multiply($d->multiply($d))); $z3 = $x1->multiply($c); $p1 = $b->multiply($z3); $p2 = $a->add($y1->multiply($z1))->add($z3)->multiply($x3); $y3 = $p1->add($p2); return [$x3, $y3, $z3]; } /** * Returns the X coordinate and the derived Y coordinate * * Not supported because it is covered by patents. * Quoting https://www.openssl.org/docs/man1.1.0/apps/ecparam.html , * * "Due to patent issues the compressed option is disabled by default for binary curves * and can be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at * compile time." * * @return array */ public function derivePoint($m) { throw new \RuntimeException('Point compression on binary finite field elliptic curves is not supported'); } /** * Tests whether or not the x / y values satisfy the equation * * @return boolean */ public function verifyPoint(array $p) { list($x, $y) = $p; $lhs = $y->multiply($y); $lhs = $lhs->add($x->multiply($y)); $x2 = $x->multiply($x); $x3 = $x2->multiply($x); $rhs = $x3->add($this->a->multiply($x2))->add($this->b); return $lhs->equals($rhs); } /** * Returns the modulo * * @return \phpseclib\Math\BigInteger */ public function getModulo() { return $this->modulo; } /** * Returns the a coefficient * * @return \phpseclib\Math\PrimeField\Integer */ public function getA() { return $this->a; } /** * Returns the a coefficient * * @return \phpseclib\Math\PrimeField\Integer */ public function getB() { return $this->b; } /** * Returns the affine point * * A Jacobian Coordinate is of the form (x, y, z). * To convert a Jacobian Coordinate to an Affine Point * you do (x / z^2, y / z^3) * * @return \phpseclib\Math\PrimeField\Integer[] */ public function convertToAffine(array $p) { if (!isset($p[2])) { return $p; } list($x, $y, $z) = $p; $z = $this->one->divide($z); $z2 = $z->multiply($z); return [ $x->multiply($z2), $y->multiply($z2)->multiply($z) ]; } /** * Converts an affine point to a jacobian coordinate * * @return \phpseclib\Math\PrimeField\Integer[] */ public function convertToInternal(array $p) { if (isset($p[2])) { return $p; } $p[2] = clone $this->one; $p['fresh'] = true; return $p; } }