> and << cannot be used, nor can the modulo operator %, * which only supports integers. Although this fact will slow this library down, the fact that such a high * base is being used should more than compensate. * * When PHP version 6 is officially released, we'll be able to use 64-bit integers. This should, once again, * allow bitwise operators, and will increase the maximum possible base to 2**31 (or 2**62 for addition / * subtraction). * * Useful resources are as follows: * * - {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf Handbook of Applied Cryptography (HAC)} * - {@link http://math.libtomcrypt.com/files/tommath.pdf Multi-Precision Math (MPM)} * - Java's BigInteger classes. See /j2se/src/share/classes/java/math in jdk-1_5_0-src-jrl.zip * * One idea for optimization is to use the comba method to reduce the number of operations performed. * MPM uses this quite extensively. The following URL elaborates: * * {@link http://www.everything2.com/index.pl?node_id=1736418}}} * * Here's a quick 'n dirty example of how to use this library: * * add($b); * * echo $c->toString(); // outputs 5 * ?> * * * LICENSE: This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * @category Math * @package Math_BigInteger * @author Jim Wigginton * @copyright MMVI Jim Wigginton * @license http://www.gnu.org/licenses/lgpl.txt * @version $Id: BigInteger.php,v 1.11 2009-09-02 19:20:48 terrafrost Exp $ * @link http://pear.php.net/package/Math_BigInteger */ /** * Include PHP_Compat module bcpowmod since that function does not exist in PHP4: * {@link http://pear.php.net/package/PHP_Compat/} * {@link http://php.net/function.bcpowmod} */ require_once 'PHP/Compat/Function/bcpowmod.php'; /** * Include PHP_Compat module array_fill since that function requires PHP4.2.0+: * {@link http://pear.php.net/package/PHP_Compat/} * {@link http://php.net/function.array_fill} */ require_once 'PHP/Compat/Function/array_fill.php'; /**#@+ * @access private * @see Math_BigInteger::_slidingWindow() */ /** * @see Math_BigInteger::_montgomery() * @see Math_BigInteger::_undoMontgomery() */ define('MATH_BIGINTEGER_MONTGOMERY', 0); /** * @see Math_BigInteger::_barrett() */ define('MATH_BIGINTEGER_BARRETT', 1); /** * @see Math_BigInteger::_mod2() */ define('MATH_BIGINTEGER_POWEROF2', 2); /** * @see Math_BigInteger::_remainder() */ define('MATH_BIGINTEGER_CLASSIC', 3); /** * @see Math_BigInteger::_copy() */ define('MATH_BIGINTEGER_NONE', 4); /**#@-*/ /**#@+ * @access private * @see Math_BigInteger::_montgomery() * @see Math_BigInteger::_barrett() */ /** * $cache[MATH_BIGINTEGER_VARIABLE] tells us whether or not the cached data is still valid. */ define('MATH_BIGINTEGER_VARIABLE', 0); /** * $cache[MATH_BIGINTEGER_DATA] contains the cached data. */ define('MATH_BIGINTEGER_DATA', 1); /**#@-*/ /**#@+ * @access private * @see Math_BigInteger::Math_BigInteger() */ /** * To use the pure-PHP implementation */ define('MATH_BIGINTEGER_MODE_INTERNAL', 1); /** * To use the BCMath library * * (if enabled; otherwise, the internal implementation will be used) */ define('MATH_BIGINTEGER_MODE_BCMATH', 2); /** * To use the GMP library * * (if present; otherwise, either the BCMath or the internal implementation will be used) */ define('MATH_BIGINTEGER_MODE_GMP', 3); /**#@-*/ /** * Pure-PHP arbitrary precision integer arithmetic library. Supports base-2, base-10, base-16, and base-256 * numbers. * * @author Jim Wigginton * @version 1.0.0RC3 * @access public * @package Math_BigInteger */ class Math_BigInteger { /** * Holds the BigInteger's value. * * @var Array * @access private */ var $value; /** * Holds the BigInteger's magnitude. * * @var Boolean * @access private */ var $is_negative = false; /** * Converts base-2, base-10, base-16, and binary strings (eg. base-256) to BigIntegers. * * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using * two's compliment. The sole exception to this is -10, which is treated the same as 10 is. * * Here's a quick 'n dirty example: * * toString(); // outputs 50 * ?> * * * @param optional $x base-10 number or base-$base number if $base set. * @param optional integer $base * @return Math_BigInteger * @access public */ function Math_BigInteger($x = 0, $base = 10) { if ( !defined('MATH_BIGINTEGER_MODE') ) { switch (true) { case extension_loaded('gmp'): define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_GMP); break; case extension_loaded('bcmath'): define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_BCMATH); break; default: define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_INTERNAL); } } switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $this->value = gmp_init(0); break; case MATH_BIGINTEGER_MODE_BCMATH: $this->value = '0'; break; default: $this->value = array(); } if ($x === 0) { return; } switch ($base) { case -256: if (ord($x[0]) & 0x80) { $x = ~$x; $this->is_negative = true; } case 256: switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = unpack('H*hex', $x); $sign = $this->is_negative ? '-' : ''; $this->value = gmp_init($sign . '0x' . $temp['hex']); break; case MATH_BIGINTEGER_MODE_BCMATH: // round $len to the nearest 4 (thanks, DavidMJ!) $len = (strlen($x) + 3) & 0xFFFFFFFC; $x = str_pad($x, $len, chr(0), STR_PAD_LEFT); for ($i = 0; $i < $len; $i+= 4) { $this->value = bcmul($this->value, '4294967296'); // 4294967296 == 2**32 $this->value = bcadd($this->value, 0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 3]))); } if ($this->is_negative) { $this->value = '-' . $this->value; } break; // converts a base-2**8 (big endian / msb) number to base-2**26 (little endian / lsb) case MATH_BIGINTEGER_MODE_INTERNAL: while (strlen($x)) { $this->value[] = $this->_bytes2int($this->_base256_rshift($x, 26)); } } if ($this->is_negative) { if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL) { $this->is_negative = false; } $temp = $this->add(new Math_BigInteger('-1')); $this->value = $temp->value; } break; case 16: case -16: if ($base > 0 && $x[0] == '-') { $this->is_negative = true; $x = substr($x, 1); } $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x); $is_negative = false; if ($base < 0 && hexdec($x[0]) >= 8) { $this->is_negative = $is_negative = true; $x = bin2hex(~pack('H*', $x)); } switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = $this->is_negative ? '-0x' . $x : '0x' . $x; $this->value = gmp_init($temp); $this->is_negative = false; break; case MATH_BIGINTEGER_MODE_BCMATH: $x = ( strlen($x) & 1 ) ? '0' . $x : $x; $temp = new Math_BigInteger(pack('H*', $x), 256); $this->value = $this->is_negative ? '-' . $temp->value : $temp->value; $this->is_negative = false; break; case MATH_BIGINTEGER_MODE_INTERNAL: $x = ( strlen($x) & 1 ) ? '0' . $x : $x; $temp = new Math_BigInteger(pack('H*', $x), 256); $this->value = $temp->value; } if ($is_negative) { $temp = $this->add(new Math_BigInteger('-1')); $this->value = $temp->value; } break; case 10: case -10: $x = preg_replace('#^(-?[0-9]*).*#', '$1', $x); switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $this->value = gmp_init($x); break; case MATH_BIGINTEGER_MODE_BCMATH: // explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different // results then doing it on '-1' does (modInverse does $x[0]) $this->value = (string) $x; break; case MATH_BIGINTEGER_MODE_INTERNAL: $temp = new Math_BigInteger(); // array(10000000) is 10**7 in base-2**26. 10**7 is the closest to 2**26 we can get without passing it. $multiplier = new Math_BigInteger(); $multiplier->value = array(10000000); if ($x[0] == '-') { $this->is_negative = true; $x = substr($x, 1); } $x = str_pad($x, strlen($x) + (6 * strlen($x)) % 7, 0, STR_PAD_LEFT); while (strlen($x)) { $temp = $temp->multiply($multiplier); $temp = $temp->add(new Math_BigInteger($this->_int2bytes(substr($x, 0, 7)), 256)); $x = substr($x, 7); } $this->value = $temp->value; } break; case 2: // base-2 support originally implemented by Lluis Pamies - thanks! case -2: if ($base > 0 && $x[0] == '-') { $this->is_negative = true; $x = substr($x, 1); } $x = preg_replace('#^([01]*).*#', '$1', $x); $x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT); $str = '0x'; while (strlen($x)) { $part = substr($x, 0, 4); $str.= dechex(bindec($part)); $x = substr($x, 4); } if ($this->is_negative) { $str = '-' . $str; } $temp = new Math_BigInteger($str, 8 * $base); // ie. either -16 or +16 $this->value = $temp->value; $this->is_negative = $temp->is_negative; break; default: // base not supported, so we'll let $this == 0 } } /** * Converts a BigInteger to a byte string (eg. base-256). * * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're * saved as two's compliment. * * Here's a quick 'n dirty example: * * toBytes(); // outputs chr(65) * ?> * * * @param Boolean $twos_compliment * @return String * @access public * @internal Converts a base-2**26 number to base-2**8 */ function toBytes($twos_compliment = false) { if ($twos_compliment) { $comparison = $this->compare(new Math_BigInteger()); if ($comparison == 0) { return ''; } $temp = $comparison < 0 ? $this->add(new Math_BigInteger(1)) : $this->_copy(); $bytes = $temp->toBytes(); if (empty($bytes)) { // eg. if the number we're trying to convert is -1 $bytes = chr(0); } if (ord($bytes[0]) & 0x80) { $bytes = chr(0) . $bytes; } return $comparison < 0 ? ~$bytes : $bytes; } switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: if (gmp_cmp($this->value, gmp_init(0)) == 0) { return ''; } $temp = gmp_strval(gmp_abs($this->value), 16); $temp = ( strlen($temp) & 1 ) ? '0' . $temp : $temp; return ltrim(pack('H*', $temp), chr(0)); case MATH_BIGINTEGER_MODE_BCMATH: if ($this->value === '0') { return ''; } $value = ''; $current = $this->value; if ($current[0] == '-') { $current = substr($current, 1); } // we don't do four bytes at a time because then numbers larger than 1<<31 would be negative // two's complimented numbers, which would break chr. while (bccomp($current, '0') > 0) { $temp = bcmod($current, 0x1000000); $value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value; $current = bcdiv($current, 0x1000000); } return ltrim($value, chr(0)); } if (!count($this->value)) { return ''; } $result = $this->_int2bytes($this->value[count($this->value) - 1]); $temp = $this->_copy(); for ($i = count($temp->value) - 2; $i >= 0; $i--) { $temp->_base256_lshift($result, 26); $result = $result | str_pad($temp->_int2bytes($temp->value[$i]), strlen($result), chr(0), STR_PAD_LEFT); } return $result; } /** * Converts a BigInteger to a base-10 number. * * Here's a quick 'n dirty example: * * toString(); // outputs 50 * ?> * * * @return String * @access public * @internal Converts a base-2**26 number to base-10**7 (which is pretty much base-10) */ function toString() { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: return gmp_strval($this->value); case MATH_BIGINTEGER_MODE_BCMATH: if ($this->value === '0') { return '0'; } return ltrim($this->value, '0'); } if (!count($this->value)) { return '0'; } $temp = $this->_copy(); $temp->is_negative = false; $divisor = new Math_BigInteger(); $divisor->value = array(10000000); // eg. 10**7 $result = ''; while (count($temp->value)) { list($temp, $mod) = $temp->divide($divisor); $result = str_pad($this->_bytes2int($mod->toBytes()), 7, '0', STR_PAD_LEFT) . $result; } $result = ltrim($result, '0'); if ($this->is_negative) { $result = '-' . $result; } return $result; } /** * __toString() magic method * * Will be called, automatically, if you're supporting just PHP5. If you're supporting PHP4, you'll need to call * toString(). * * @access public * @internal Implemented per a suggestion by Techie-Michael - thanks! */ function __toString() { return $this->toString(); } /** * Adds two BigIntegers. * * Here's a quick 'n dirty example: * * add($b); * * echo $c->toString(); // outputs 30 * ?> * * * @param Math_BigInteger $y * @return Math_BigInteger * @access public * @internal Performs base-2**52 addition */ function add($y) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = new Math_BigInteger(); $temp->value = gmp_add($this->value, $y->value); return $temp; case MATH_BIGINTEGER_MODE_BCMATH: $temp = new Math_BigInteger(); $temp->value = bcadd($this->value, $y->value); return $temp; } // subtract, if appropriate if ( $this->is_negative != $y->is_negative ) { // is $y the negative number? $y_negative = $this->compare($y) > 0; $temp = $this->_copy(); $y = $y->_copy(); $temp->is_negative = $y->is_negative = false; $diff = $temp->compare($y); if ( !$diff ) { return new Math_BigInteger(); } $temp = $temp->subtract($y); $temp->is_negative = ($diff > 0) ? !$y_negative : $y_negative; return $temp; } $result = new Math_BigInteger(); $carry = 0; $size = max(count($this->value), count($y->value)); $size+= $size & 1; // rounds $size to the nearest 2. $x = array_pad($this->value, $size,0); $y = array_pad($y->value, $size, 0); for ($i = 0; $i < $size - 1; $i+=2) { $sum = $x[$i + 1] * 0x4000000 + $x[$i] + $y[$i + 1] * 0x4000000 + $y[$i] + $carry; $carry = $sum >= 4503599627370496; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 $sum = $carry ? $sum - 4503599627370496 : $sum; $temp = floor($sum / 0x4000000); $result->value[] = $sum - 0x4000000 * $temp; // eg. a faster alternative to fmod($sum, 0x4000000) $result->value[] = $temp; } if ($carry) { $result->value[] = $carry; } $result->is_negative = $this->is_negative; return $result->_normalize(); } /** * Subtracts two BigIntegers. * * Here's a quick 'n dirty example: * * subtract($b); * * echo $c->toString(); // outputs -10 * ?> * * * @param Math_BigInteger $y * @return Math_BigInteger * @access public * @internal Performs base-2**52 subtraction */ function subtract($y) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = new Math_BigInteger(); $temp->value = gmp_sub($this->value, $y->value); return $temp; case MATH_BIGINTEGER_MODE_BCMATH: $temp = new Math_BigInteger(); $temp->value = bcsub($this->value, $y->value); return $temp; } // add, if appropriate if ( $this->is_negative != $y->is_negative ) { $is_negative = $y->compare($this) > 0; $temp = $this->_copy(); $y = $y->_copy(); $temp->is_negative = $y->is_negative = false; $temp = $temp->add($y); $temp->is_negative = $is_negative; return $temp; } $diff = $this->compare($y); if ( !$diff ) { return new Math_BigInteger(); } // switch $this and $y around, if appropriate. if ( (!$this->is_negative && $diff < 0) || ($this->is_negative && $diff > 0) ) { $is_negative = $y->is_negative; $temp = $this->_copy(); $y = $y->_copy(); $temp->is_negative = $y->is_negative = false; $temp = $y->subtract($temp); $temp->is_negative = !$is_negative; return $temp; } $result = new Math_BigInteger(); $carry = 0; $size = max(count($this->value), count($y->value)); $size+= $size % 2; $x = array_pad($this->value, $size, 0); $y = array_pad($y->value, $size, 0); for ($i = 0; $i < $size - 1; $i+=2) { $sum = $x[$i + 1] * 0x4000000 + $x[$i] - $y[$i + 1] * 0x4000000 - $y[$i] + $carry; $carry = $sum < 0 ? -1 : 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1 $sum = $carry ? $sum + 4503599627370496 : $sum; $temp = floor($sum / 0x4000000); $result->value[] = $sum - 0x4000000 * $temp; $result->value[] = $temp; } // $carry shouldn't be anything other than zero, at this point, since we already made sure that $this // was bigger than $y. $result->is_negative = $this->is_negative; return $result->_normalize(); } /** * Multiplies two BigIntegers * * Here's a quick 'n dirty example: * * multiply($b); * * echo $c->toString(); // outputs 200 * ?> * * * @param Math_BigInteger $x * @return Math_BigInteger * @access public * @internal Modeled after 'multiply' in MutableBigInteger.java. */ function multiply($x) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = new Math_BigInteger(); $temp->value = gmp_mul($this->value, $x->value); return $temp; case MATH_BIGINTEGER_MODE_BCMATH: $temp = new Math_BigInteger(); $temp->value = bcmul($this->value, $x->value); return $temp; } if ( !$this->compare($x) ) { return $this->_square(); } $this_length = count($this->value); $x_length = count($x->value); if ( !$this_length || !$x_length ) { // a 0 is being multiplied return new Math_BigInteger(); } $product = new Math_BigInteger(); $product->value = $this->_array_repeat(0, $this_length + $x_length); // the following for loop could be removed if the for loop following it // (the one with nested for loops) initially set $i to 0, but // doing so would also make the result in one set of unnecessary adds, // since on the outermost loops first pass, $product->value[$k] is going // to always be 0 $carry = 0; $i = 0; for ($j = 0, $k = $i; $j < $this_length; $j++, $k++) { $temp = $product->value[$k] + $this->value[$j] * $x->value[$i] + $carry; $carry = floor($temp / 0x4000000); $product->value[$k] = $temp - 0x4000000 * $carry; } $product->value[$k] = $carry; // the above for loop is what the previous comment was talking about. the // following for loop is the "one with nested for loops" for ($i = 1; $i < $x_length; $i++) { $carry = 0; for ($j = 0, $k = $i; $j < $this_length; $j++, $k++) { $temp = $product->value[$k] + $this->value[$j] * $x->value[$i] + $carry; $carry = floor($temp / 0x4000000); $product->value[$k] = $temp - 0x4000000 * $carry; } $product->value[$k] = $carry; } $product->is_negative = $this->is_negative != $x->is_negative; return $product->_normalize(); } /** * Squares a BigInteger * * Squaring can be done faster than multiplying a number by itself can be. See * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} / * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information. * * @return Math_BigInteger * @access private */ function _square() { if ( empty($this->value) ) { return new Math_BigInteger(); } $square = new Math_BigInteger(); $square->value = $this->_array_repeat(0, 2 * count($this->value)); for ($i = 0, $max_index = count($this->value) - 1; $i <= $max_index; $i++) { $temp = $square->value[2 * $i] + $this->value[$i] * $this->value[$i]; $carry = floor($temp / 0x4000000); $square->value[2 * $i] = $temp - 0x4000000 * $carry; // note how we start from $i+1 instead of 0 as we do in multiplication. for ($j = $i + 1; $j <= $max_index; $j++) { $temp = $square->value[$i + $j] + 2 * $this->value[$j] * $this->value[$i] + $carry; $carry = floor($temp / 0x4000000); $square->value[$i + $j] = $temp - 0x4000000 * $carry; } // the following line can yield values larger 2**15. at this point, PHP should switch // over to floats. $square->value[$i + $max_index + 1] = $carry; } return $square->_normalize(); } /** * Divides two BigIntegers. * * Returns an array whose first element contains the quotient and whose second element contains the * "common residue". If the remainder would be positive, the "common residue" and the remainder are the * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder * and the divisor (basically, the "common residue" is the first positive modulo). * * Here's a quick 'n dirty example: * * divide($b); * * echo $quotient->toString(); // outputs 0 * echo "\r\n"; * echo $remainder->toString(); // outputs 10 * ?> * * * @param Math_BigInteger $y * @return Array * @access public * @internal This function is based off of {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=9 HAC 14.20} * with a slight variation due to the fact that this script, initially, did not support negative numbers. Now, * it does, but I don't want to change that which already works. */ function divide($y) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $quotient = new Math_BigInteger(); $remainder = new Math_BigInteger(); list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value); if (gmp_sign($remainder->value) < 0) { $remainder->value = gmp_add($remainder->value, gmp_abs($y->value)); } return array($quotient, $remainder); case MATH_BIGINTEGER_MODE_BCMATH: $quotient = new Math_BigInteger(); $remainder = new Math_BigInteger(); $quotient->value = bcdiv($this->value, $y->value); $remainder->value = bcmod($this->value, $y->value); if ($remainder->value[0] == '-') { $remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value); } return array($quotient, $remainder); } $x = $this->_copy(); $y = $y->_copy(); $x_sign = $x->is_negative; $y_sign = $y->is_negative; $x->is_negative = $y->is_negative = false; $diff = $x->compare($y); if ( !$diff ) { $temp = new Math_BigInteger(); $temp->value = array(1); $temp->is_negative = $x_sign != $y_sign; return array($temp, new Math_BigInteger()); } if ( $diff < 0 ) { // if $x is negative, "add" $y. if ( $x_sign ) { $x = $y->subtract($x); } return array(new Math_BigInteger(), $x); } // normalize $x and $y as described in HAC 14.23 / 14.24 // (incidently, i haven't been able to find a definitive example showing that this // results in worth-while speedup, but whatever) $msb = $y->value[count($y->value) - 1]; for ($shift = 0; !($msb & 0x2000000); $shift++) { $msb <<= 1; } $x->_lshift($shift); $y->_lshift($shift); $x_max = count($x->value) - 1; $y_max = count($y->value) - 1; $quotient = new Math_BigInteger(); $quotient->value = $this->_array_repeat(0, $x_max - $y_max + 1); // $temp = $y << ($x_max - $y_max-1) in base 2**26 $temp = new Math_BigInteger(); $temp->value = array_merge($this->_array_repeat(0, $x_max - $y_max), $y->value); while ( $x->compare($temp) >= 0 ) { // calculate the "common residue" $quotient->value[$x_max - $y_max]++; $x = $x->subtract($temp); $x_max = count($x->value) - 1; } for ($i = $x_max; $i >= $y_max + 1; $i--) { $x_value = array( $x->value[$i], ( $i > 0 ) ? $x->value[$i - 1] : 0, ( $i - 1 > 0 ) ? $x->value[$i - 2] : 0 ); $y_value = array( $y->value[$y_max], ( $y_max > 0 ) ? $y_max - 1 : 0 ); $q_index = $i - $y_max - 1; if ($x_value[0] == $y_value[0]) { $quotient->value[$q_index] = 0x3FFFFFF; } else { $quotient->value[$q_index] = floor( ($x_value[0] * 0x4000000 + $x_value[1]) / $y_value[0] ); } $temp = new Math_BigInteger(); $temp->value = array($y_value[1], $y_value[0]); $lhs = new Math_BigInteger(); $lhs->value = array($quotient->value[$q_index]); $lhs = $lhs->multiply($temp); $rhs = new Math_BigInteger(); $rhs->value = array($x_value[2], $x_value[1], $x_value[0]); while ( $lhs->compare($rhs) > 0 ) { $quotient->value[$q_index]--; $lhs = new Math_BigInteger(); $lhs->value = array($quotient->value[$q_index]); $lhs = $lhs->multiply($temp); } $corrector = new Math_BigInteger(); $temp = new Math_BigInteger(); $corrector->value = $temp->value = $this->_array_repeat(0, $q_index); $temp->value[] = $quotient->value[$q_index]; $temp = $temp->multiply($y); if ( $x->compare($temp) < 0 ) { $corrector->value[] = 1; $x = $x->add($corrector->multiply($y)); $quotient->value[$q_index]--; } $x = $x->subtract($temp); $x_max = count($x->value) - 1; } // unnormalize the remainder $x->_rshift($shift); $quotient->is_negative = $x_sign != $y_sign; // calculate the "common residue", if appropriate if ( $x_sign ) { $y->_rshift($shift); $x = $y->subtract($x); } return array($quotient->_normalize(), $x); } /** * Performs modular exponentiation. * * Here's a quick 'n dirty example: * * modPow($b, $c); * * echo $c->toString(); // outputs 10 * ?> * * * @param Math_BigInteger $e * @param Math_BigInteger $n * @return Math_BigInteger * @access public * @internal The most naive approach to modular exponentiation has very unreasonable requirements, and * and although the approach involving repeated squaring does vastly better, it, too, is impractical * for our purposes. The reason being that division - by far the most complicated and time-consuming * of the basic operations (eg. +,-,*,/) - occurs multiple times within it. * * Modular reductions resolve this issue. Although an individual modular reduction takes more time * then an individual division, when performed in succession (with the same modulo), they're a lot faster. * * The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction, * although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the * base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because * the product of two odd numbers is odd), but what about when RSA isn't used? * * In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a * Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the * modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however, * uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and * the other, a power of two - and recombine them, later. This is the method that this modPow function uses. * {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates. */ function modPow($e, $n) { $n = $n->abs(); if ($e->compare(new Math_BigInteger()) < 0) { $e = $e->abs(); $temp = $this->modInverse($n); if ($temp === false) { return false; } return $temp->modPow($e, $n); } switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = new Math_BigInteger(); $temp->value = gmp_powm($this->value, $e->value, $n->value); return $temp; case MATH_BIGINTEGER_MODE_BCMATH: $temp = new Math_BigInteger(); $temp->value = bcpowmod($this->value, $e->value, $n->value); return $temp; } if ( empty($e->value) ) { $temp = new Math_BigInteger(); $temp->value = array(1); return $temp; } if ( $e->value == array(1) ) { list(, $temp) = $this->divide($n); return $temp; } if ( $e->value == array(2) ) { $temp = $this->_square(); list(, $temp) = $temp->divide($n); return $temp; } // is the modulo odd? if ( $n->value[0] & 1 ) { return $this->_slidingWindow($e, $n, MATH_BIGINTEGER_MONTGOMERY); } // if it's not, it's even // find the lowest set bit (eg. the max pow of 2 that divides $n) for ($i = 0; $i < count($n->value); $i++) { if ( $n->value[$i] ) { $temp = decbin($n->value[$i]); $j = strlen($temp) - strrpos($temp, '1') - 1; $j+= 26 * $i; break; } } // at this point, 2^$j * $n/(2^$j) == $n $mod1 = $n->_copy(); $mod1->_rshift($j); $mod2 = new Math_BigInteger(); $mod2->value = array(1); $mod2->_lshift($j); $part1 = ( $mod1->value != array(1) ) ? $this->_slidingWindow($e, $mod1, MATH_BIGINTEGER_MONTGOMERY) : new Math_BigInteger(); $part2 = $this->_slidingWindow($e, $mod2, MATH_BIGINTEGER_POWEROF2); $y1 = $mod2->modInverse($mod1); $y2 = $mod1->modInverse($mod2); $result = $part1->multiply($mod2); $result = $result->multiply($y1); $temp = $part2->multiply($mod1); $temp = $temp->multiply($y2); $result = $result->add($temp); list(, $result) = $result->divide($n); return $result; } /** * Sliding Window k-ary Modular Exponentiation * * Based on {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} / * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}. In a departure from those algorithims, * however, this function performs a modular reduction after every multiplication and squaring operation. * As such, this function has the same preconditions that the reductions being used do. * * @param Math_BigInteger $e * @param Math_BigInteger $n * @param Integer $mode * @return Math_BigInteger * @access private */ function _slidingWindow($e, $n, $mode) { static $window_ranges = array(7, 25, 81, 241, 673, 1793); // from BigInteger.java's oddModPow function //static $window_ranges = array(0, 7, 36, 140, 450, 1303, 3529); // from MPM 7.3.1 $e_length = count($e->value) - 1; $e_bits = decbin($e->value[$e_length]); for ($i = $e_length - 1; $i >= 0; $i--) { $e_bits.= str_pad(decbin($e->value[$i]), 26, '0', STR_PAD_LEFT); } $e_length = strlen($e_bits); // calculate the appropriate window size. // $window_size == 3 if $window_ranges is between 25 and 81, for example. for ($i = 0, $window_size = 1; $e_length > $window_ranges[$i] && $i < count($window_ranges); $window_size++, $i++); switch ($mode) { case MATH_BIGINTEGER_MONTGOMERY: $reduce = '_montgomery'; $undo = '_undoMontgomery'; break; case MATH_BIGINTEGER_BARRETT: $reduce = '_barrett'; $undo = '_barrett'; break; case MATH_BIGINTEGER_POWEROF2: $reduce = '_mod2'; $undo = '_mod2'; break; case MATH_BIGINTEGER_CLASSIC: $reduce = '_remainder'; $undo = '_remainder'; break; case MATH_BIGINTEGER_NONE: // ie. do no modular reduction. useful if you want to just do pow as opposed to modPow. $reduce = '_copy'; $undo = '_copy'; break; default: // an invalid $mode was provided } // precompute $this^0 through $this^$window_size $powers = array(); $powers[1] = $this->$undo($n); $powers[2] = $powers[1]->_square(); $powers[2] = $powers[2]->$reduce($n); // we do every other number since substr($e_bits, $i, $j+1) (see below) is supposed to end // in a 1. ie. it's supposed to be odd. $temp = 1 << ($window_size - 1); for ($i = 1; $i < $temp; $i++) { $powers[2 * $i + 1] = $powers[2 * $i - 1]->multiply($powers[2]); $powers[2 * $i + 1] = $powers[2 * $i + 1]->$reduce($n); } $result = new Math_BigInteger(); $result->value = array(1); $result = $result->$undo($n); for ($i = 0; $i < $e_length; ) { if ( !$e_bits[$i] ) { $result = $result->_square(); $result = $result->$reduce($n); $i++; } else { for ($j = $window_size - 1; $j >= 0; $j--) { if ( !empty($e_bits[$i + $j]) ) { break; } } for ($k = 0; $k <= $j; $k++) {// eg. the length of substr($e_bits, $i, $j+1) $result = $result->_square(); $result = $result->$reduce($n); } $result = $result->multiply($powers[bindec(substr($e_bits, $i, $j + 1))]); $result = $result->$reduce($n); $i+=$j + 1; } } $result = $result->$reduce($n); return $result->_normalize(); } /** * Remainder * * A wrapper for the divide function. * * @see divide() * @see _slidingWindow() * @access private * @param Math_BigInteger * @return Math_BigInteger */ function _remainder($n) { list(, $temp) = $this->divide($n); return $temp; } /** * Modulos for Powers of Two * * Calculates $x%$n, where $n = 2**$e, for some $e. Since this is basically the same as doing $x & ($n-1), * we'll just use this function as a wrapper for doing that. * * @see _slidingWindow() * @access private * @param Math_BigInteger * @return Math_BigInteger */ function _mod2($n) { $temp = new Math_BigInteger(); $temp->value = array(1); return $this->bitwise_and($n->subtract($temp)); } /** * Barrett Modular Reduction * * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} / * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information. Modified slightly, * so as not to require negative numbers (initially, this script didn't support negative numbers). * * @see _slidingWindow() * @access private * @param Math_BigInteger * @return Math_BigInteger */ function _barrett($n) { static $cache; $n_length = count($n->value); if ( !isset($cache[MATH_BIGINTEGER_VARIABLE]) || $n->compare($cache[MATH_BIGINTEGER_VARIABLE]) ) { $cache[MATH_BIGINTEGER_VARIABLE] = $n; $temp = new Math_BigInteger(); $temp->value = $this->_array_repeat(0, 2 * $n_length); $temp->value[] = 1; list($cache[MATH_BIGINTEGER_DATA], ) = $temp->divide($n); } $temp = new Math_BigInteger(); $temp->value = array_slice($this->value, $n_length - 1); $temp = $temp->multiply($cache[MATH_BIGINTEGER_DATA]); $temp->value = array_slice($temp->value, $n_length + 1); $result = new Math_BigInteger(); $result->value = array_slice($this->value, 0, $n_length + 1); $temp = $temp->multiply($n); $temp->value = array_slice($temp->value, 0, $n_length + 1); if ($result->compare($temp) < 0) { $corrector = new Math_BigInteger(); $corrector->value = $this->_array_repeat(0, $n_length + 1); $corrector->value[] = 1; $result = $result->add($corrector); } $result = $result->subtract($temp); while ($result->compare($n) > 0) { $result = $result->subtract($n); } return $result; } /** * Montgomery Modular Reduction * * ($this->_montgomery($n))->_undoMontgomery($n) yields $x%$n. * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be * improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function * to work correctly. * * @see _undoMontgomery() * @see _slidingWindow() * @access private * @param Math_BigInteger * @return Math_BigInteger */ function _montgomery($n) { static $cache; if ( !isset($cache[MATH_BIGINTEGER_VARIABLE]) || $n->compare($cache[MATH_BIGINTEGER_VARIABLE]) ) { $cache[MATH_BIGINTEGER_VARIABLE] = $n; $cache[MATH_BIGINTEGER_DATA] = $n->_modInverse67108864(); } $result = $this->_copy(); $n_length = count($n->value); for ($i = 0; $i < $n_length; $i++) { $temp = new Math_BigInteger(); $temp->value = array( ($result->value[$i] * $cache[MATH_BIGINTEGER_DATA]) & 0x3FFFFFF ); $temp = $temp->multiply($n); $temp->value = array_merge($this->_array_repeat(0, $i), $temp->value); $result = $result->add($temp); } $result->value = array_slice($result->value, $n_length); if ($result->compare($n) >= 0) { $result = $result->subtract($n); } return $result->_normalize(); } /** * Undo Montgomery Modular Reduction * * @see _montgomery() * @see _slidingWindow() * @access private * @param Math_BigInteger * @return Math_BigInteger */ function _undoMontgomery($n) { $temp = new Math_BigInteger(); $temp->value = array_merge($this->_array_repeat(0, count($n->value)), $this->value); list(, $temp) = $temp->divide($n); return $temp->_normalize(); } /** * Modular Inverse of a number mod 2**26 (eg. 67108864) * * Based off of the bnpInvDigit function implemented and justified in the following URL: * * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js} * * The following URL provides more info: * * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85} * * As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For * instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields * int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't * auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that * the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the * maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to * 40 bits, which only 64-bit floating points will support. * * Thanks to Pedro Gimeno Fortea for input! * * @see _montgomery() * @access private * @return Integer */ function _modInverse67108864() // 2**26 == 67108864 { $x = -$this->value[0]; $result = $x & 0x3; // x**-1 mod 2**2 $result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4 $result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8 $result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16 $result = fmod($result * (2 - fmod($x * $result, 0x4000000)), 0x4000000); // x**-1 mod 2**26 return $result & 0x3FFFFFF; } /** * Calculates modular inverses. * * Here's a quick 'n dirty example: * * modInverse($b); * * echo $c->toString(); // outputs 4 * ?> * * * @param Math_BigInteger $n * @return mixed false, if no modular inverse exists, Math_BigInteger, otherwise. * @access public * @internal Calculates the modular inverse of $this mod $n using the binary xGCD algorithim described in * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes, * the more traditional algorithim requires "relatively costly multiple-precision divisions". See * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for more information. */ function modInverse($n) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = new Math_BigInteger(); $temp->value = gmp_invert($this->value, $n->value); return ( $temp->value === false ) ? false : $temp; case MATH_BIGINTEGER_MODE_BCMATH: // it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works // best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway. as is, // the basic extended euclidean algorithim is what we're using. // if $x is less than 0, the first character of $x is a '-', so we'll remove it. we can do this because // $x mod $n == $x mod -$n. $n = (bccomp($n->value, '0') < 0) ? substr($n->value, 1) : $n->value; if (bccomp($this->value,'0') < 0) { $negated_this = new Math_BigInteger(); $negated_this->value = substr($this->value, 1); $temp = $negated_this->modInverse(new Math_BigInteger($n)); if ($temp === false) { return false; } $temp->value = bcsub($n, $temp->value); return $temp; } $u = $this->value; $v = $n; $a = '1'; $c = '0'; while (true) { $q = bcdiv($u, $v); $temp = $u; $u = $v; $v = bcsub($temp, bcmul($v, $q)); if (bccomp($v, '0') == 0) { break; } $temp = $a; $a = $c; $c = bcsub($temp, bcmul($c, $q)); } $temp = new Math_BigInteger(); $temp->value = (bccomp($c, '0') < 0) ? bcadd($c, $n) : $c; // $u contains the gcd of $this and $n return (bccomp($u,'1') == 0) ? $temp : false; } // if $this and $n are even, return false. if ( !($this->value[0]&1) && !($n->value[0]&1) ) { return false; } $n = $n->_copy(); $n->is_negative = false; if ($this->compare(new Math_BigInteger()) < 0) { // is_negative is currently true. since we need it to be false, we'll just set it to false, temporarily, // and reset it as true, later. $this->is_negative = false; $temp = $this->modInverse($n); if ($temp === false) { return false; } $temp = $n->subtract($temp); $this->is_negative = true; return $temp; } $u = $n->_copy(); $x = $this; //list(, $x) = $this->divide($n); $v = $x->_copy(); $a = new Math_BigInteger(); $b = new Math_BigInteger(); $c = new Math_BigInteger(); $d = new Math_BigInteger(); $a->value = $d->value = array(1); while ( !empty($u->value) ) { while ( !($u->value[0] & 1) ) { $u->_rshift(1); if ( ($a->value[0] & 1) || ($b->value[0] & 1) ) { $a = $a->add($x); $b = $b->subtract($n); } $a->_rshift(1); $b->_rshift(1); } while ( !($v->value[0] & 1) ) { $v->_rshift(1); if ( ($c->value[0] & 1) || ($d->value[0] & 1) ) { $c = $c->add($x); $d = $d->subtract($n); } $c->_rshift(1); $d->_rshift(1); } if ($u->compare($v) >= 0) { $u = $u->subtract($v); $a = $a->subtract($c); $b = $b->subtract($d); } else { $v = $v->subtract($u); $c = $c->subtract($a); $d = $d->subtract($b); } $u->_normalize(); } // at this point, $v == gcd($this, $n). if it's not equal to 1, no modular inverse exists. if ( $v->value != array(1) ) { return false; } $d = ($d->compare(new Math_BigInteger()) < 0) ? $d->add($n) : $d; return ($this->is_negative) ? $n->subtract($d) : $d; } /** * Absolute value. * * @return Math_BigInteger * @access public */ function abs() { $temp = new Math_BigInteger(); switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp->value = gmp_abs($this->value); break; case MATH_BIGINTEGER_MODE_BCMATH: $temp->value = (bccomp($this->value, '0') < 0) ? substr($this->value, 1) : $this->value; break; default: $temp->value = $this->value; } return $temp; } /** * Compares two numbers. * * @param Math_BigInteger $x * @return Integer < 0 if $this is less than $x; > 0 if $this is greater than $x, and 0 if they are equal. * @access public * @internal Could return $this->sub($x), but that's not as fast as what we do do. */ function compare($x) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: return gmp_cmp($this->value, $x->value); case MATH_BIGINTEGER_MODE_BCMATH: return bccomp($this->value, $x->value); } $this->_normalize(); $x->_normalize(); if ( $this->is_negative != $x->is_negative ) { return ( !$this->is_negative && $x->is_negative ) ? 1 : -1; } $result = $this->is_negative ? -1 : 1; if ( count($this->value) != count($x->value) ) { return ( count($this->value) > count($x->value) ) ? $result : -$result; } for ($i = count($this->value) - 1; $i >= 0; $i--) { if ($this->value[$i] != $x->value[$i]) { return ( $this->value[$i] > $x->value[$i] ) ? $result : -$result; } } return 0; } /** * Returns a copy of $this * * PHP5 passes objects by reference while PHP4 passes by value. As such, we need a function to guarantee * that all objects are passed by value, when appropriate. More information can be found here: * * {@link http://www.php.net/manual/en/language.oop5.basic.php#51624} * * @access private * @return Math_BigInteger */ function _copy() { $temp = new Math_BigInteger(); $temp->value = $this->value; $temp->is_negative = $this->is_negative; return $temp; } /** * Logical And * * @param Math_BigInteger $x * @access public * @internal Implemented per a request by Lluis Pamies i Juarez * @return Math_BigInteger */ function bitwise_and($x) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = new Math_BigInteger(); $temp->value = gmp_and($this->value, $x->value); return $temp; case MATH_BIGINTEGER_MODE_BCMATH: return new Math_BigInteger($this->toBytes() & $x->toBytes(), 256); } $result = new Math_BigInteger(); $x_length = count($x->value); for ($i = 0; $i < $x_length; $i++) { $result->value[] = $this->value[$i] & $x->value[$i]; } return $result->_normalize(); } /** * Logical Or * * @param Math_BigInteger $x * @access public * @internal Implemented per a request by Lluis Pamies i Juarez * @return Math_BigInteger */ function bitwise_or($x) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = new Math_BigInteger(); $temp->value = gmp_or($this->value, $x->value); return $temp; case MATH_BIGINTEGER_MODE_BCMATH: return new Math_BigInteger($this->toBytes() | $x->toBytes(), 256); } $result = $this->_copy(); $x_length = count($x->value); for ($i = 0; $i < $x_length; $i++) { $result->value[$i] = $this->value[$i] | $x->value[$i]; } return $result->_normalize(); } /** * Logical Exclusive-Or * * @param Math_BigInteger $x * @access public * @internal Implemented per a request by Lluis Pamies i Juarez * @return Math_BigInteger */ function bitwise_xor($x) { switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: $temp = new Math_BigInteger(); $temp->value = gmp_xor($this->value, $x->value); return $temp; case MATH_BIGINTEGER_MODE_BCMATH: return new Math_BigInteger($this->toBytes() ^ $x->toBytes(), 256); } $result = $this->_copy(); $x_length = count($x->value); for ($i = 0; $i < $x_length; $i++) { $result->value[$i] = $this->value[$i] ^ $x->value[$i]; } return $result->_normalize(); } /** * Logical Not * * Although integers can be converted to and from various bases with relative ease, there is one piece * of information that is lost during such conversions. The number of leading zeros that number had * or should have in any given base. Per that, if you convert 1 from decimal to binary, there's no * way to know just how many leading zero's there should be. In truth, there could be any number. * * Normally, the number of leading zero's is unimportant. When doing "not", however, it is. The "not" * of 1 on an 8-bit representation of 1 is 1111 1110. The "not" of 1 on a 16-bit representation of 1 is * 1111 1111 1111 1110. When doing it on a number that's preceeded by an infinite number of zero's, it's * infinite. * * This function assumes that there are no leading zero's - that the bit-representation being used is * equal to the minimum number of required bits, unless otherwise specified in the optional parameter, * where the optional parameter represents the bit-representation being used. If the specified * bit-representation is smaller than the minimum number of bits required to represent the number, the * latter will be used as the bit-representation. * * @param $bits Integer * @access public * @internal Implemented per a request by Lluis Pamies i Juarez * @return Math_BigInteger */ function bitwise_not($bits = -1) { // calculuate "not" without regard to $bits $temp = ~$this->toBytes(); $msb = decbin(ord($temp[0])); $msb = substr($msb, strpos($msb, '0')); $temp[0] = chr(bindec($msb)); // see if we need to add extra leading 1's $current_bits = strlen($msb) + 8 * strlen($temp) - 8; $new_bits = $bits - $current_bits; if ($new_bits <= 0) { return new Math_BigInteger($temp, 256); } // generate as many leading 1's as we need to. $leading_ones = chr((1 << ($new_bits & 0x7)) - 1) . str_repeat(chr(0xFF), $new_bits >> 3); $this->_base256_lshift($leading_ones, $current_bits); $temp = str_pad($temp, ceil($bits / 8), chr(0), STR_PAD_LEFT); return new Math_BigInteger($leading_ones | $temp, 256); } /** * Logical Right Shift * * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift. * * @param Integer $shift * @return Math_BigInteger * @access public * @internal The only version that yields any speed increases is the internal version. */ function bitwise_rightShift($shift) { $temp = new Math_BigInteger(); switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: static $two; if (empty($two)) { $two = gmp_init('2'); } $temp->value = gmp_div_q($this->value, gmp_pow($two, $shift)); break; case MATH_BIGINTEGER_MODE_BCMATH: $temp->value = bcdiv($this->value, bcpow('2', $shift)); break; default: // could just replace _lshift with this, but then all _lshift() calls would need to be rewritten // and I don't want to do that... $temp->value = $this->value; $temp->_rshift($shift); } return $temp; } /** * Logical Left Shift * * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. * * @param Integer $shift * @return Math_BigInteger * @access public * @internal The only version that yields any speed increases is the internal version. */ function bitwise_leftShift($shift) { $temp = new Math_BigInteger(); switch ( MATH_BIGINTEGER_MODE ) { case MATH_BIGINTEGER_MODE_GMP: static $two; if (empty($two)) { $two = gmp_init('2'); } $temp->value = gmp_mul($this->value, gmp_pow($two, $shift)); break; case MATH_BIGINTEGER_MODE_BCMATH: $temp->value = bcmul($this->value, bcpow('2', $shift)); break; default: // could just replace _rshift with this, but then all _lshift() calls would need to be rewritten // and I don't want to do that... $temp->value = $this->value; $temp->_lshift($shift); } return $temp; } /** * Generate a random number * * $generator should be the name of a random number generating function whose first parameter is the minimum * value and whose second parameter is the maximum value. If this function needs to be seeded, it should be * done before this function is called. * * @param optional Integer $min * @param optional Integer $max * @param optional String $generator * @return Math_BigInteger * @access public */ function random($min = false, $max = false, $generator = 'mt_rand') { if ($min === false) { $min = new Math_BigInteger(0); } if ($max === false) { $max = new Math_BigInteger(0x7FFFFFFF); } $compare = $max->compare($min); if (!$compare) { return $min; } else if ($compare < 0) { // if $min is bigger then $max, swap $min and $max $temp = $max; $max = $min; $min = $temp; } $max = $max->subtract($min); $max = ltrim($max->toBytes(), chr(0)); $size = strlen($max) - 1; $random = ''; $bytes = $size & 3; for ($i = 0; $i < $bytes; $i++) { $random.= chr($generator(0, 255)); } $blocks = $size >> 2; for ($i = 0; $i < $blocks; $i++) { $random.= pack('N', $generator(-2147483648, 0x7FFFFFFF)); } $temp = new Math_BigInteger($random, 256); if ($temp->compare(new Math_BigInteger(substr($max, 1), 256)) > 0) { $random = chr($generator(0, ord($max[0]) - 1)) . $random; } else { $random = chr($generator(0, ord($max[0]) )) . $random; } $random = new Math_BigInteger($random, 256); return $random->add($min); } /** * Logical Left Shift * * Shifts BigInteger's by $shift bits. * * @param Integer $shift * @access private */ function _lshift($shift) { if ( $shift == 0 ) { return; } $num_digits = floor($shift / 26); $shift %= 26; $shift = 1 << $shift; $carry = 0; for ($i = 0; $i < count($this->value); $i++) { $temp = $this->value[$i] * $shift + $carry; $carry = floor($temp / 0x4000000); $this->value[$i] = $temp - $carry * 0x4000000; } if ( $carry ) { $this->value[] = $carry; } while ($num_digits--) { array_unshift($this->value, 0); } } /** * Logical Right Shift * * Shifts BigInteger's by $shift bits. * * @param Integer $shift * @access private */ function _rshift($shift) { if ($shift == 0) { $this->_normalize(); } $num_digits = floor($shift / 26); $shift %= 26; $carry_shift = 26 - $shift; $carry_mask = (1 << $shift) - 1; if ( $num_digits ) { $this->value = array_slice($this->value, $num_digits); } $carry = 0; for ($i = count($this->value) - 1; $i >= 0; $i--) { $temp = $this->value[$i] >> $shift | $carry; $carry = ($this->value[$i] & $carry_mask) << $carry_shift; $this->value[$i] = $temp; } $this->_normalize(); } /** * Normalize * * Deletes leading zeros. * * @see divide() * @return Math_BigInteger * @access private */ function _normalize() { if ( !count($this->value) ) { return $this; } for ($i=count($this->value) - 1; $i >= 0; $i--) { if ( $this->value[$i] ) { break; } unset($this->value[$i]); } return $this; } /** * Array Repeat * * @param $input Array * @param $multiplier mixed * @return Array * @access private */ function _array_repeat($input, $multiplier) { return ($multiplier) ? array_fill(0, $multiplier, $input) : array(); } /** * Logical Left Shift * * Shifts binary strings $shift bits, essentially multiplying by 2**$shift. * * @param $x String * @param $shift Integer * @return String * @access private */ function _base256_lshift(&$x, $shift) { if ($shift == 0) { return; } $num_bytes = $shift >> 3; // eg. floor($shift/8) $shift &= 7; // eg. $shift % 8 $carry = 0; for ($i = strlen($x) - 1; $i >= 0; $i--) { $temp = ord($x[$i]) << $shift | $carry; $x[$i] = chr($temp); $carry = $temp >> 8; } $carry = ($carry != 0) ? chr($carry) : ''; $x = $carry . $x . str_repeat(chr(0), $num_bytes); } /** * Logical Right Shift * * Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder. * * @param $x String * @param $shift Integer * @return String * @access private */ function _base256_rshift(&$x, $shift) { if ($shift == 0) { $x = ltrim($x, chr(0)); return ''; } $num_bytes = $shift >> 3; // eg. floor($shift/8) $shift &= 7; // eg. $shift % 8 $remainder = ''; if ($num_bytes) { $start = $num_bytes > strlen($x) ? -strlen($x) : -$num_bytes; $remainder = substr($x, $start); $x = substr($x, 0, -$num_bytes); } $carry = 0; $carry_shift = 8 - $shift; for ($i = 0; $i < strlen($x); $i++) { $temp = (ord($x[$i]) >> $shift) | $carry; $carry = (ord($x[$i]) << $carry_shift) & 0xFF; $x[$i] = chr($temp); } $x = ltrim($x, chr(0)); $remainder = chr($carry >> $carry_shift) . $remainder; return ltrim($remainder, chr(0)); } // one quirk about how the following functions are implemented is that PHP defines N to be an unsigned long // at 32-bits, while java's longs are 64-bits. /** * Converts 32-bit integers to bytes. * * @param Integer $x * @return String * @access private */ function _int2bytes($x) { return ltrim(pack('N', $x), chr(0)); } /** * Converts bytes to 32-bit integers * * @param String $x * @return Integer * @access private */ function _bytes2int($x) { $temp = unpack('Nint', str_pad($x, 4, chr(0), STR_PAD_LEFT)); return $temp['int']; } }