* @copyright 2017 Jim Wigginton * @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://pear.php.net/package/Math_BigInteger */ namespace phpseclib\Crypt\EC\BaseCurves; use phpseclib\Math\Common\FiniteField; use phpseclib\Math\BigInteger; /** * Base * * @package Prime * @author Jim Wigginton * @access public */ abstract class Base { /** * Doubles * * @var object[] */ protected $doubles; /** * NAF Points * * @var int[] */ private $naf; /** * The Order * * @var BigInteger */ protected $order; /** * Finite Field Integer factory * * @var \phpseclib\Math\FiniteField\Integer */ protected $factory; /** * Returns a random integer * * @return object */ public function randomInteger() { return $this->factory->randomInteger(); } /** * Converts a BigInteger to a FiniteField integer * * @return object */ public function convertInteger(BigInteger $x) { return $this->factory->newInteger($x); } /** * Returns the length, in bytes, of the modulo * * @return integer */ public function getLengthInBytes() { return $this->factory->getLengthInBytes(); } /** * Returns the length, in bits, of the modulo * * @return integer */ public function getLength() { return $this->factory->getLength(); } /** * Multiply a point on the curve by a scalar * * Uses the montgomery ladder technique as described here: * * https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Montgomery_ladder * https://github.com/phpecc/phpecc/issues/16#issuecomment-59176772 * * @return array */ public function multiplyPoint(array $p, FiniteField\Integer $d) { $alreadyInternal = isset($p[2]); $r = $alreadyInternal ? [[], $p] : [[], $this->convertToInternal($p)]; $d = $d->toBits(); for ($i = 0; $i < strlen($d); $i++) { $d_i = (int) $d[$i]; $r[1 - $d_i] = $this->addPoint($r[0], $r[1]); $r[$d_i] = $this->doublePoint($r[$d_i]); } return $alreadyInternal ? $r[0] : $this->convertToAffine($r[0]); } /** * Creates a random scalar multiplier * * @return FiniteField */ public function createRandomMultiplier() { static $one; if (!isset($one)) { $one = new BigInteger(1); } $dA = BigInteger::randomRange($one, $this->order->subtract($one)); return $this->factory->newInteger($dA); } /** * Sets the Order */ public function setOrder(BigInteger $order) { $this->order = $order; } /** * Returns the Order * * @return \phpseclib\Math\BigInteger */ public function getOrder() { return $this->order; } /** * Use a custom defined modular reduction function * * @return object */ public function setReduction(callable $func) { $this->factory->setReduction($func); } /** * Returns the affine point * * @return object[] */ public function convertToAffine(array $p) { return $p; } /** * Converts an affine point to a jacobian coordinate * * @return object[] */ public function convertToInternal(array $p) { return $p; } /** * Negates a point * * @return object[] */ public function negatePoint(array $p) { $temp = [ $p[0], $p[1]->negate() ]; if (isset($p[2])) { $temp[] = $p[2]; } return $temp; } /** * Multiply and Add Points * * @return int[] */ public function multiplyAddPoints(array $points, array $scalars) { $p1 = $this->convertToInternal($points[0]); $p2 = $this->convertToInternal($points[1]); $p1 = $this->multiplyPoint($p1, $scalars[0]); $p2 = $this->multiplyPoint($p2, $scalars[1]); $r = $this->addPoint($p1, $p2); return $this->convertToAffine($r); } }