* @copyright 2017 Jim Wigginton * @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://pear.php.net/package/Math_BigInteger */ namespace phpseclib\Math\BigInteger\Engines\PHP; use phpseclib\Math\BigInteger\Engines\PHP\Reductions\PowerOfTwo; use phpseclib\Math\BigInteger\Engines\PHP; use phpseclib\Math\BigInteger\Engines\PHP\Base; use phpseclib\Math\BigInteger\Engines\Engine; /** * PHP Montgomery Modular Exponentiation Engine * * @package PHP * @author Jim Wigginton * @access public */ abstract class Montgomery extends Base { /** * Test for engine validity * * @return bool */ public static function isValidEngine() { return static::class != __CLASS__; } /** * Performs modular exponentiation. * * @param \phpseclib\Math\BigInteger\Engines\Engine $x * @param \phpseclib\Math\BigInteger\Engines\Engine $e * @param \phpseclib\Math\BigInteger\Engines\Engine $n * @param string $class * @return \phpseclib\Math\BigInteger\Engines\Engine */ protected static function slidingWindow(Engine $x, Engine $e, Engine $n, $class) { // is the modulo odd? if ($n->value[0] & 1) { return parent::slidingWindow($x, $e, $n, $class); } // if it's not, it's even // find the lowest set bit (eg. the max pow of 2 that divides $n) for ($i = 0; $i < count($n->value); ++$i) { if ($n->value[$i]) { $temp = decbin($n->value[$i]); $j = strlen($temp) - strrpos($temp, '1') - 1; $j+= $class::BASE * $i; break; } } // at this point, 2^$j * $n/(2^$j) == $n $mod1 = clone $n; $mod1->rshift($j); $mod2 = new $class(); $mod2->value = [1]; $mod2->lshift($j); $part1 = $mod1->value != [1] ? parent::slidingWindow($x, $e, $mod1, $class) : new $class(); $part2 = PowerOfTwo::slidingWindow($x, $e, $mod2, $class); $y1 = $mod2->modInverse($mod1); $y2 = $mod1->modInverse($mod2); $result = $part1->multiply($mod2); $result = $result->multiply($y1); $temp = $part2->multiply($mod1); $temp = $temp->multiply($y2); $result = $result->add($temp); list(, $result) = $result->divide($n); return $result; } }