* @copyright 2017 Jim Wigginton * @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://pear.php.net/package/Math_BigInteger */ namespace phpseclib\Math\BigInteger\Engines; use ParagonIE\ConstantTime\Hex; use phpseclib\Exception\BadConfigurationException; /** * BCMath Engine. * * @package BCMath * @author Jim Wigginton * @access public */ class BCMath extends Engine { /** * Can Bitwise operations be done fast? * * @see parent::bitwise_leftRotate() * @see parent::bitwise_rightRotate() * @access protected */ const FAST_BITWISE = false; /** * Engine Directory * * @see parent::setModExpEngine * @access protected */ const ENGINE_DIR = 'BCMath'; /** * Modular Exponentiation Engine * * @var string */ protected static $modexpEngine; /** * Engine Validity Flag * * @var bool */ protected static $isValidEngine; /** * BigInteger(0) * * @var \phpseclib\Math\BigInteger\Engines\BCMath */ protected static $zero; /** * BigInteger(1) * * @var \phpseclib\Math\BigInteger\Engines\BCMath */ protected static $one; /** * BigInteger(2) * * @var \phpseclib\Math\BigInteger\Engines\BCMath */ protected static $two; /** * Primes > 2 and < 1000 * * @var array */ protected static $primes; /** * Test for engine validity * * @see parent::__construct() * @return bool */ public static function isValidEngine() { return extension_loaded('bcmath'); } /** * Default constructor * * @param mixed $x integer Base-10 number or base-$base number if $base set. * @param int $base * @see parent::__construct() * @return \phpseclib\Math\BigInteger\Engines\BCMath */ public function __construct($x = 0, $base = 10) { if (!isset(self::$isValidEngine)) { self::$isValidEngine = self::isValidEngine(); } if (!self::$isValidEngine) { throw new BadConfigurationException('BCMath is not setup correctly on this system'); } $this->value = '0'; parent::__construct($x, $base); } /** * Initialize a BCMath BigInteger Engine instance * * @param int $base * @see parent::__construct() */ protected function initialize($base) { switch (abs($base)) { case 256: // round $len to the nearest 4 $len = (strlen($this->value) + 3) & 0xFFFFFFFC; $x = str_pad($this->value, $len, chr(0), STR_PAD_LEFT); $this->value = '0'; for ($i = 0; $i < $len; $i+= 4) { $this->value = bcmul($this->value, '4294967296', 0); // 4294967296 == 2**32 $this->value = bcadd($this->value, 0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 3])), 0); } if ($this->is_negative) { $this->value = '-' . $this->value; } break; case 16: $x = (strlen($this->value) & 1) ? '0' . $this->value : $this->value; $temp = new self(Hex::decode($x), 256); $this->value = $this->is_negative ? '-' . $temp->value : $temp->value; $this->is_negative = false; break; case 10: // explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different // results then doing it on '-1' does (modInverse does $x[0]) $this->value = $this->value === '-' ? '0' : (string) $this->value; } } /** * Converts a BigInteger to a base-10 number. * * @return string */ public function toString() { if ($this->value === '0') { return '0'; } return ltrim($this->value, '0'); } /** * Converts a BigInteger to a byte string (eg. base-256). * * @param bool $twos_compliment * @return string */ function toBytes($twos_compliment = false) { if ($twos_compliment) { return $this->toBytesHelper(); } $value = ''; $current = $this->value; if ($current[0] == '-') { $current = substr($current, 1); } while (bccomp($current, '0', 0) > 0) { $temp = bcmod($current, '16777216'); $value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value; $current = bcdiv($current, '16777216', 0); } return $this->precision > 0 ? substr(str_pad($value, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) : ltrim($value, chr(0)); } /** * Adds two BigIntegers. * * @param BCMath $y * @return BCMath */ public function add(BCMath $y) { $temp = new self(); $temp->value = bcadd($this->value, $y->value); return $this->normalize($temp); } /** * Subtracts two BigIntegers. * * @param BCMath $y * @return BCMath */ public function subtract(BCMath $y) { $temp = new self(); $temp->value = bcsub($this->value, $y->value); return $this->normalize($temp); } /** * Multiplies two BigIntegers. * * @param BCMath $x * @return BCMath */ public function multiply(BCMath $x) { $temp = new self(); $temp->value = bcmul($this->value, $x->value); return $this->normalize($temp); } /** * Divides two BigIntegers. * * Returns an array whose first element contains the quotient and whose second element contains the * "common residue". If the remainder would be positive, the "common residue" and the remainder are the * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder * and the divisor (basically, the "common residue" is the first positive modulo). * * @param BCMath $y * @return BCMath */ public function divide(BCMath $y) { $quotient = new self(); $remainder = new self(); $quotient->value = bcdiv($this->value, $y->value, 0); $remainder->value = bcmod($this->value, $y->value); if ($remainder->value[0] == '-') { $remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value, 0); } return [$this->normalize($quotient), $this->normalize($remainder)]; } /** * Calculates modular inverses. * * Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses. * * @return false|BCMath * @param \phpseclib\Math\BigInteger\Engines\BCMath $n */ public function modInverse(BCMath $n) { return $this->modInverseHelper($n); } /** * Calculates the greatest common divisor and Bezout's identity. * * Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that * 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which * combination is returned is dependent upon which mode is in use. See * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information. * * @param BCMath $n * @return BCMath */ public function extendedGCD(BCMath $n) { // it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works // best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway. as is, // the basic extended euclidean algorithim is what we're using. $u = $this->value; $v = $n->value; $a = '1'; $b = '0'; $c = '0'; $d = '1'; while (bccomp($v, '0', 0) != 0) { $q = bcdiv($u, $v, 0); $temp = $u; $u = $v; $v = bcsub($temp, bcmul($v, $q, 0), 0); $temp = $a; $a = $c; $c = bcsub($temp, bcmul($a, $q, 0), 0); $temp = $b; $b = $d; $d = bcsub($temp, bcmul($b, $q, 0), 0); } return [ 'gcd' => $this->normalize(new static($u)), 'x' => $this->normalize(new static($a)), 'y' => $this->normalize(new static($b)) ]; } /** * Calculates the greatest common divisor * * Say you have 693 and 609. The GCD is 21. * * @param BCMath $n * @return BCMath */ public function gcd(BCMath $n) { extract($this->extendedGCD($n)); /** * @var BCMath $gcd */ return $gcd; } /** * Absolute value. * * @return \phpseclib\Math\BigInteger\Engines\BCMath */ public function abs() { $temp = new static(); $temp->value = bccomp($this->value, '0', 0) < 0 ? substr($this->value, 1) : $this->value; return $temp; } /** * Logical And * * @param BCMath $x * @return BCMath */ public function bitwise_and(BCMath $x) { $left = $this->toBytes(); $right = $x->toBytes(); $length = max(strlen($left), strlen($right)); $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); return $this->normalize(new static($left & $right, 256)); } /** * Logical Or * * @param BCMath $x * @return BCMath */ public function bitwise_or(BCMath $x) { $left = $this->toBytes(); $right = $x->toBytes(); $length = max(strlen($left), strlen($right)); $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); return $this->normalize(new static($left | $right, 256)); } /** * Logical Exlusive Or * * @param BCMath $x * @return BCMath */ public function bitwise_xor(BCMath $x) { $left = $this->toBytes(); $right = $x->toBytes(); $length = max(strlen($left), strlen($right)); $left = str_pad($left, $length, chr(0), STR_PAD_LEFT); $right = str_pad($right, $length, chr(0), STR_PAD_LEFT); return $this->normalize(new static($left ^ $right, 256)); } /** * Logical Right Shift * * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift. * * @param int $shift * @return \phpseclib\Math\BigInteger\Engines\BCMath */ public function bitwise_rightShift($shift) { $temp = new static(); $temp->value = bcdiv($this->value, bcpow('2', $shift, 0), 0); return $this->normalize($temp); } /** * Logical Left Shift * * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift. * * @param int $shift * @return \phpseclib\Math\BigInteger\Engines\BCMath */ public function bitwise_leftShift($shift) { $temp = new static(); $temp->value = bcmul($this->value, bcpow('2', $shift, 0), 0); return $this->normalize($temp); } /** * Compares two numbers. * * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is * demonstrated thusly: * * $x > $y: $x->compare($y) > 0 * $x < $y: $x->compare($y) < 0 * $x == $y: $x->compare($y) == 0 * * Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y). * * @param BCMath $y * @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal. * @see self::equals() * @internal Could return $this->subtract($x), but that's not as fast as what we do do. */ public function compare(BCMath $y) { return bccomp($this->value, $y->value, 0); } /** * Tests the equality of two numbers. * * If you need to see if one number is greater than or less than another number, use BigInteger::compare() * * @param BCMath $x * @return bool */ public function equals(BCMath $x) { return $this->value == $x->value; } /** * Performs modular exponentiation. * * @param BCMath $e * @param BCMath $n * @return BCMath */ public function modPow(BCMath $e, BCMath $n) { return $this->powModOuter($e, $n); } /** * Performs modular exponentiation. * * Alias for modPow(). * * @param BCMath $e * @param BCMath $n * @return BCMath */ public function powMod(BCMath $e, BCMath $n) { return $this->powModOuter($e, $n); } /** * Performs modular exponentiation. * * @param BCMath $e * @param BCMath $n * @return BCMath */ protected function powModInner(BCMath $e, BCMath $n) { try { $class = self::$modexpEngine; return $class::powModHelper($this, $e, $n, static::class); } catch (\Exception $err) { return BCMath\DefaultEngine::powModHelper($this, $e, $n, static::class); } } /** * Normalize * * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision * * @param BCMath $result * @return BCMath */ protected function normalize(BCMath $result) { $result->precision = $this->precision; $result->bitmask = $this->bitmask; if ($result->bitmask !== false) { $result->value = bcmod($result->value, $result->bitmask->value); } return $result; } /** * Generate a random prime number between a range * * If there's not a prime within the given range, false will be returned. * * @param BCMath $min * @param BCMath $max * @return false|BCMath */ public static function randomRangePrime(BCMath $min, BCMath $max) { return self::randomRangePrimeOuter($min, $max); } /** * Generate a random number between a range * * Returns a random number between $min and $max where $min and $max * can be defined using one of the two methods: * * BigInteger::randomRange($min, $max) * BigInteger::randomRange($max, $min) * * @param BCMath $min * @param BCMath $max * @return BCMath */ public static function randomRange(BCMath $min, BCMath $max) { return self::randomRangeHelper($min, $max); } /** * Make the current number odd * * If the current number is odd it'll be unchanged. If it's even, one will be added to it. * * @see self::randomPrime() */ protected function make_odd() { if ($this->value[strlen($this->value) - 1] % 2 == 0) { $this->value = bcadd($this->value, '1'); } } /** * Test the number against small primes. * * @see self::isPrime() */ protected function testSmallPrimes() { if ($this->value === '1') { return false; } if ($this->value === '2') { return true; } if ($this->value[strlen($this->value) - 1] % 2 == 0) { return false; } $value = $this->value; foreach (self::$primes as $prime) { $r = bcmod($this->value, $prime); if ($r == '0') { return $this->value == $prime; } } return true; } /** * Scan for 1 and right shift by that amount * * ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s)); * * @see self::isPrime() * @param BCMath $r * @return int */ protected static function scan1divide(BCMath $r) { $r_value = &$r->value; $s = 0; // if $n was 1, $r would be 0 and this would be an infinite loop, hence our $this->equals(static::$one) check earlier while ($r_value[strlen($r_value) - 1] % 2 == 0) { $r_value = bcdiv($r_value, '2', 0); ++$s; } return $s; } /** * Performs exponentiation. * * @param BCMath $n * @return BCMath */ public function pow(BCMath $n) { $temp = new self(); $temp->value = bcpow($this->value, $n->value); return $this->normalize($temp); } /** * Return the minimum BigInteger between an arbitrary number of BigIntegers. * * @param BCMath[] $nums * @return BCMath */ public static function min(BCMath ...$nums) { return self::minHelper($nums); } /** * Return the maximum BigInteger between an arbitrary number of BigIntegers. * * @param BCMath[] $nums * @return BCMath */ public static function max(BCMath ...$nums) { return self::maxHelper($nums); } /** * Tests BigInteger to see if it is between two integers, inclusive * * @param BCMath $min * @param BCMath $max * @return bool */ public function between(BCMath $min, BCMath $max) { return $this->compare($min) >= 0 && $this->compare($max) <= 0; } /** * Set Bitmask * * @return Engine * @param int $bits * @see self::setPrecision() */ protected static function setBitmask($bits) { $temp = parent::setBitmask($bits); return $temp->add(static::$one); } }