* encrypt($plaintext); * * echo $privatekey->decrypt($ciphertext); * ?> * * * Here's an example of how to create signatures and verify signatures with this library: * * sign($plaintext); * * echo $publickey->verify($plaintext, $signature) ? 'verified' : 'unverified'; * ?> * * * @category Crypt * @package RSA * @author Jim Wigginton * @copyright 2009 Jim Wigginton * @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://phpseclib.sourceforge.net */ namespace phpseclib\Crypt; use ParagonIE\ConstantTime\Base64; use phpseclib\File\ASN1; use phpseclib\Math\BigInteger; use phpseclib\Common\Functions\Strings; use phpseclib\File\ASN1\Maps\DigestInfo; use phpseclib\Crypt\Common\AsymmetricKey; use phpseclib\Exception\UnsupportedAlgorithmException; /** * Pure-PHP PKCS#1 compliant implementation of RSA. * * @package RSA * @author Jim Wigginton * @access public */ class RSA extends AsymmetricKey { /** * Algorithm Name * * @var string * @access private */ const ALGORITHM = 'RSA'; /**#@+ * @access public * @see self::encrypt() * @see self::decrypt() */ /** * Use {@link http://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding Optimal Asymmetric Encryption Padding} * (OAEP) for encryption / decryption. * * Uses sha256 by default * * @see self::setHash() * @see self::setMGFHash() */ const PADDING_OAEP = 1; /** * Use PKCS#1 padding. * * Although self::PADDING_OAEP / self::PADDING_PSS offers more security, including PKCS#1 padding is necessary for purposes of backwards * compatibility with protocols (like SSH-1) written before OAEP's introduction. */ const PADDING_PKCS1 = 2; /** * Do not use any padding * * Although this method is not recommended it can none-the-less sometimes be useful if you're trying to decrypt some legacy * stuff, if you're trying to diagnose why an encrypted message isn't decrypting, etc. */ const PADDING_NONE = 3; /** * Use PKCS#1 padding with PKCS1 v1.5 compatibility * * A PKCS1 v2.1 encrypted message may not successfully decrypt with a PKCS1 v1.5 implementation (such as OpenSSL). */ const PADDING_PKCS15_COMPAT = 6; /**#@-*/ /**#@+ * @access public * @see self::sign() * @see self::verify() * @see self::setHash() */ /** * Use the Probabilistic Signature Scheme for signing * * Uses sha256 and 0 as the salt length * * @see self::setSaltLength() * @see self::setMGFHash() * @see self::setHash() */ const PADDING_PSS = 4; /** * Use a relaxed version of PKCS#1 padding for signature verification */ const PADDING_RELAXED_PKCS1 = 5; /**#@-*/ /** * Modulus (ie. n) * * @var \phpseclib\Math\BigInteger * @access private */ private $modulus; /** * Modulus length * * @var \phpseclib\Math\BigInteger * @access private */ private $k; /** * Exponent (ie. e or d) * * @var \phpseclib\Math\BigInteger * @access private */ private $exponent; /** * Primes for Chinese Remainder Theorem (ie. p and q) * * @var array * @access private */ private $primes; /** * Exponents for Chinese Remainder Theorem (ie. dP and dQ) * * @var array * @access private */ private $exponents; /** * Coefficients for Chinese Remainder Theorem (ie. qInv) * * @var array * @access private */ private $coefficients; /** * Hash name * * @var string * @access private */ private $hashName; /** * Length of hash function output * * @var int * @access private */ private $hLen; /** * Length of salt * * @var int * @access private */ private $sLen; /** * Hash function for the Mask Generation Function * * @var \phpseclib\Crypt\Hash * @access private */ private $mgfHash; /** * Length of MGF hash function output * * @var int * @access private */ private $mgfHLen; /** * Public Exponent * * @var mixed * @access private */ private $publicExponent = false; /** * Public exponent * * @var int * @link http://en.wikipedia.org/wiki/65537_%28number%29 * @access private */ private static $defaultExponent = 65537; /** * Smallest Prime * * Per , this number ought not result in primes smaller * than 256 bits. As a consequence if the key you're trying to create is 1024 bits and you've set smallestPrime * to 384 bits then you're going to get a 384 bit prime and a 640 bit prime (384 + 1024 % 384). At least if * engine is set to self::ENGINE_INTERNAL. If Engine is set to self::ENGINE_OPENSSL then smallest Prime is * ignored (ie. multi-prime RSA support is more intended as a way to speed up RSA key generation when there's * a chance neither gmp nor OpenSSL are installed) * * @var int * @access private */ private static $smallestPrime = 4096; /** * Enable Blinding? * * @var bool * @access private */ private static $enableBlinding = true; /** * The constructor * * If you want to make use of the openssl extension, you'll need to set the mode manually, yourself. The reason * \phpseclib\Crypt\RSA doesn't do it is because OpenSSL doesn't fail gracefully. openssl_pkey_new(), in particular, requires * openssl.cnf be present somewhere and, unfortunately, the only real way to find out is too late. * * @return \phpseclib\Crypt\RSA * @access public */ public function __construct() { parent::__construct(); //$this->hash = new Hash('sha256'); $this->hLen = $this->hash->getLengthInBytes(); $this->hashName = 'sha256'; $this->mgfHash = new Hash('sha256'); $this->mgfHLen = $this->mgfHash->getLengthInBytes(); } /** * Sets the public exponent * * This will be 65537 unless changed. * * @access public * @param int $val */ public static function setExponent($val) { self::$defaultExponent = $val; } /** * Sets the smallest prime number in bits * * This will be 4096 unless changed. * * @access public * @param int $val */ public static function setSmallestPrime($val) { self::$smallestPrime = $val; } /** * Create public / private key pair * * Returns an array with the following two elements: * - 'privatekey': The private key. * - 'publickey': The public key. * * @access public * @param int $bits * @param array $p */ public static function createKey($bits = 2048) { self::initialize_static_variables(); if (!isset(self::$engine)) { self::setPreferredEngine(self::ENGINE_OPENSSL); } // OpenSSL uses 65537 as the exponent and requires RSA keys be 384 bits minimum if (self::$engine == self::ENGINE_OPENSSL && $bits >= 384 && self::$defaultExponent == 65537) { $config = []; if (isset(self::$configFile)) { $config['config'] = self::$configFile; } $rsa = openssl_pkey_new(['private_key_bits' => $bits] + $config); openssl_pkey_export($rsa, $privatekeystr, null, $config); $privatekey = new RSA(); $privatekey->load($privatekeystr); $publickeyarr = openssl_pkey_get_details($rsa); $publickey = new RSA(); $publickey->load($publickeyarr['key']); $publickey->setPublicKey(); // clear the buffer of error strings stemming from a minimalistic openssl.cnf while (openssl_error_string() !== false) { } return compact('privatekey', 'publickey'); } static $e; if (!isset($e)) { $e = new BigInteger(self::$defaultExponent); } $regSize = $bits >> 1; // divide by two to see how many bits P and Q would be if ($regSize > self::$smallestPrime) { $num_primes = floor($bits / self::$smallestPrime); $regSize = self::$smallestPrime; } else { $num_primes = 2; } $n = clone self::$one; $exponents = $coefficients = $primes = []; $lcm = [ 'top' => clone self::$one, 'bottom' => false ]; do { for ($i = 1; $i <= $num_primes; $i++) { if ($i != $num_primes) { $primes[$i] = BigInteger::randomPrime($regSize); } else { extract(BigInteger::minMaxBits($bits)); list($min) = $min->divide($n); $min = $min->add(self::$one); list($max) = $max->divide($n); $primes[$i] = BigInteger::randomRangePrime($min, $max); } // the first coefficient is calculated differently from the rest // ie. instead of being $primes[1]->modInverse($primes[2]), it's $primes[2]->modInverse($primes[1]) if ($i > 2) { $coefficients[$i] = $n->modInverse($primes[$i]); } $n = $n->multiply($primes[$i]); $temp = $primes[$i]->subtract(self::$one); // textbook RSA implementations use Euler's totient function instead of the least common multiple. // see http://en.wikipedia.org/wiki/Euler%27s_totient_function $lcm['top'] = $lcm['top']->multiply($temp); $lcm['bottom'] = $lcm['bottom'] === false ? $temp : $lcm['bottom']->gcd($temp); } list($temp) = $lcm['top']->divide($lcm['bottom']); $gcd = $temp->gcd($e); $i0 = 1; } while (!$gcd->equals(self::$one)); $coefficients[2] = $primes[2]->modInverse($primes[1]); $d = $e->modInverse($temp); foreach ($primes as $i => $prime) { $temp = $prime->subtract(self::$one); $exponents[$i] = $e->modInverse($temp); } // from : // RSAPrivateKey ::= SEQUENCE { // version Version, // modulus INTEGER, -- n // publicExponent INTEGER, -- e // privateExponent INTEGER, -- d // prime1 INTEGER, -- p // prime2 INTEGER, -- q // exponent1 INTEGER, -- d mod (p-1) // exponent2 INTEGER, -- d mod (q-1) // coefficient INTEGER, -- (inverse of q) mod p // otherPrimeInfos OtherPrimeInfos OPTIONAL // } $privatekey = new RSA(); $privatekey->modulus = $n; $privatekey->k = $bits >> 3; $privatekey->publicExponent = $e; $privatekey->exponent = $d; $privatekey->privateExponent = $e; $privatekey->primes = $primes; $privatekey->exponents = $exponents; $privatekey->coefficients = $coefficients; $publickey = new RSA(); $publickey->modulus = $n; $publickey->k = $bits >> 3; $publickey->exponent = $e; $publickey->publicExponent = $e; return compact('privatekey', 'publickey'); } /** * Loads a public or private key * * Returns true on success and false on failure (ie. an incorrect password was provided or the key was malformed) * * @access public * @param string $key * @param int $type optional */ public function load($key, $type = false) { if ($key instanceof RSA) { $this->privateKeyFormat = $key->privateKeyFormat; $this->publicKeyFormat = $key->publicKeyFormat; $this->format = $key->format; $this->k = $key->k; $this->hLen = $key->hLen; $this->sLen = $key->sLen; $this->mgfHLen = $key->mgfHLen; $this->password = $key->password; if (is_object($key->hash)) { $this->hash = new Hash($key->hash->getHash()); } if (is_object($key->mgfHash)) { $this->mgfHash = new Hash($key->mgfHash->getHash()); } if (is_object($key->modulus)) { $this->modulus = clone $key->modulus; } if (is_object($key->exponent)) { $this->exponent = clone $key->exponent; } if (is_object($key->publicExponent)) { $this->publicExponent = clone $key->publicExponent; } $this->primes = []; $this->exponents = []; $this->coefficients = []; foreach ($this->primes as $prime) { $this->primes[] = clone $prime; } foreach ($this->exponents as $exponent) { $this->exponents[] = clone $exponent; } foreach ($this->coefficients as $coefficient) { $this->coefficients[] = clone $coefficient; } return true; } $components = parent::load($key, $type); if ($components === false) { $this->comment = null; $this->modulus = null; $this->k = null; $this->exponent = null; $this->primes = null; $this->exponents = null; $this->coefficients = null; $this->publicExponent = null; return false; } $this->modulus = $components['modulus']; $this->k = $this->modulus->getLengthInBytes(); $this->exponent = isset($components['privateExponent']) ? $components['privateExponent'] : $components['publicExponent']; if (isset($components['primes'])) { $this->primes = $components['primes']; $this->exponents = $components['exponents']; $this->coefficients = $components['coefficients']; $this->publicExponent = $components['publicExponent']; } else { $this->primes = []; $this->exponents = []; $this->coefficients = []; $this->publicExponent = false; } if ($components['isPublicKey']) { $this->setPublicKey(); } return true; } /** * Returns the private key * * The private key is only returned if the currently loaded key contains the constituent prime numbers. * * @see self::getPublicKey() * @access public * @param string $type optional * @return mixed */ public function getPrivateKey($type = 'PKCS8') { $type = self::validatePlugin('Keys', $type, 'savePrivateKey'); if ($type === false) { return false; } if (empty($this->primes)) { return false; } return $type::savePrivateKey($this->modulus, $this->publicExponent, $this->exponent, $this->primes, $this->exponents, $this->coefficients, $this->password); /* $key = $type::savePrivateKey($this->modulus, $this->publicExponent, $this->exponent, $this->primes, $this->exponents, $this->coefficients, $this->password); if ($key !== false || count($this->primes) == 2) { return $key; } $nSize = $this->getSize() >> 1; $primes = [1 => clone self::$one, clone self::$one]; $i = 1; foreach ($this->primes as $prime) { $primes[$i] = $primes[$i]->multiply($prime); if ($primes[$i]->getLength() >= $nSize) { $i++; } } $exponents = []; $coefficients = [2 => $primes[2]->modInverse($primes[1])]; foreach ($primes as $i => $prime) { $temp = $prime->subtract(self::$one); $exponents[$i] = $this->modulus->modInverse($temp); } return $type::savePrivateKey($this->modulus, $this->publicExponent, $this->exponent, $primes, $exponents, $coefficients, $this->password); */ } /** * Returns a minimalistic private key * * Returns the private key without the prime number constituants. Structurally identical to a public key that * hasn't been set as the public key * * @see self::getPrivateKey() * @access private * @param string $type optional * @return mixed */ protected function getPrivatePublicKey($type = 'PKCS8') { $type = self::validatePlugin('Keys', $type, 'savePublicKey'); if ($type === false) { return false; } if (empty($this->modulus) || empty($this->exponent)) { return false; } $oldFormat = $this->publicKeyFormat; $this->publicKeyFormat = $type; $temp = $type::savePublicKey($this->modulus, $this->exponent); $this->publicKeyFormat = $oldFormat; return $temp; } /** * Returns the key size * * More specifically, this returns the size of the modulo in bits. * * @access public * @return int */ public function getLength() { return !isset($this->modulus) ? 0 : $this->modulus->getLength(); } /** * Defines the public key * * Some private key formats define the public exponent and some don't. Those that don't define it are problematic when * used in certain contexts. For example, in SSH-2, RSA authentication works by sending the public key along with a * message signed by the private key to the server. The SSH-2 server looks the public key up in an index of public keys * and if it's present then proceeds to verify the signature. Problem is, if your private key doesn't include the public * exponent this won't work unless you manually add the public exponent. phpseclib tries to guess if the key being used * is the public key but in the event that it guesses incorrectly you might still want to explicitly set the key as being * public. * * Do note that when a new key is loaded the index will be cleared. * * Returns true on success, false on failure * * @see self::getPublicKey() * @access public * @param string $key optional * @param int $type optional * @return bool */ public function setPublicKey($key = false, $type = false) { // if a public key has already been loaded return false if (!empty($this->publicExponent)) { return false; } if ($key === false && !empty($this->modulus)) { $this->publicExponent = $this->exponent; return true; } $components = parent::setPublicKey($key, $type); if ($components === false) { return false; } if (empty($this->modulus) || !$this->modulus->equals($components['modulus'])) { $this->modulus = $components['modulus']; $this->exponent = $this->publicExponent = $components['publicExponent']; return true; } $this->publicExponent = $components['publicExponent']; return true; } /** * Defines the private key * * If phpseclib guessed a private key was a public key and loaded it as such it might be desirable to force * phpseclib to treat the key as a private key. This function will do that. * * Do note that when a new key is loaded the index will be cleared. * * Returns true on success, false on failure * * @see self::getPublicKey() * @access public * @param string $key optional * @param int $type optional * @return bool */ public function setPrivateKey($key = false, $type = false) { if ($key === false && !empty($this->publicExponent)) { $this->publicExponent = false; return true; } $rsa = new RSA(); if (!$rsa->load($key, $type)) { return false; } $rsa->publicExponent = false; // don't overwrite the old key if the new key is invalid $this->load($rsa); return true; } /** * Returns the public key * * The public key is only returned under two circumstances - if the private key had the public key embedded within it * or if the public key was set via setPublicKey(). If the currently loaded key is supposed to be the public key this * function won't return it since this library, for the most part, doesn't distinguish between public and private keys. * * @see self::getPrivateKey() * @access public * @param string $type optional * @return mixed */ public function getPublicKey($type = 'PKCS8') { $type = self::validatePlugin('Keys', $type, 'savePublicKey'); if ($type === false) { return false; } if (empty($this->modulus) || empty($this->publicExponent)) { return false; } return $type::savePublicKey($this->modulus, $this->publicExponent); } /** * __toString() magic method * * @access public * @return string */ public function __toString() { try { $key = $this->getPrivateKey($this->privateKeyFormat); if (is_string($key)) { return $key; } $key = $this->getPrivatePublicKey($this->publicKeyFormat); return is_string($key) ? $key : ''; } catch (\Exception $e) { return ''; } } /** * Determines which hashing function should be used * * Used with signature production / verification and (if the encryption mode is self::PADDING_OAEP) encryption and * decryption. * * @access public * @param string $hash */ public function setHash($hash) { // \phpseclib\Crypt\Hash supports algorithms that PKCS#1 doesn't support. md5-96 and sha1-96, for example. switch (strtolower($hash)) { case 'md2': case 'md5': case 'sha1': case 'sha256': case 'sha384': case 'sha512': case 'sha224': case 'sha512/224': case 'sha512/256': $this->hash = new Hash($hash); $this->hashName = $hash; break; default: throw new UnsupportedAlgorithmException( 'The only supported hash algorithms are: md2, md5, sha1, sha256, sha384, sha512, sha224, sha512/224, sha512/256' ); } $this->hLen = $this->hash->getLengthInBytes(); } /** * Determines which hashing function should be used for the mask generation function * * The mask generation function is used by self::PADDING_OAEP and self::PADDING_PSS and although it's * best if Hash and MGFHash are set to the same thing this is not a requirement. * * @access public * @param string $hash */ public function setMGFHash($hash) { // \phpseclib\Crypt\Hash supports algorithms that PKCS#1 doesn't support. md5-96 and sha1-96, for example. switch ($hash) { case 'md2': case 'md5': case 'sha1': case 'sha256': case 'sha384': case 'sha512': case 'sha224': case 'sha512/224': case 'sha512/256': $this->mgfHash = new Hash($hash); break; default: $this->mgfHash = new Hash('sha256'); } $this->mgfHLen = $this->mgfHash->getLengthInBytes(); } /** * Determines the salt length * * To quote from {@link http://tools.ietf.org/html/rfc3447#page-38 RFC3447#page-38}: * * Typical salt lengths in octets are hLen (the length of the output * of the hash function Hash) and 0. * * @access public * @param int $format */ public function setSaltLength($sLen) { $this->sLen = $sLen; } /** * Integer-to-Octet-String primitive * * See {@link http://tools.ietf.org/html/rfc3447#section-4.1 RFC3447#section-4.1}. * * @access private * @param bool|\phpseclib\Math\BigInteger $x * @param int $xLen * @return bool|string */ private function i2osp($x, $xLen) { if ($x === false) { return false; } $x = $x->toBytes(); if (strlen($x) > $xLen) { return false; } return str_pad($x, $xLen, chr(0), STR_PAD_LEFT); } /** * Octet-String-to-Integer primitive * * See {@link http://tools.ietf.org/html/rfc3447#section-4.2 RFC3447#section-4.2}. * * @access private * @param string $x * @return \phpseclib\Math\BigInteger */ private function os2ip($x) { return new BigInteger($x, 256); } /** * Exponentiate with or without Chinese Remainder Theorem * * See {@link http://tools.ietf.org/html/rfc3447#section-5.1.1 RFC3447#section-5.1.2}. * * @access private * @param \phpseclib\Math\BigInteger $x * @return \phpseclib\Math\BigInteger */ private function exponentiate($x) { switch (true) { case empty($this->primes): case $this->primes[1]->equals(self::$zero): case empty($this->coefficients): case $this->coefficients[2]->equals(self::$zero): case empty($this->exponents): case $this->exponents[1]->equals(self::$zero): return $x->modPow($this->exponent, $this->modulus); } $num_primes = count($this->primes); if (!static::$enableBlinding) { $m_i = [ 1 => $x->modPow($this->exponents[1], $this->primes[1]), 2 => $x->modPow($this->exponents[2], $this->primes[2]) ]; $h = $m_i[1]->subtract($m_i[2]); $h = $h->multiply($this->coefficients[2]); list(, $h) = $h->divide($this->primes[1]); $m = $m_i[2]->add($h->multiply($this->primes[2])); $r = $this->primes[1]; for ($i = 3; $i <= $num_primes; $i++) { $m_i = $x->modPow($this->exponents[$i], $this->primes[$i]); $r = $r->multiply($this->primes[$i - 1]); $h = $m_i->subtract($m); $h = $h->multiply($this->coefficients[$i]); list(, $h) = $h->divide($this->primes[$i]); $m = $m->add($r->multiply($h)); } } else { $smallest = $this->primes[1]; for ($i = 2; $i <= $num_primes; $i++) { if ($smallest->compare($this->primes[$i]) > 0) { $smallest = $this->primes[$i]; } } $r = BigInteger::randomRange(self::$one, $smallest->subtract(self::$one)); $m_i = [ 1 => $this->blind($x, $r, 1), 2 => $this->blind($x, $r, 2) ]; $h = $m_i[1]->subtract($m_i[2]); $h = $h->multiply($this->coefficients[2]); list(, $h) = $h->divide($this->primes[1]); $m = $m_i[2]->add($h->multiply($this->primes[2])); $r = $this->primes[1]; for ($i = 3; $i <= $num_primes; $i++) { $m_i = $this->blind($x, $r, $i); $r = $r->multiply($this->primes[$i - 1]); $h = $m_i->subtract($m); $h = $h->multiply($this->coefficients[$i]); list(, $h) = $h->divide($this->primes[$i]); $m = $m->add($r->multiply($h)); } } return $m; } /** * Enable RSA Blinding * * @access public */ public static function enableBlinding() { static::$enableBlinding = true; } /** * Disable RSA Blinding * * @access public */ public static function disableBlinding() { static::$enableBlinding = false; } /** * Performs RSA Blinding * * Protects against timing attacks by employing RSA Blinding. * Returns $x->modPow($this->exponents[$i], $this->primes[$i]) * * @access private * @param \phpseclib\Math\BigInteger $x * @param \phpseclib\Math\BigInteger $r * @param int $i * @return \phpseclib\Math\BigInteger */ private function blind($x, $r, $i) { $x = $x->multiply($r->modPow($this->publicExponent, $this->primes[$i])); $x = $x->modPow($this->exponents[$i], $this->primes[$i]); $r = $r->modInverse($this->primes[$i]); $x = $x->multiply($r); list(, $x) = $x->divide($this->primes[$i]); return $x; } /** * RSAEP * * See {@link http://tools.ietf.org/html/rfc3447#section-5.1.1 RFC3447#section-5.1.1}. * * @access private * @param \phpseclib\Math\BigInteger $m * @return bool|\phpseclib\Math\BigInteger */ private function rsaep($m) { if ($m->compare(self::$zero) < 0 || $m->compare($this->modulus) > 0) { return false; } return $this->exponentiate($m); } /** * RSADP * * See {@link http://tools.ietf.org/html/rfc3447#section-5.1.2 RFC3447#section-5.1.2}. * * @access private * @param \phpseclib\Math\BigInteger $c * @return bool|\phpseclib\Math\BigInteger */ private function rsadp($c) { if ($c->compare(self::$zero) < 0 || $c->compare($this->modulus) > 0) { return false; } return $this->exponentiate($c); } /** * RSASP1 * * See {@link http://tools.ietf.org/html/rfc3447#section-5.2.1 RFC3447#section-5.2.1}. * * @access private * @param \phpseclib\Math\BigInteger $m * @return bool|\phpseclib\Math\BigInteger */ private function rsasp1($m) { if ($m->compare(self::$zero) < 0 || $m->compare($this->modulus) > 0) { return false; } return $this->exponentiate($m); } /** * RSAVP1 * * See {@link http://tools.ietf.org/html/rfc3447#section-5.2.2 RFC3447#section-5.2.2}. * * @access private * @param \phpseclib\Math\BigInteger $s * @return bool|\phpseclib\Math\BigInteger */ private function rsavp1($s) { if ($s->compare(self::$zero) < 0 || $s->compare($this->modulus) > 0) { return false; } return $this->exponentiate($s); } /** * MGF1 * * See {@link http://tools.ietf.org/html/rfc3447#appendix-B.2.1 RFC3447#appendix-B.2.1}. * * @access private * @param string $mgfSeed * @param int $mgfLen * @return string */ private function mgf1($mgfSeed, $maskLen) { // if $maskLen would yield strings larger than 4GB, PKCS#1 suggests a "Mask too long" error be output. $t = ''; $count = ceil($maskLen / $this->mgfHLen); for ($i = 0; $i < $count; $i++) { $c = pack('N', $i); $t.= $this->mgfHash->hash($mgfSeed . $c); } return substr($t, 0, $maskLen); } /** * RSAES-OAEP-ENCRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.1.1 RFC3447#section-7.1.1} and * {http://en.wikipedia.org/wiki/Optimal_Asymmetric_Encryption_Padding OAES}. * * @access private * @param string $m * @param string $l * @throws \OutOfBoundsException if strlen($m) > $this->k - 2 * $this->hLen - 2 * @return string */ private function rsaes_oaep_encrypt($m, $l = '') { $mLen = strlen($m); // Length checking // if $l is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. if ($mLen > $this->k - 2 * $this->hLen - 2) { throw new \OutOfBoundsException('Message too long'); } // EME-OAEP encoding $lHash = $this->hash->hash($l); $ps = str_repeat(chr(0), $this->k - $mLen - 2 * $this->hLen - 2); $db = $lHash . $ps . chr(1) . $m; $seed = Random::string($this->hLen); $dbMask = $this->mgf1($seed, $this->k - $this->hLen - 1); $maskedDB = $db ^ $dbMask; $seedMask = $this->mgf1($maskedDB, $this->hLen); $maskedSeed = $seed ^ $seedMask; $em = chr(0) . $maskedSeed . $maskedDB; // RSA encryption $m = $this->os2ip($em); $c = $this->rsaep($m); $c = $this->i2osp($c, $this->k); // Output the ciphertext C return $c; } /** * RSAES-OAEP-DECRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.1.2 RFC3447#section-7.1.2}. The fact that the error * messages aren't distinguishable from one another hinders debugging, but, to quote from RFC3447#section-7.1.2: * * Note. Care must be taken to ensure that an opponent cannot * distinguish the different error conditions in Step 3.g, whether by * error message or timing, or, more generally, learn partial * information about the encoded message EM. Otherwise an opponent may * be able to obtain useful information about the decryption of the * ciphertext C, leading to a chosen-ciphertext attack such as the one * observed by Manger [36]. * * As for $l... to quote from {@link http://tools.ietf.org/html/rfc3447#page-17 RFC3447#page-17}: * * Both the encryption and the decryption operations of RSAES-OAEP take * the value of a label L as input. In this version of PKCS #1, L is * the empty string; other uses of the label are outside the scope of * this document. * * @access private * @param string $c * @param string $l * @return bool|string */ private function rsaes_oaep_decrypt($c, $l = '') { // Length checking // if $l is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. if (strlen($c) != $this->k || $this->k < 2 * $this->hLen + 2) { return false; } // RSA decryption $c = $this->os2ip($c); $m = $this->rsadp($c); $em = $this->i2osp($m, $this->k); if ($em === false) { return false; } // EME-OAEP decoding $lHash = $this->hash->hash($l); $y = ord($em[0]); $maskedSeed = substr($em, 1, $this->hLen); $maskedDB = substr($em, $this->hLen + 1); $seedMask = $this->mgf1($maskedDB, $this->hLen); $seed = $maskedSeed ^ $seedMask; $dbMask = $this->mgf1($seed, $this->k - $this->hLen - 1); $db = $maskedDB ^ $dbMask; $lHash2 = substr($db, 0, $this->hLen); $m = substr($db, $this->hLen); if (!Strings::equals($lHash, $lHash2)) { return false; } $m = ltrim($m, chr(0)); if (ord($m[0]) != 1) { return false; } // Output the message M return substr($m, 1); } /** * Raw Encryption / Decryption * * Doesn't use padding and is not recommended. * * @access private * @param string $m * @return bool|string * @throws \OutOfBoundsException if strlen($m) > $this->k */ private function raw_encrypt($m) { if (strlen($m) > $this->k) { throw new \OutOfBoundsException('Message too long'); } $temp = $this->os2ip($m); $temp = $this->rsaep($temp); return $this->i2osp($temp, $this->k); } /** * RSAES-PKCS1-V1_5-ENCRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.2.1 RFC3447#section-7.2.1}. * * @access private * @param string $m * @param bool $pkcs15_compat optional * @throws \OutOfBoundsException if strlen($m) > $this->k - 11 * @return bool|string */ private function rsaes_pkcs1_v1_5_encrypt($m, $pkcs15_compat = false) { $mLen = strlen($m); // Length checking if ($mLen > $this->k - 11) { throw new \OutOfBoundsException('Message too long'); } // EME-PKCS1-v1_5 encoding $psLen = $this->k - $mLen - 3; $ps = ''; while (strlen($ps) != $psLen) { $temp = Random::string($psLen - strlen($ps)); $temp = str_replace("\x00", '', $temp); $ps.= $temp; } $type = 2; // see the comments of _rsaes_pkcs1_v1_5_decrypt() to understand why this is being done if ($pkcs15_compat && (!isset($this->publicExponent) || $this->exponent !== $this->publicExponent)) { $type = 1; // "The padding string PS shall consist of k-3-||D|| octets. ... for block type 01, they shall have value FF" $ps = str_repeat("\xFF", $psLen); } $em = chr(0) . chr($type) . $ps . chr(0) . $m; // RSA encryption $m = $this->os2ip($em); $c = $this->rsaep($m); $c = $this->i2osp($c, $this->k); // Output the ciphertext C return $c; } /** * RSAES-PKCS1-V1_5-DECRYPT * * See {@link http://tools.ietf.org/html/rfc3447#section-7.2.2 RFC3447#section-7.2.2}. * * For compatibility purposes, this function departs slightly from the description given in RFC3447. * The reason being that RFC2313#section-8.1 (PKCS#1 v1.5) states that ciphertext's encrypted by the * private key should have the second byte set to either 0 or 1 and that ciphertext's encrypted by the * public key should have the second byte set to 2. In RFC3447 (PKCS#1 v2.1), the second byte is supposed * to be 2 regardless of which key is used. For compatibility purposes, we'll just check to make sure the * second byte is 2 or less. If it is, we'll accept the decrypted string as valid. * * As a consequence of this, a private key encrypted ciphertext produced with \phpseclib\Crypt\RSA may not decrypt * with a strictly PKCS#1 v1.5 compliant RSA implementation. Public key encrypted ciphertext's should but * not private key encrypted ciphertext's. * * @access private * @param string $c * @return bool|string */ private function rsaes_pkcs1_v1_5_decrypt($c) { // Length checking if (strlen($c) != $this->k) { // or if k < 11 return false; } // RSA decryption $c = $this->os2ip($c); $m = $this->rsadp($c); $em = $this->i2osp($m, $this->k); if ($em === false) { return false; } // EME-PKCS1-v1_5 decoding if (ord($em[0]) != 0 || ord($em[1]) > 2) { return false; } $ps = substr($em, 2, strpos($em, chr(0), 2) - 2); $m = substr($em, strlen($ps) + 3); if (strlen($ps) < 8) { return false; } // Output M return $m; } /** * EMSA-PSS-ENCODE * * See {@link http://tools.ietf.org/html/rfc3447#section-9.1.1 RFC3447#section-9.1.1}. * * @access private * @param string $m * @throws \RuntimeException on encoding error * @param int $emBits */ private function emsa_pss_encode($m, $emBits) { // if $m is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. $emLen = ($emBits + 1) >> 3; // ie. ceil($emBits / 8) $sLen = $this->sLen !== null ? $this->sLen : $this->hLen; $mHash = $this->hash->hash($m); if ($emLen < $this->hLen + $sLen + 2) { return false; } $salt = Random::string($sLen); $m2 = "\0\0\0\0\0\0\0\0" . $mHash . $salt; $h = $this->hash->hash($m2); $ps = str_repeat(chr(0), $emLen - $sLen - $this->hLen - 2); $db = $ps . chr(1) . $salt; $dbMask = $this->mgf1($h, $emLen - $this->hLen - 1); $maskedDB = $db ^ $dbMask; $maskedDB[0] = ~chr(0xFF << ($emBits & 7)) & $maskedDB[0]; $em = $maskedDB . $h . chr(0xBC); return $em; } /** * EMSA-PSS-VERIFY * * See {@link http://tools.ietf.org/html/rfc3447#section-9.1.2 RFC3447#section-9.1.2}. * * @access private * @param string $m * @param string $em * @param int $emBits * @return string */ private function emsa_pss_verify($m, $em, $emBits) { // if $m is larger than two million terrabytes and you're using sha1, PKCS#1 suggests a "Label too long" error // be output. $emLen = ($emBits + 1) >> 3; // ie. ceil($emBits / 8); $sLen = $this->sLen !== null ? $this->sLen : $this->hLen; $mHash = $this->hash->hash($m); if ($emLen < $this->hLen + $sLen + 2) { return false; } if ($em[strlen($em) - 1] != chr(0xBC)) { return false; } $maskedDB = substr($em, 0, -$this->hLen - 1); $h = substr($em, -$this->hLen - 1, $this->hLen); $temp = chr(0xFF << ($emBits & 7)); if ((~$maskedDB[0] & $temp) != $temp) { return false; } $dbMask = $this->mgf1($h, $emLen - $this->hLen - 1); $db = $maskedDB ^ $dbMask; $db[0] = ~chr(0xFF << ($emBits & 7)) & $db[0]; $temp = $emLen - $this->hLen - $sLen - 2; if (substr($db, 0, $temp) != str_repeat(chr(0), $temp) || ord($db[$temp]) != 1) { return false; } $salt = substr($db, $temp + 1); // should be $sLen long $m2 = "\0\0\0\0\0\0\0\0" . $mHash . $salt; $h2 = $this->hash->hash($m2); return Strings::equals($h, $h2); } /** * RSASSA-PSS-SIGN * * See {@link http://tools.ietf.org/html/rfc3447#section-8.1.1 RFC3447#section-8.1.1}. * * @access private * @param string $m * @return bool|string */ private function rsassa_pss_sign($m) { // EMSA-PSS encoding $em = $this->emsa_pss_encode($m, 8 * $this->k - 1); // RSA signature $m = $this->os2ip($em); $s = $this->rsasp1($m); $s = $this->i2osp($s, $this->k); // Output the signature S return $s; } /** * RSASSA-PSS-VERIFY * * See {@link http://tools.ietf.org/html/rfc3447#section-8.1.2 RFC3447#section-8.1.2}. * * @access private * @param string $m * @param string $s * @return bool|string */ private function rsassa_pss_verify($m, $s) { // Length checking if (strlen($s) != $this->k) { return false; } // RSA verification $modBits = 8 * $this->k; $s2 = $this->os2ip($s); $m2 = $this->rsavp1($s2); $em = $this->i2osp($m2, $modBits >> 3); if ($em === false) { return false; } // EMSA-PSS verification return $this->emsa_pss_verify($m, $em, $modBits - 1); } /** * EMSA-PKCS1-V1_5-ENCODE * * See {@link http://tools.ietf.org/html/rfc3447#section-9.2 RFC3447#section-9.2}. * * @access private * @param string $m * @param int $emLen * @throws \LengthException if the intended encoded message length is too short * @return string */ private function emsa_pkcs1_v1_5_encode($m, $emLen) { $h = $this->hash->hash($m); // see http://tools.ietf.org/html/rfc3447#page-43 switch ($this->hashName) { case 'md2': $t = "\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x02\x05\x00\x04\x10"; break; case 'md5': $t = "\x30\x20\x30\x0c\x06\x08\x2a\x86\x48\x86\xf7\x0d\x02\x05\x05\x00\x04\x10"; break; case 'sha1': $t = "\x30\x21\x30\x09\x06\x05\x2b\x0e\x03\x02\x1a\x05\x00\x04\x14"; break; case 'sha256': $t = "\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x01\x05\x00\x04\x20"; break; case 'sha384': $t = "\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x02\x05\x00\x04\x30"; break; case 'sha512': $t = "\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x03\x05\x00\x04\x40"; break; // from https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf#page=40 case 'sha224': $t = "\x30\x2d\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x04\x05\x00\x04\x1c"; break; case 'sha512/224': $t = "\x30\x2d\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x05\x05\x00\x04\x1c"; break; case 'sha512/256': $t = "\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01\x65\x03\x04\x02\x06\x05\x00\x04\x20"; } $t.= $h; $tLen = strlen($t); if ($emLen < $tLen + 11) { throw new \LengthException('Intended encoded message length too short'); } $ps = str_repeat(chr(0xFF), $emLen - $tLen - 3); $em = "\0\1$ps\0$t"; return $em; } /** * RSASSA-PKCS1-V1_5-SIGN * * See {@link http://tools.ietf.org/html/rfc3447#section-8.2.1 RFC3447#section-8.2.1}. * * @access private * @param string $m * @throws \LengthException if the RSA modulus is too short * @return bool|string */ private function rsassa_pkcs1_v1_5_sign($m) { // EMSA-PKCS1-v1_5 encoding // If the encoding operation outputs "intended encoded message length too short," output "RSA modulus // too short" and stop. try { $em = $this->emsa_pkcs1_v1_5_encode($m, $this->k); } catch (\LengthException $e) { throw new \LengthException('RSA modulus too short'); } // RSA signature $m = $this->os2ip($em); $s = $this->rsasp1($m); $s = $this->i2osp($s, $this->k); // Output the signature S return $s; } /** * RSASSA-PKCS1-V1_5-VERIFY * * See {@link http://tools.ietf.org/html/rfc3447#section-8.2.2 RFC3447#section-8.2.2}. * * @access private * @param string $m * @param string $s * @throws \LengthException if the RSA modulus is too short * @return bool */ private function rsassa_pkcs1_v1_5_verify($m, $s) { // Length checking if (strlen($s) != $this->k) { return false; } // RSA verification $s = $this->os2ip($s); $m2 = $this->rsavp1($s); $em = $this->i2osp($m2, $this->k); if ($em === false) { return false; } // EMSA-PKCS1-v1_5 encoding // If the encoding operation outputs "intended encoded message length too short," output "RSA modulus // too short" and stop. try { $em2 = $this->emsa_pkcs1_v1_5_encode($m, $this->k); } catch (\LengthException $e) { throw new \LengthException('RSA modulus too short'); } // Compare return Strings::equals($em, $em2); } /** * RSASSA-PKCS1-V1_5-VERIFY (relaxed matching) * * Per {@link http://tools.ietf.org/html/rfc3447#page-43 RFC3447#page-43} PKCS1 v1.5 * specified the use BER encoding rather than DER encoding that PKCS1 v2.0 specified. * This means that under rare conditions you can have a perfectly valid v1.5 signature * that fails to validate with _rsassa_pkcs1_v1_5_verify(). PKCS1 v2.1 also recommends * that if you're going to validate these types of signatures you "should indicate * whether the underlying BER encoding is a DER encoding and hence whether the signature * is valid with respect to the specification given in [PKCS1 v2.0+]". so if you do * $rsa->getLastPadding() and get RSA::PADDING_RELAXED_PKCS1 back instead of * RSA::PADDING_PKCS1... that means BER encoding was used. * * @access private * @param string $m * @param string $s * @return bool */ private function rsassa_pkcs1_v1_5_relaxed_verify($m, $s) { // Length checking if (strlen($s) != $this->k) { return false; } // RSA verification $s = $this->os2ip($s); $m2 = $this->rsavp1($s); if ($m2 === false) { return false; } $em = $this->i2osp($m2, $this->k); if ($em === false) { return false; } if (Strings::shift($em, 2) != "\0\1") { return false; } $em = ltrim($em, "\xFF"); if (Strings::shift($em) != "\0") { return false; } $decoded = ASN1::decodeBER($em); if (!is_array($decoded) || empty($decoded[0]) || strlen($em) > $decoded[0]['length']) { return false; } static $oids; if (!isset($oids)) { $oids = [ '1.2.840.113549.2.2' => 'md2', '1.2.840.113549.2.4' => 'md4', // from PKCS1 v1.5 '1.2.840.113549.2.5' => 'md5', '1.3.14.3.2.26' => 'id-sha1', '2.16.840.1.101.3.4.2.1' => 'id-sha256', '2.16.840.1.101.3.4.2.2' => 'id-sha384', '2.16.840.1.101.3.4.2.3' => 'id-sha512', // from PKCS1 v2.2 '2.16.840.1.101.3.4.2.4' => 'id-sha224', '2.16.840.1.101.3.4.2.5' => 'id-sha512/224', '2.16.840.1.101.3.4.2.6' => 'id-sha512/256', ]; ASN1::loadOIDs($oids); } $decoded = ASN1::asn1map($decoded[0], DigestInfo::MAP); if (!isset($decoded) || $decoded === false) { return false; } if (!in_array($decoded['digestAlgorithm']['algorithm'], $oids)) { return false; } $hash = $decoded['digestAlgorithm']['algorithm']; $hash = substr($hash, 0, 3) == 'id-' ? substr($hash, 3) : $hash; $hash = new Hash($hash); $em = $hash->hash($m); $em2 = $decoded['digest']; return Strings::equals($em, $em2); } /** * Encryption * * Both self::PADDING_OAEP and self::PADDING_PKCS1 both place limits on how long $plaintext can be. * If $plaintext exceeds those limits it will be broken up so that it does and the resultant ciphertext's will * be concatenated together. * * @see self::decrypt() * @access public * @param string $plaintext * @param int $padding optional * @return bool|string * @throws \LengthException if the RSA modulus is too short */ public function encrypt($plaintext, $padding = self::PADDING_OAEP) { switch ($padding) { case self::PADDING_NONE: return $this->raw_encrypt($plaintext); case self::PADDING_PKCS15_COMPAT: case self::PADDING_PKCS1: return $this->rsaes_pkcs1_v1_5_encrypt($plaintext, $padding == self::PADDING_PKCS15_COMPAT); //case self::PADDING_OAEP: default: return $this->rsaes_oaep_encrypt($plaintext); } } /** * Decryption * * @see self::encrypt() * @access public * @param string $plaintext * @param int $padding optional * @return bool|string */ public function decrypt($ciphertext, $padding = self::PADDING_OAEP) { switch ($padding) { case self::PADDING_NONE: return $this->raw_encrypt($ciphertext); case self::PADDING_PKCS1: return $this->rsaes_pkcs1_v1_5_decrypt($ciphertext); //case self::PADDING_OAEP: default: return $this->rsaes_oaep_decrypt($ciphertext); } } /** * Create a signature * * @see self::verify() * @access public * @param string $message * @param int $padding optional * @return string */ public function sign($message, $padding = self::PADDING_PSS) { if (empty($this->modulus) || empty($this->exponent)) { return false; } switch ($padding) { case self::PADDING_PKCS1: case self::PADDING_RELAXED_PKCS1: return $this->rsassa_pkcs1_v1_5_sign($message); //case self::PADDING_PSS: default: return $this->rsassa_pss_sign($message); } } /** * Verifies a signature * * @see self::sign() * @access public * @param string $message * @param string $signature * @param int $padding optional * @return bool */ public function verify($message, $signature, $padding = self::PADDING_PSS) { if (empty($this->modulus) || empty($this->exponent)) { return false; } switch ($padding) { case self::PADDING_RELAXED_PKCS1: return $this->rsassa_pkcs1_v1_5_relaxed_verify($message, $signature); case self::PADDING_PKCS1: return $this->rsassa_pkcs1_v1_5_verify($message, $signature); //case self::PADDING_PSS: default: return $this->rsassa_pss_verify($message, $signature); } } }