mirror of
https://github.com/danog/tgseclib.git
synced 2024-12-04 02:27:52 +01:00
2f8d1055ea
Also, make Crypt_RSA's public keys compatible with OpenSSL and make it so __toString will return the key even when it's the public key that's loaded and it hasn't been set as the public key.
3624 lines
119 KiB
PHP
3624 lines
119 KiB
PHP
<?php
|
||
/* vim: set expandtab tabstop=4 shiftwidth=4 softtabstop=4: */
|
||
|
||
/**
|
||
* Pure-PHP arbitrary precision integer arithmetic library.
|
||
*
|
||
* Supports base-2, base-10, base-16, and base-256 numbers. Uses the GMP or BCMath extensions, if available,
|
||
* and an internal implementation, otherwise.
|
||
*
|
||
* PHP versions 4 and 5
|
||
*
|
||
* {@internal (all DocBlock comments regarding implementation - such as the one that follows - refer to the
|
||
* {@link MATH_BIGINTEGER_MODE_INTERNAL MATH_BIGINTEGER_MODE_INTERNAL} mode)
|
||
*
|
||
* Math_BigInteger uses base-2**26 to perform operations such as multiplication and division and
|
||
* base-2**52 (ie. two base 2**26 digits) to perform addition and subtraction. Because the largest possible
|
||
* value when multiplying two base-2**26 numbers together is a base-2**52 number, double precision floating
|
||
* point numbers - numbers that should be supported on most hardware and whose significand is 53 bits - are
|
||
* used. As a consequence, bitwise operators such as >> and << cannot be used, nor can the modulo operator %,
|
||
* which only supports integers. Although this fact will slow this library down, the fact that such a high
|
||
* base is being used should more than compensate.
|
||
*
|
||
* When PHP version 6 is officially released, we'll be able to use 64-bit integers. This should, once again,
|
||
* allow bitwise operators, and will increase the maximum possible base to 2**31 (or 2**62 for addition /
|
||
* subtraction).
|
||
*
|
||
* Numbers are stored in {@link http://en.wikipedia.org/wiki/Endianness little endian} format. ie.
|
||
* (new Math_BigInteger(pow(2, 26)))->value = array(0, 1)
|
||
*
|
||
* Useful resources are as follows:
|
||
*
|
||
* - {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf Handbook of Applied Cryptography (HAC)}
|
||
* - {@link http://math.libtomcrypt.com/files/tommath.pdf Multi-Precision Math (MPM)}
|
||
* - Java's BigInteger classes. See /j2se/src/share/classes/java/math in jdk-1_5_0-src-jrl.zip
|
||
*
|
||
* Here's an example of how to use this library:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger(2);
|
||
* $b = new Math_BigInteger(3);
|
||
*
|
||
* $c = $a->add($b);
|
||
*
|
||
* echo $c->toString(); // outputs 5
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* LICENSE: Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
* of this software and associated documentation files (the "Software"), to deal
|
||
* in the Software without restriction, including without limitation the rights
|
||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
* copies of the Software, and to permit persons to whom the Software is
|
||
* furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be included in
|
||
* all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
* THE SOFTWARE.
|
||
*
|
||
* @category Math
|
||
* @package Math_BigInteger
|
||
* @author Jim Wigginton <terrafrost@php.net>
|
||
* @copyright MMVI Jim Wigginton
|
||
* @license http://www.opensource.org/licenses/mit-license.html MIT License
|
||
* @version $Id: BigInteger.php,v 1.33 2010/03/22 22:32:03 terrafrost Exp $
|
||
* @link http://pear.php.net/package/Math_BigInteger
|
||
*/
|
||
|
||
/**#@+
|
||
* Reduction constants
|
||
*
|
||
* @access private
|
||
* @see Math_BigInteger::_reduce()
|
||
*/
|
||
/**
|
||
* @see Math_BigInteger::_montgomery()
|
||
* @see Math_BigInteger::_prepMontgomery()
|
||
*/
|
||
define('MATH_BIGINTEGER_MONTGOMERY', 0);
|
||
/**
|
||
* @see Math_BigInteger::_barrett()
|
||
*/
|
||
define('MATH_BIGINTEGER_BARRETT', 1);
|
||
/**
|
||
* @see Math_BigInteger::_mod2()
|
||
*/
|
||
define('MATH_BIGINTEGER_POWEROF2', 2);
|
||
/**
|
||
* @see Math_BigInteger::_remainder()
|
||
*/
|
||
define('MATH_BIGINTEGER_CLASSIC', 3);
|
||
/**
|
||
* @see Math_BigInteger::__clone()
|
||
*/
|
||
define('MATH_BIGINTEGER_NONE', 4);
|
||
/**#@-*/
|
||
|
||
/**#@+
|
||
* Array constants
|
||
*
|
||
* Rather than create a thousands and thousands of new Math_BigInteger objects in repeated function calls to add() and
|
||
* multiply() or whatever, we'll just work directly on arrays, taking them in as parameters and returning them.
|
||
*
|
||
* @access private
|
||
*/
|
||
/**
|
||
* $result[MATH_BIGINTEGER_VALUE] contains the value.
|
||
*/
|
||
define('MATH_BIGINTEGER_VALUE', 0);
|
||
/**
|
||
* $result[MATH_BIGINTEGER_SIGN] contains the sign.
|
||
*/
|
||
define('MATH_BIGINTEGER_SIGN', 1);
|
||
/**#@-*/
|
||
|
||
/**#@+
|
||
* @access private
|
||
* @see Math_BigInteger::_montgomery()
|
||
* @see Math_BigInteger::_barrett()
|
||
*/
|
||
/**
|
||
* Cache constants
|
||
*
|
||
* $cache[MATH_BIGINTEGER_VARIABLE] tells us whether or not the cached data is still valid.
|
||
*/
|
||
define('MATH_BIGINTEGER_VARIABLE', 0);
|
||
/**
|
||
* $cache[MATH_BIGINTEGER_DATA] contains the cached data.
|
||
*/
|
||
define('MATH_BIGINTEGER_DATA', 1);
|
||
/**#@-*/
|
||
|
||
/**#@+
|
||
* Mode constants.
|
||
*
|
||
* @access private
|
||
* @see Math_BigInteger::Math_BigInteger()
|
||
*/
|
||
/**
|
||
* To use the pure-PHP implementation
|
||
*/
|
||
define('MATH_BIGINTEGER_MODE_INTERNAL', 1);
|
||
/**
|
||
* To use the BCMath library
|
||
*
|
||
* (if enabled; otherwise, the internal implementation will be used)
|
||
*/
|
||
define('MATH_BIGINTEGER_MODE_BCMATH', 2);
|
||
/**
|
||
* To use the GMP library
|
||
*
|
||
* (if present; otherwise, either the BCMath or the internal implementation will be used)
|
||
*/
|
||
define('MATH_BIGINTEGER_MODE_GMP', 3);
|
||
/**#@-*/
|
||
|
||
/**
|
||
* The largest digit that may be used in addition / subtraction
|
||
*
|
||
* (we do pow(2, 52) instead of using 4503599627370496, directly, because some PHP installations
|
||
* will truncate 4503599627370496)
|
||
*
|
||
* @access private
|
||
*/
|
||
define('MATH_BIGINTEGER_MAX_DIGIT52', pow(2, 52));
|
||
|
||
/**
|
||
* Karatsuba Cutoff
|
||
*
|
||
* At what point do we switch between Karatsuba multiplication and schoolbook long multiplication?
|
||
*
|
||
* @access private
|
||
*/
|
||
define('MATH_BIGINTEGER_KARATSUBA_CUTOFF', 25);
|
||
|
||
/**
|
||
* Pure-PHP arbitrary precision integer arithmetic library. Supports base-2, base-10, base-16, and base-256
|
||
* numbers.
|
||
*
|
||
* @author Jim Wigginton <terrafrost@php.net>
|
||
* @version 1.0.0RC4
|
||
* @access public
|
||
* @package Math_BigInteger
|
||
*/
|
||
class Math_BigInteger {
|
||
/**
|
||
* Holds the BigInteger's value.
|
||
*
|
||
* @var Array
|
||
* @access private
|
||
*/
|
||
var $value;
|
||
|
||
/**
|
||
* Holds the BigInteger's magnitude.
|
||
*
|
||
* @var Boolean
|
||
* @access private
|
||
*/
|
||
var $is_negative = false;
|
||
|
||
/**
|
||
* Random number generator function
|
||
*
|
||
* @see setRandomGenerator()
|
||
* @access private
|
||
*/
|
||
var $generator = 'mt_rand';
|
||
|
||
/**
|
||
* Precision
|
||
*
|
||
* @see setPrecision()
|
||
* @access private
|
||
*/
|
||
var $precision = -1;
|
||
|
||
/**
|
||
* Precision Bitmask
|
||
*
|
||
* @see setPrecision()
|
||
* @access private
|
||
*/
|
||
var $bitmask = false;
|
||
|
||
/**
|
||
* Mode independant value used for serialization.
|
||
*
|
||
* If the bcmath or gmp extensions are installed $this->value will be a non-serializable resource, hence the need for
|
||
* a variable that'll be serializable regardless of whether or not extensions are being used. Unlike $this->value,
|
||
* however, $this->hex is only calculated when $this->__sleep() is called.
|
||
*
|
||
* @see __sleep()
|
||
* @see __wakeup()
|
||
* @var String
|
||
* @access private
|
||
*/
|
||
var $hex;
|
||
|
||
/**
|
||
* Converts base-2, base-10, base-16, and binary strings (eg. base-256) to BigIntegers.
|
||
*
|
||
* If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using
|
||
* two's compliment. The sole exception to this is -10, which is treated the same as 10 is.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('0x32', 16); // 50 in base-16
|
||
*
|
||
* echo $a->toString(); // outputs 50
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param optional $x base-10 number or base-$base number if $base set.
|
||
* @param optional integer $base
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
*/
|
||
function Math_BigInteger($x = 0, $base = 10)
|
||
{
|
||
if ( !defined('MATH_BIGINTEGER_MODE') ) {
|
||
switch (true) {
|
||
case extension_loaded('gmp'):
|
||
define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_GMP);
|
||
break;
|
||
case extension_loaded('bcmath'):
|
||
define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_BCMATH);
|
||
break;
|
||
default:
|
||
define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_INTERNAL);
|
||
}
|
||
}
|
||
|
||
if (function_exists('openssl_public_encrypt') && !defined('MATH_BIGINTEGER_OPENSSL_DISABLE')) {
|
||
define('MATH_BIGINTEGER_OPENSSL_ENABLED', true);
|
||
}
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
if (is_resource($x) && get_resource_type($x) == 'GMP integer') {
|
||
$this->value = $x;
|
||
return;
|
||
}
|
||
$this->value = gmp_init(0);
|
||
break;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$this->value = '0';
|
||
break;
|
||
default:
|
||
$this->value = array();
|
||
}
|
||
|
||
// '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48
|
||
// '0' is the only value like this per http://php.net/empty
|
||
if (empty($x) && (abs($base) != 256 || $x !== '0')) {
|
||
return;
|
||
}
|
||
|
||
switch ($base) {
|
||
case -256:
|
||
if (ord($x[0]) & 0x80) {
|
||
$x = ~$x;
|
||
$this->is_negative = true;
|
||
}
|
||
case 256:
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$sign = $this->is_negative ? '-' : '';
|
||
$this->value = gmp_init($sign . '0x' . bin2hex($x));
|
||
break;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
// round $len to the nearest 4 (thanks, DavidMJ!)
|
||
$len = (strlen($x) + 3) & 0xFFFFFFFC;
|
||
|
||
$x = str_pad($x, $len, chr(0), STR_PAD_LEFT);
|
||
|
||
for ($i = 0; $i < $len; $i+= 4) {
|
||
$this->value = bcmul($this->value, '4294967296', 0); // 4294967296 == 2**32
|
||
$this->value = bcadd($this->value, 0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 3])), 0);
|
||
}
|
||
|
||
if ($this->is_negative) {
|
||
$this->value = '-' . $this->value;
|
||
}
|
||
|
||
break;
|
||
// converts a base-2**8 (big endian / msb) number to base-2**26 (little endian / lsb)
|
||
default:
|
||
while (strlen($x)) {
|
||
$this->value[] = $this->_bytes2int($this->_base256_rshift($x, 26));
|
||
}
|
||
}
|
||
|
||
if ($this->is_negative) {
|
||
if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL) {
|
||
$this->is_negative = false;
|
||
}
|
||
$temp = $this->add(new Math_BigInteger('-1'));
|
||
$this->value = $temp->value;
|
||
}
|
||
break;
|
||
case 16:
|
||
case -16:
|
||
if ($base > 0 && $x[0] == '-') {
|
||
$this->is_negative = true;
|
||
$x = substr($x, 1);
|
||
}
|
||
|
||
$x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x);
|
||
|
||
$is_negative = false;
|
||
if ($base < 0 && hexdec($x[0]) >= 8) {
|
||
$this->is_negative = $is_negative = true;
|
||
$x = bin2hex(~pack('H*', $x));
|
||
}
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = $this->is_negative ? '-0x' . $x : '0x' . $x;
|
||
$this->value = gmp_init($temp);
|
||
$this->is_negative = false;
|
||
break;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$x = ( strlen($x) & 1 ) ? '0' . $x : $x;
|
||
$temp = new Math_BigInteger(pack('H*', $x), 256);
|
||
$this->value = $this->is_negative ? '-' . $temp->value : $temp->value;
|
||
$this->is_negative = false;
|
||
break;
|
||
default:
|
||
$x = ( strlen($x) & 1 ) ? '0' . $x : $x;
|
||
$temp = new Math_BigInteger(pack('H*', $x), 256);
|
||
$this->value = $temp->value;
|
||
}
|
||
|
||
if ($is_negative) {
|
||
$temp = $this->add(new Math_BigInteger('-1'));
|
||
$this->value = $temp->value;
|
||
}
|
||
break;
|
||
case 10:
|
||
case -10:
|
||
$x = preg_replace('#^(-?[0-9]*).*#', '$1', $x);
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$this->value = gmp_init($x);
|
||
break;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
// explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different
|
||
// results then doing it on '-1' does (modInverse does $x[0])
|
||
$this->value = (string) $x;
|
||
break;
|
||
default:
|
||
$temp = new Math_BigInteger();
|
||
|
||
// array(10000000) is 10**7 in base-2**26. 10**7 is the closest to 2**26 we can get without passing it.
|
||
$multiplier = new Math_BigInteger();
|
||
$multiplier->value = array(10000000);
|
||
|
||
if ($x[0] == '-') {
|
||
$this->is_negative = true;
|
||
$x = substr($x, 1);
|
||
}
|
||
|
||
$x = str_pad($x, strlen($x) + (6 * strlen($x)) % 7, 0, STR_PAD_LEFT);
|
||
|
||
while (strlen($x)) {
|
||
$temp = $temp->multiply($multiplier);
|
||
$temp = $temp->add(new Math_BigInteger($this->_int2bytes(substr($x, 0, 7)), 256));
|
||
$x = substr($x, 7);
|
||
}
|
||
|
||
$this->value = $temp->value;
|
||
}
|
||
break;
|
||
case 2: // base-2 support originally implemented by Lluis Pamies - thanks!
|
||
case -2:
|
||
if ($base > 0 && $x[0] == '-') {
|
||
$this->is_negative = true;
|
||
$x = substr($x, 1);
|
||
}
|
||
|
||
$x = preg_replace('#^([01]*).*#', '$1', $x);
|
||
$x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT);
|
||
|
||
$str = '0x';
|
||
while (strlen($x)) {
|
||
$part = substr($x, 0, 4);
|
||
$str.= dechex(bindec($part));
|
||
$x = substr($x, 4);
|
||
}
|
||
|
||
if ($this->is_negative) {
|
||
$str = '-' . $str;
|
||
}
|
||
|
||
$temp = new Math_BigInteger($str, 8 * $base); // ie. either -16 or +16
|
||
$this->value = $temp->value;
|
||
$this->is_negative = $temp->is_negative;
|
||
|
||
break;
|
||
default:
|
||
// base not supported, so we'll let $this == 0
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Converts a BigInteger to a byte string (eg. base-256).
|
||
*
|
||
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
|
||
* saved as two's compliment.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('65');
|
||
*
|
||
* echo $a->toBytes(); // outputs chr(65)
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Boolean $twos_compliment
|
||
* @return String
|
||
* @access public
|
||
* @internal Converts a base-2**26 number to base-2**8
|
||
*/
|
||
function toBytes($twos_compliment = false)
|
||
{
|
||
if ($twos_compliment) {
|
||
$comparison = $this->compare(new Math_BigInteger());
|
||
if ($comparison == 0) {
|
||
return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
|
||
}
|
||
|
||
$temp = $comparison < 0 ? $this->add(new Math_BigInteger(1)) : $this->copy();
|
||
$bytes = $temp->toBytes();
|
||
|
||
if (empty($bytes)) { // eg. if the number we're trying to convert is -1
|
||
$bytes = chr(0);
|
||
}
|
||
|
||
if (ord($bytes[0]) & 0x80) {
|
||
$bytes = chr(0) . $bytes;
|
||
}
|
||
|
||
return $comparison < 0 ? ~$bytes : $bytes;
|
||
}
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
if (gmp_cmp($this->value, gmp_init(0)) == 0) {
|
||
return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
|
||
}
|
||
|
||
$temp = gmp_strval(gmp_abs($this->value), 16);
|
||
$temp = ( strlen($temp) & 1 ) ? '0' . $temp : $temp;
|
||
$temp = pack('H*', $temp);
|
||
|
||
return $this->precision > 0 ?
|
||
substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
|
||
ltrim($temp, chr(0));
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
if ($this->value === '0') {
|
||
return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
|
||
}
|
||
|
||
$value = '';
|
||
$current = $this->value;
|
||
|
||
if ($current[0] == '-') {
|
||
$current = substr($current, 1);
|
||
}
|
||
|
||
while (bccomp($current, '0', 0) > 0) {
|
||
$temp = bcmod($current, '16777216');
|
||
$value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value;
|
||
$current = bcdiv($current, '16777216', 0);
|
||
}
|
||
|
||
return $this->precision > 0 ?
|
||
substr(str_pad($value, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
|
||
ltrim($value, chr(0));
|
||
}
|
||
|
||
if (!count($this->value)) {
|
||
return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
|
||
}
|
||
$result = $this->_int2bytes($this->value[count($this->value) - 1]);
|
||
|
||
$temp = $this->copy();
|
||
|
||
for ($i = count($temp->value) - 2; $i >= 0; --$i) {
|
||
$temp->_base256_lshift($result, 26);
|
||
$result = $result | str_pad($temp->_int2bytes($temp->value[$i]), strlen($result), chr(0), STR_PAD_LEFT);
|
||
}
|
||
|
||
return $this->precision > 0 ?
|
||
str_pad(substr($result, -(($this->precision + 7) >> 3)), ($this->precision + 7) >> 3, chr(0), STR_PAD_LEFT) :
|
||
$result;
|
||
}
|
||
|
||
/**
|
||
* Converts a BigInteger to a hex string (eg. base-16)).
|
||
*
|
||
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
|
||
* saved as two's compliment.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('65');
|
||
*
|
||
* echo $a->toHex(); // outputs '41'
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Boolean $twos_compliment
|
||
* @return String
|
||
* @access public
|
||
* @internal Converts a base-2**26 number to base-2**8
|
||
*/
|
||
function toHex($twos_compliment = false)
|
||
{
|
||
return bin2hex($this->toBytes($twos_compliment));
|
||
}
|
||
|
||
/**
|
||
* Converts a BigInteger to a bit string (eg. base-2).
|
||
*
|
||
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
|
||
* saved as two's compliment.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('65');
|
||
*
|
||
* echo $a->toBits(); // outputs '1000001'
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Boolean $twos_compliment
|
||
* @return String
|
||
* @access public
|
||
* @internal Converts a base-2**26 number to base-2**2
|
||
*/
|
||
function toBits($twos_compliment = false)
|
||
{
|
||
$hex = $this->toHex($twos_compliment);
|
||
$bits = '';
|
||
for ($i = 0, $end = strlen($hex) & 0xFFFFFFF8; $i < $end; $i+=8) {
|
||
$bits.= str_pad(decbin(hexdec(substr($hex, $i, 8))), 32, '0', STR_PAD_LEFT);
|
||
}
|
||
if ($end != strlen($hex)) { // hexdec('') == 0
|
||
$bits.= str_pad(decbin(hexdec(substr($hex, $end))), strlen($hex) & 7, '0', STR_PAD_LEFT);
|
||
}
|
||
return $this->precision > 0 ? substr($bits, -$this->precision) : ltrim($bits, '0');
|
||
}
|
||
|
||
/**
|
||
* Converts a BigInteger to a base-10 number.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('50');
|
||
*
|
||
* echo $a->toString(); // outputs 50
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @return String
|
||
* @access public
|
||
* @internal Converts a base-2**26 number to base-10**7 (which is pretty much base-10)
|
||
*/
|
||
function toString()
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
return gmp_strval($this->value);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
if ($this->value === '0') {
|
||
return '0';
|
||
}
|
||
|
||
return ltrim($this->value, '0');
|
||
}
|
||
|
||
if (!count($this->value)) {
|
||
return '0';
|
||
}
|
||
|
||
$temp = $this->copy();
|
||
$temp->is_negative = false;
|
||
|
||
$divisor = new Math_BigInteger();
|
||
$divisor->value = array(10000000); // eg. 10**7
|
||
$result = '';
|
||
while (count($temp->value)) {
|
||
list($temp, $mod) = $temp->divide($divisor);
|
||
$result = str_pad(isset($mod->value[0]) ? $mod->value[0] : '', 7, '0', STR_PAD_LEFT) . $result;
|
||
}
|
||
$result = ltrim($result, '0');
|
||
if (empty($result)) {
|
||
$result = '0';
|
||
}
|
||
|
||
if ($this->is_negative) {
|
||
$result = '-' . $result;
|
||
}
|
||
|
||
return $result;
|
||
}
|
||
|
||
/**
|
||
* Copy an object
|
||
*
|
||
* PHP5 passes objects by reference while PHP4 passes by value. As such, we need a function to guarantee
|
||
* that all objects are passed by value, when appropriate. More information can be found here:
|
||
*
|
||
* {@link http://php.net/language.oop5.basic#51624}
|
||
*
|
||
* @access public
|
||
* @see __clone()
|
||
* @return Math_BigInteger
|
||
*/
|
||
function copy()
|
||
{
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = $this->value;
|
||
$temp->is_negative = $this->is_negative;
|
||
$temp->generator = $this->generator;
|
||
$temp->precision = $this->precision;
|
||
$temp->bitmask = $this->bitmask;
|
||
return $temp;
|
||
}
|
||
|
||
/**
|
||
* __toString() magic method
|
||
*
|
||
* Will be called, automatically, if you're supporting just PHP5. If you're supporting PHP4, you'll need to call
|
||
* toString().
|
||
*
|
||
* @access public
|
||
* @internal Implemented per a suggestion by Techie-Michael - thanks!
|
||
*/
|
||
function __toString()
|
||
{
|
||
return $this->toString();
|
||
}
|
||
|
||
/**
|
||
* __clone() magic method
|
||
*
|
||
* Although you can call Math_BigInteger::__toString() directly in PHP5, you cannot call Math_BigInteger::__clone()
|
||
* directly in PHP5. You can in PHP4 since it's not a magic method, but in PHP5, you have to call it by using the PHP5
|
||
* only syntax of $y = clone $x. As such, if you're trying to write an application that works on both PHP4 and PHP5,
|
||
* call Math_BigInteger::copy(), instead.
|
||
*
|
||
* @access public
|
||
* @see copy()
|
||
* @return Math_BigInteger
|
||
*/
|
||
function __clone()
|
||
{
|
||
return $this->copy();
|
||
}
|
||
|
||
/**
|
||
* __sleep() magic method
|
||
*
|
||
* Will be called, automatically, when serialize() is called on a Math_BigInteger object.
|
||
*
|
||
* @see __wakeup()
|
||
* @access public
|
||
*/
|
||
function __sleep()
|
||
{
|
||
$this->hex = $this->toHex(true);
|
||
$vars = array('hex');
|
||
if ($this->generator != 'mt_rand') {
|
||
$vars[] = 'generator';
|
||
}
|
||
if ($this->precision > 0) {
|
||
$vars[] = 'precision';
|
||
}
|
||
return $vars;
|
||
|
||
}
|
||
|
||
/**
|
||
* __wakeup() magic method
|
||
*
|
||
* Will be called, automatically, when unserialize() is called on a Math_BigInteger object.
|
||
*
|
||
* @see __sleep()
|
||
* @access public
|
||
*/
|
||
function __wakeup()
|
||
{
|
||
$temp = new Math_BigInteger($this->hex, -16);
|
||
$this->value = $temp->value;
|
||
$this->is_negative = $temp->is_negative;
|
||
$this->setRandomGenerator($this->generator);
|
||
if ($this->precision > 0) {
|
||
// recalculate $this->bitmask
|
||
$this->setPrecision($this->precision);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Adds two BigIntegers.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('10');
|
||
* $b = new Math_BigInteger('20');
|
||
*
|
||
* $c = $a->add($b);
|
||
*
|
||
* echo $c->toString(); // outputs 30
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Math_BigInteger $y
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
* @internal Performs base-2**52 addition
|
||
*/
|
||
function add($y)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_add($this->value, $y->value);
|
||
|
||
return $this->_normalize($temp);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = bcadd($this->value, $y->value, 0);
|
||
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
$temp = $this->_add($this->value, $this->is_negative, $y->value, $y->is_negative);
|
||
|
||
$result = new Math_BigInteger();
|
||
$result->value = $temp[MATH_BIGINTEGER_VALUE];
|
||
$result->is_negative = $temp[MATH_BIGINTEGER_SIGN];
|
||
|
||
return $this->_normalize($result);
|
||
}
|
||
|
||
/**
|
||
* Performs addition.
|
||
*
|
||
* @param Array $x_value
|
||
* @param Boolean $x_negative
|
||
* @param Array $y_value
|
||
* @param Boolean $y_negative
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _add($x_value, $x_negative, $y_value, $y_negative)
|
||
{
|
||
$x_size = count($x_value);
|
||
$y_size = count($y_value);
|
||
|
||
if ($x_size == 0) {
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => $y_value,
|
||
MATH_BIGINTEGER_SIGN => $y_negative
|
||
);
|
||
} else if ($y_size == 0) {
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => $x_value,
|
||
MATH_BIGINTEGER_SIGN => $x_negative
|
||
);
|
||
}
|
||
|
||
// subtract, if appropriate
|
||
if ( $x_negative != $y_negative ) {
|
||
if ( $x_value == $y_value ) {
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => array(),
|
||
MATH_BIGINTEGER_SIGN => false
|
||
);
|
||
}
|
||
|
||
$temp = $this->_subtract($x_value, false, $y_value, false);
|
||
$temp[MATH_BIGINTEGER_SIGN] = $this->_compare($x_value, false, $y_value, false) > 0 ?
|
||
$x_negative : $y_negative;
|
||
|
||
return $temp;
|
||
}
|
||
|
||
if ($x_size < $y_size) {
|
||
$size = $x_size;
|
||
$value = $y_value;
|
||
} else {
|
||
$size = $y_size;
|
||
$value = $x_value;
|
||
}
|
||
|
||
$value[] = 0; // just in case the carry adds an extra digit
|
||
|
||
$carry = 0;
|
||
for ($i = 0, $j = 1; $j < $size; $i+=2, $j+=2) {
|
||
$sum = $x_value[$j] * 0x4000000 + $x_value[$i] + $y_value[$j] * 0x4000000 + $y_value[$i] + $carry;
|
||
$carry = $sum >= MATH_BIGINTEGER_MAX_DIGIT52; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
|
||
$sum = $carry ? $sum - MATH_BIGINTEGER_MAX_DIGIT52 : $sum;
|
||
|
||
$temp = (int) ($sum / 0x4000000);
|
||
|
||
$value[$i] = (int) ($sum - 0x4000000 * $temp); // eg. a faster alternative to fmod($sum, 0x4000000)
|
||
$value[$j] = $temp;
|
||
}
|
||
|
||
if ($j == $size) { // ie. if $y_size is odd
|
||
$sum = $x_value[$i] + $y_value[$i] + $carry;
|
||
$carry = $sum >= 0x4000000;
|
||
$value[$i] = $carry ? $sum - 0x4000000 : $sum;
|
||
++$i; // ie. let $i = $j since we've just done $value[$i]
|
||
}
|
||
|
||
if ($carry) {
|
||
for (; $value[$i] == 0x3FFFFFF; ++$i) {
|
||
$value[$i] = 0;
|
||
}
|
||
++$value[$i];
|
||
}
|
||
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => $this->_trim($value),
|
||
MATH_BIGINTEGER_SIGN => $x_negative
|
||
);
|
||
}
|
||
|
||
/**
|
||
* Subtracts two BigIntegers.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('10');
|
||
* $b = new Math_BigInteger('20');
|
||
*
|
||
* $c = $a->subtract($b);
|
||
*
|
||
* echo $c->toString(); // outputs -10
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Math_BigInteger $y
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
* @internal Performs base-2**52 subtraction
|
||
*/
|
||
function subtract($y)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_sub($this->value, $y->value);
|
||
|
||
return $this->_normalize($temp);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = bcsub($this->value, $y->value, 0);
|
||
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
$temp = $this->_subtract($this->value, $this->is_negative, $y->value, $y->is_negative);
|
||
|
||
$result = new Math_BigInteger();
|
||
$result->value = $temp[MATH_BIGINTEGER_VALUE];
|
||
$result->is_negative = $temp[MATH_BIGINTEGER_SIGN];
|
||
|
||
return $this->_normalize($result);
|
||
}
|
||
|
||
/**
|
||
* Performs subtraction.
|
||
*
|
||
* @param Array $x_value
|
||
* @param Boolean $x_negative
|
||
* @param Array $y_value
|
||
* @param Boolean $y_negative
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _subtract($x_value, $x_negative, $y_value, $y_negative)
|
||
{
|
||
$x_size = count($x_value);
|
||
$y_size = count($y_value);
|
||
|
||
if ($x_size == 0) {
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => $y_value,
|
||
MATH_BIGINTEGER_SIGN => !$y_negative
|
||
);
|
||
} else if ($y_size == 0) {
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => $x_value,
|
||
MATH_BIGINTEGER_SIGN => $x_negative
|
||
);
|
||
}
|
||
|
||
// add, if appropriate (ie. -$x - +$y or +$x - -$y)
|
||
if ( $x_negative != $y_negative ) {
|
||
$temp = $this->_add($x_value, false, $y_value, false);
|
||
$temp[MATH_BIGINTEGER_SIGN] = $x_negative;
|
||
|
||
return $temp;
|
||
}
|
||
|
||
$diff = $this->_compare($x_value, $x_negative, $y_value, $y_negative);
|
||
|
||
if ( !$diff ) {
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => array(),
|
||
MATH_BIGINTEGER_SIGN => false
|
||
);
|
||
}
|
||
|
||
// switch $x and $y around, if appropriate.
|
||
if ( (!$x_negative && $diff < 0) || ($x_negative && $diff > 0) ) {
|
||
$temp = $x_value;
|
||
$x_value = $y_value;
|
||
$y_value = $temp;
|
||
|
||
$x_negative = !$x_negative;
|
||
|
||
$x_size = count($x_value);
|
||
$y_size = count($y_value);
|
||
}
|
||
|
||
// at this point, $x_value should be at least as big as - if not bigger than - $y_value
|
||
|
||
$carry = 0;
|
||
for ($i = 0, $j = 1; $j < $y_size; $i+=2, $j+=2) {
|
||
$sum = $x_value[$j] * 0x4000000 + $x_value[$i] - $y_value[$j] * 0x4000000 - $y_value[$i] - $carry;
|
||
$carry = $sum < 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
|
||
$sum = $carry ? $sum + MATH_BIGINTEGER_MAX_DIGIT52 : $sum;
|
||
|
||
$temp = (int) ($sum / 0x4000000);
|
||
|
||
$x_value[$i] = (int) ($sum - 0x4000000 * $temp);
|
||
$x_value[$j] = $temp;
|
||
}
|
||
|
||
if ($j == $y_size) { // ie. if $y_size is odd
|
||
$sum = $x_value[$i] - $y_value[$i] - $carry;
|
||
$carry = $sum < 0;
|
||
$x_value[$i] = $carry ? $sum + 0x4000000 : $sum;
|
||
++$i;
|
||
}
|
||
|
||
if ($carry) {
|
||
for (; !$x_value[$i]; ++$i) {
|
||
$x_value[$i] = 0x3FFFFFF;
|
||
}
|
||
--$x_value[$i];
|
||
}
|
||
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => $this->_trim($x_value),
|
||
MATH_BIGINTEGER_SIGN => $x_negative
|
||
);
|
||
}
|
||
|
||
/**
|
||
* Multiplies two BigIntegers
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('10');
|
||
* $b = new Math_BigInteger('20');
|
||
*
|
||
* $c = $a->multiply($b);
|
||
*
|
||
* echo $c->toString(); // outputs 200
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Math_BigInteger $x
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
*/
|
||
function multiply($x)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_mul($this->value, $x->value);
|
||
|
||
return $this->_normalize($temp);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = bcmul($this->value, $x->value, 0);
|
||
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
$temp = $this->_multiply($this->value, $this->is_negative, $x->value, $x->is_negative);
|
||
|
||
$product = new Math_BigInteger();
|
||
$product->value = $temp[MATH_BIGINTEGER_VALUE];
|
||
$product->is_negative = $temp[MATH_BIGINTEGER_SIGN];
|
||
|
||
return $this->_normalize($product);
|
||
}
|
||
|
||
/**
|
||
* Performs multiplication.
|
||
*
|
||
* @param Array $x_value
|
||
* @param Boolean $x_negative
|
||
* @param Array $y_value
|
||
* @param Boolean $y_negative
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _multiply($x_value, $x_negative, $y_value, $y_negative)
|
||
{
|
||
//if ( $x_value == $y_value ) {
|
||
// return array(
|
||
// MATH_BIGINTEGER_VALUE => $this->_square($x_value),
|
||
// MATH_BIGINTEGER_SIGN => $x_sign != $y_value
|
||
// );
|
||
//}
|
||
|
||
$x_length = count($x_value);
|
||
$y_length = count($y_value);
|
||
|
||
if ( !$x_length || !$y_length ) { // a 0 is being multiplied
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => array(),
|
||
MATH_BIGINTEGER_SIGN => false
|
||
);
|
||
}
|
||
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => min($x_length, $y_length) < 2 * MATH_BIGINTEGER_KARATSUBA_CUTOFF ?
|
||
$this->_trim($this->_regularMultiply($x_value, $y_value)) :
|
||
$this->_trim($this->_karatsuba($x_value, $y_value)),
|
||
MATH_BIGINTEGER_SIGN => $x_negative != $y_negative
|
||
);
|
||
}
|
||
|
||
/**
|
||
* Performs long multiplication on two BigIntegers
|
||
*
|
||
* Modeled after 'multiply' in MutableBigInteger.java.
|
||
*
|
||
* @param Array $x_value
|
||
* @param Array $y_value
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _regularMultiply($x_value, $y_value)
|
||
{
|
||
$x_length = count($x_value);
|
||
$y_length = count($y_value);
|
||
|
||
if ( !$x_length || !$y_length ) { // a 0 is being multiplied
|
||
return array();
|
||
}
|
||
|
||
if ( $x_length < $y_length ) {
|
||
$temp = $x_value;
|
||
$x_value = $y_value;
|
||
$y_value = $temp;
|
||
|
||
$x_length = count($x_value);
|
||
$y_length = count($y_value);
|
||
}
|
||
|
||
$product_value = $this->_array_repeat(0, $x_length + $y_length);
|
||
|
||
// the following for loop could be removed if the for loop following it
|
||
// (the one with nested for loops) initially set $i to 0, but
|
||
// doing so would also make the result in one set of unnecessary adds,
|
||
// since on the outermost loops first pass, $product->value[$k] is going
|
||
// to always be 0
|
||
|
||
$carry = 0;
|
||
|
||
for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0
|
||
$temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0
|
||
$carry = (int) ($temp / 0x4000000);
|
||
$product_value[$j] = (int) ($temp - 0x4000000 * $carry);
|
||
}
|
||
|
||
$product_value[$j] = $carry;
|
||
|
||
// the above for loop is what the previous comment was talking about. the
|
||
// following for loop is the "one with nested for loops"
|
||
for ($i = 1; $i < $y_length; ++$i) {
|
||
$carry = 0;
|
||
|
||
for ($j = 0, $k = $i; $j < $x_length; ++$j, ++$k) {
|
||
$temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry;
|
||
$carry = (int) ($temp / 0x4000000);
|
||
$product_value[$k] = (int) ($temp - 0x4000000 * $carry);
|
||
}
|
||
|
||
$product_value[$k] = $carry;
|
||
}
|
||
|
||
return $product_value;
|
||
}
|
||
|
||
/**
|
||
* Performs Karatsuba multiplication on two BigIntegers
|
||
*
|
||
* See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and
|
||
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=120 MPM 5.2.3}.
|
||
*
|
||
* @param Array $x_value
|
||
* @param Array $y_value
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _karatsuba($x_value, $y_value)
|
||
{
|
||
$m = min(count($x_value) >> 1, count($y_value) >> 1);
|
||
|
||
if ($m < MATH_BIGINTEGER_KARATSUBA_CUTOFF) {
|
||
return $this->_regularMultiply($x_value, $y_value);
|
||
}
|
||
|
||
$x1 = array_slice($x_value, $m);
|
||
$x0 = array_slice($x_value, 0, $m);
|
||
$y1 = array_slice($y_value, $m);
|
||
$y0 = array_slice($y_value, 0, $m);
|
||
|
||
$z2 = $this->_karatsuba($x1, $y1);
|
||
$z0 = $this->_karatsuba($x0, $y0);
|
||
|
||
$z1 = $this->_add($x1, false, $x0, false);
|
||
$temp = $this->_add($y1, false, $y0, false);
|
||
$z1 = $this->_karatsuba($z1[MATH_BIGINTEGER_VALUE], $temp[MATH_BIGINTEGER_VALUE]);
|
||
$temp = $this->_add($z2, false, $z0, false);
|
||
$z1 = $this->_subtract($z1, false, $temp[MATH_BIGINTEGER_VALUE], false);
|
||
|
||
$z2 = array_merge(array_fill(0, 2 * $m, 0), $z2);
|
||
$z1[MATH_BIGINTEGER_VALUE] = array_merge(array_fill(0, $m, 0), $z1[MATH_BIGINTEGER_VALUE]);
|
||
|
||
$xy = $this->_add($z2, false, $z1[MATH_BIGINTEGER_VALUE], $z1[MATH_BIGINTEGER_SIGN]);
|
||
$xy = $this->_add($xy[MATH_BIGINTEGER_VALUE], $xy[MATH_BIGINTEGER_SIGN], $z0, false);
|
||
|
||
return $xy[MATH_BIGINTEGER_VALUE];
|
||
}
|
||
|
||
/**
|
||
* Performs squaring
|
||
*
|
||
* @param Array $x
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _square($x = false)
|
||
{
|
||
return count($x) < 2 * MATH_BIGINTEGER_KARATSUBA_CUTOFF ?
|
||
$this->_trim($this->_baseSquare($x)) :
|
||
$this->_trim($this->_karatsubaSquare($x));
|
||
}
|
||
|
||
/**
|
||
* Performs traditional squaring on two BigIntegers
|
||
*
|
||
* Squaring can be done faster than multiplying a number by itself can be. See
|
||
* {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} /
|
||
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information.
|
||
*
|
||
* @param Array $value
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _baseSquare($value)
|
||
{
|
||
if ( empty($value) ) {
|
||
return array();
|
||
}
|
||
$square_value = $this->_array_repeat(0, 2 * count($value));
|
||
|
||
for ($i = 0, $max_index = count($value) - 1; $i <= $max_index; ++$i) {
|
||
$i2 = $i << 1;
|
||
|
||
$temp = $square_value[$i2] + $value[$i] * $value[$i];
|
||
$carry = (int) ($temp / 0x4000000);
|
||
$square_value[$i2] = (int) ($temp - 0x4000000 * $carry);
|
||
|
||
// note how we start from $i+1 instead of 0 as we do in multiplication.
|
||
for ($j = $i + 1, $k = $i2 + 1; $j <= $max_index; ++$j, ++$k) {
|
||
$temp = $square_value[$k] + 2 * $value[$j] * $value[$i] + $carry;
|
||
$carry = (int) ($temp / 0x4000000);
|
||
$square_value[$k] = (int) ($temp - 0x4000000 * $carry);
|
||
}
|
||
|
||
// the following line can yield values larger 2**15. at this point, PHP should switch
|
||
// over to floats.
|
||
$square_value[$i + $max_index + 1] = $carry;
|
||
}
|
||
|
||
return $square_value;
|
||
}
|
||
|
||
/**
|
||
* Performs Karatsuba "squaring" on two BigIntegers
|
||
*
|
||
* See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and
|
||
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=151 MPM 5.3.4}.
|
||
*
|
||
* @param Array $value
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _karatsubaSquare($value)
|
||
{
|
||
$m = count($value) >> 1;
|
||
|
||
if ($m < MATH_BIGINTEGER_KARATSUBA_CUTOFF) {
|
||
return $this->_baseSquare($value);
|
||
}
|
||
|
||
$x1 = array_slice($value, $m);
|
||
$x0 = array_slice($value, 0, $m);
|
||
|
||
$z2 = $this->_karatsubaSquare($x1);
|
||
$z0 = $this->_karatsubaSquare($x0);
|
||
|
||
$z1 = $this->_add($x1, false, $x0, false);
|
||
$z1 = $this->_karatsubaSquare($z1[MATH_BIGINTEGER_VALUE]);
|
||
$temp = $this->_add($z2, false, $z0, false);
|
||
$z1 = $this->_subtract($z1, false, $temp[MATH_BIGINTEGER_VALUE], false);
|
||
|
||
$z2 = array_merge(array_fill(0, 2 * $m, 0), $z2);
|
||
$z1[MATH_BIGINTEGER_VALUE] = array_merge(array_fill(0, $m, 0), $z1[MATH_BIGINTEGER_VALUE]);
|
||
|
||
$xx = $this->_add($z2, false, $z1[MATH_BIGINTEGER_VALUE], $z1[MATH_BIGINTEGER_SIGN]);
|
||
$xx = $this->_add($xx[MATH_BIGINTEGER_VALUE], $xx[MATH_BIGINTEGER_SIGN], $z0, false);
|
||
|
||
return $xx[MATH_BIGINTEGER_VALUE];
|
||
}
|
||
|
||
/**
|
||
* Divides two BigIntegers.
|
||
*
|
||
* Returns an array whose first element contains the quotient and whose second element contains the
|
||
* "common residue". If the remainder would be positive, the "common residue" and the remainder are the
|
||
* same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder
|
||
* and the divisor (basically, the "common residue" is the first positive modulo).
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('10');
|
||
* $b = new Math_BigInteger('20');
|
||
*
|
||
* list($quotient, $remainder) = $a->divide($b);
|
||
*
|
||
* echo $quotient->toString(); // outputs 0
|
||
* echo "\r\n";
|
||
* echo $remainder->toString(); // outputs 10
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Math_BigInteger $y
|
||
* @return Array
|
||
* @access public
|
||
* @internal This function is based off of {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=9 HAC 14.20}.
|
||
*/
|
||
function divide($y)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$quotient = new Math_BigInteger();
|
||
$remainder = new Math_BigInteger();
|
||
|
||
list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value);
|
||
|
||
if (gmp_sign($remainder->value) < 0) {
|
||
$remainder->value = gmp_add($remainder->value, gmp_abs($y->value));
|
||
}
|
||
|
||
return array($this->_normalize($quotient), $this->_normalize($remainder));
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$quotient = new Math_BigInteger();
|
||
$remainder = new Math_BigInteger();
|
||
|
||
$quotient->value = bcdiv($this->value, $y->value, 0);
|
||
$remainder->value = bcmod($this->value, $y->value);
|
||
|
||
if ($remainder->value[0] == '-') {
|
||
$remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value, 0);
|
||
}
|
||
|
||
return array($this->_normalize($quotient), $this->_normalize($remainder));
|
||
}
|
||
|
||
if (count($y->value) == 1) {
|
||
list($q, $r) = $this->_divide_digit($this->value, $y->value[0]);
|
||
$quotient = new Math_BigInteger();
|
||
$remainder = new Math_BigInteger();
|
||
$quotient->value = $q;
|
||
$remainder->value = array($r);
|
||
$quotient->is_negative = $this->is_negative != $y->is_negative;
|
||
return array($this->_normalize($quotient), $this->_normalize($remainder));
|
||
}
|
||
|
||
static $zero;
|
||
if ( !isset($zero) ) {
|
||
$zero = new Math_BigInteger();
|
||
}
|
||
|
||
$x = $this->copy();
|
||
$y = $y->copy();
|
||
|
||
$x_sign = $x->is_negative;
|
||
$y_sign = $y->is_negative;
|
||
|
||
$x->is_negative = $y->is_negative = false;
|
||
|
||
$diff = $x->compare($y);
|
||
|
||
if ( !$diff ) {
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = array(1);
|
||
$temp->is_negative = $x_sign != $y_sign;
|
||
return array($this->_normalize($temp), $this->_normalize(new Math_BigInteger()));
|
||
}
|
||
|
||
if ( $diff < 0 ) {
|
||
// if $x is negative, "add" $y.
|
||
if ( $x_sign ) {
|
||
$x = $y->subtract($x);
|
||
}
|
||
return array($this->_normalize(new Math_BigInteger()), $this->_normalize($x));
|
||
}
|
||
|
||
// normalize $x and $y as described in HAC 14.23 / 14.24
|
||
$msb = $y->value[count($y->value) - 1];
|
||
for ($shift = 0; !($msb & 0x2000000); ++$shift) {
|
||
$msb <<= 1;
|
||
}
|
||
$x->_lshift($shift);
|
||
$y->_lshift($shift);
|
||
$y_value = &$y->value;
|
||
|
||
$x_max = count($x->value) - 1;
|
||
$y_max = count($y->value) - 1;
|
||
|
||
$quotient = new Math_BigInteger();
|
||
$quotient_value = &$quotient->value;
|
||
$quotient_value = $this->_array_repeat(0, $x_max - $y_max + 1);
|
||
|
||
static $temp, $lhs, $rhs;
|
||
if (!isset($temp)) {
|
||
$temp = new Math_BigInteger();
|
||
$lhs = new Math_BigInteger();
|
||
$rhs = new Math_BigInteger();
|
||
}
|
||
$temp_value = &$temp->value;
|
||
$rhs_value = &$rhs->value;
|
||
|
||
// $temp = $y << ($x_max - $y_max-1) in base 2**26
|
||
$temp_value = array_merge($this->_array_repeat(0, $x_max - $y_max), $y_value);
|
||
|
||
while ( $x->compare($temp) >= 0 ) {
|
||
// calculate the "common residue"
|
||
++$quotient_value[$x_max - $y_max];
|
||
$x = $x->subtract($temp);
|
||
$x_max = count($x->value) - 1;
|
||
}
|
||
|
||
for ($i = $x_max; $i >= $y_max + 1; --$i) {
|
||
$x_value = &$x->value;
|
||
$x_window = array(
|
||
isset($x_value[$i]) ? $x_value[$i] : 0,
|
||
isset($x_value[$i - 1]) ? $x_value[$i - 1] : 0,
|
||
isset($x_value[$i - 2]) ? $x_value[$i - 2] : 0
|
||
);
|
||
$y_window = array(
|
||
$y_value[$y_max],
|
||
( $y_max > 0 ) ? $y_value[$y_max - 1] : 0
|
||
);
|
||
|
||
$q_index = $i - $y_max - 1;
|
||
if ($x_window[0] == $y_window[0]) {
|
||
$quotient_value[$q_index] = 0x3FFFFFF;
|
||
} else {
|
||
$quotient_value[$q_index] = (int) (
|
||
($x_window[0] * 0x4000000 + $x_window[1])
|
||
/
|
||
$y_window[0]
|
||
);
|
||
}
|
||
|
||
$temp_value = array($y_window[1], $y_window[0]);
|
||
|
||
$lhs->value = array($quotient_value[$q_index]);
|
||
$lhs = $lhs->multiply($temp);
|
||
|
||
$rhs_value = array($x_window[2], $x_window[1], $x_window[0]);
|
||
|
||
while ( $lhs->compare($rhs) > 0 ) {
|
||
--$quotient_value[$q_index];
|
||
|
||
$lhs->value = array($quotient_value[$q_index]);
|
||
$lhs = $lhs->multiply($temp);
|
||
}
|
||
|
||
$adjust = $this->_array_repeat(0, $q_index);
|
||
$temp_value = array($quotient_value[$q_index]);
|
||
$temp = $temp->multiply($y);
|
||
$temp_value = &$temp->value;
|
||
$temp_value = array_merge($adjust, $temp_value);
|
||
|
||
$x = $x->subtract($temp);
|
||
|
||
if ($x->compare($zero) < 0) {
|
||
$temp_value = array_merge($adjust, $y_value);
|
||
$x = $x->add($temp);
|
||
|
||
--$quotient_value[$q_index];
|
||
}
|
||
|
||
$x_max = count($x_value) - 1;
|
||
}
|
||
|
||
// unnormalize the remainder
|
||
$x->_rshift($shift);
|
||
|
||
$quotient->is_negative = $x_sign != $y_sign;
|
||
|
||
// calculate the "common residue", if appropriate
|
||
if ( $x_sign ) {
|
||
$y->_rshift($shift);
|
||
$x = $y->subtract($x);
|
||
}
|
||
|
||
return array($this->_normalize($quotient), $this->_normalize($x));
|
||
}
|
||
|
||
/**
|
||
* Divides a BigInteger by a regular integer
|
||
*
|
||
* abc / x = a00 / x + b0 / x + c / x
|
||
*
|
||
* @param Array $dividend
|
||
* @param Array $divisor
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _divide_digit($dividend, $divisor)
|
||
{
|
||
$carry = 0;
|
||
$result = array();
|
||
|
||
for ($i = count($dividend) - 1; $i >= 0; --$i) {
|
||
$temp = 0x4000000 * $carry + $dividend[$i];
|
||
$result[$i] = (int) ($temp / $divisor);
|
||
$carry = (int) ($temp - $divisor * $result[$i]);
|
||
}
|
||
|
||
return array($result, $carry);
|
||
}
|
||
|
||
/**
|
||
* Performs modular exponentiation.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger('10');
|
||
* $b = new Math_BigInteger('20');
|
||
* $c = new Math_BigInteger('30');
|
||
*
|
||
* $c = $a->modPow($b, $c);
|
||
*
|
||
* echo $c->toString(); // outputs 10
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Math_BigInteger $e
|
||
* @param Math_BigInteger $n
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
* @internal The most naive approach to modular exponentiation has very unreasonable requirements, and
|
||
* and although the approach involving repeated squaring does vastly better, it, too, is impractical
|
||
* for our purposes. The reason being that division - by far the most complicated and time-consuming
|
||
* of the basic operations (eg. +,-,*,/) - occurs multiple times within it.
|
||
*
|
||
* Modular reductions resolve this issue. Although an individual modular reduction takes more time
|
||
* then an individual division, when performed in succession (with the same modulo), they're a lot faster.
|
||
*
|
||
* The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction,
|
||
* although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the
|
||
* base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because
|
||
* the product of two odd numbers is odd), but what about when RSA isn't used?
|
||
*
|
||
* In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a
|
||
* Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the
|
||
* modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however,
|
||
* uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and
|
||
* the other, a power of two - and recombine them, later. This is the method that this modPow function uses.
|
||
* {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates.
|
||
*/
|
||
function modPow($e, $n)
|
||
{
|
||
$n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? $this->bitmask : $n->abs();
|
||
|
||
if ($e->compare(new Math_BigInteger()) < 0) {
|
||
$e = $e->abs();
|
||
|
||
$temp = $this->modInverse($n);
|
||
if ($temp === false) {
|
||
return false;
|
||
}
|
||
|
||
return $this->_normalize($temp->modPow($e, $n));
|
||
}
|
||
|
||
if (MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_GMP) {
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_powm($this->value, $e->value, $n->value);
|
||
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
if ($this->compare(new Math_BigInteger()) < 0 || $this->compare($n) > 0) {
|
||
list(, $temp) = $this->divide($n);
|
||
return $temp->modPow($e, $n);
|
||
}
|
||
|
||
if (defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) {
|
||
$components = array(
|
||
'modulus' => $n->toBytes(true),
|
||
'publicExponent' => $e->toBytes(true)
|
||
);
|
||
|
||
$components = array(
|
||
'modulus' => pack('Ca*a*', 2, $this->_encodeASN1Length(strlen($components['modulus'])), $components['modulus']),
|
||
'publicExponent' => pack('Ca*a*', 2, $this->_encodeASN1Length(strlen($components['publicExponent'])), $components['publicExponent'])
|
||
);
|
||
|
||
$RSAPublicKey = pack('Ca*a*a*',
|
||
48, $this->_encodeASN1Length(strlen($components['modulus']) + strlen($components['publicExponent'])),
|
||
$components['modulus'], $components['publicExponent']
|
||
);
|
||
|
||
$rsaOID = pack('H*', '300d06092a864886f70d0101010500'); // hex version of MA0GCSqGSIb3DQEBAQUA
|
||
$RSAPublicKey = chr(0) . $RSAPublicKey;
|
||
$RSAPublicKey = chr(3) . $this->_encodeASN1Length(strlen($RSAPublicKey)) . $RSAPublicKey;
|
||
|
||
$encapsulated = pack('Ca*a*',
|
||
CRYPT_RSA_ASN1_SEQUENCE, $this->_encodeASN1Length(strlen($rsaOID . $RSAPublicKey)), $rsaOID . $RSAPublicKey
|
||
);
|
||
|
||
$RSAPublicKey = "-----BEGIN PUBLIC KEY-----\r\n" .
|
||
chunk_split(base64_encode($encapsulated)) .
|
||
'-----END PUBLIC KEY-----';
|
||
|
||
$plaintext = str_pad($this->toBytes(), strlen($n->toBytes(true)) - 1, "\0", STR_PAD_LEFT);
|
||
|
||
if (openssl_public_encrypt($plaintext, $result, $RSAPublicKey, OPENSSL_NO_PADDING)) {
|
||
return new Math_BigInteger($result, 256);
|
||
}
|
||
}
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_powm($this->value, $e->value, $n->value);
|
||
|
||
return $this->_normalize($temp);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = bcpowmod($this->value, $e->value, $n->value, 0);
|
||
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
if ( empty($e->value) ) {
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = array(1);
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
if ( $e->value == array(1) ) {
|
||
list(, $temp) = $this->divide($n);
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
if ( $e->value == array(2) ) {
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = $this->_square($this->value);
|
||
list(, $temp) = $temp->divide($n);
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
return $this->_normalize($this->_slidingWindow($e, $n, MATH_BIGINTEGER_BARRETT));
|
||
|
||
// is the modulo odd?
|
||
if ( $n->value[0] & 1 ) {
|
||
return $this->_normalize($this->_slidingWindow($e, $n, MATH_BIGINTEGER_MONTGOMERY));
|
||
}
|
||
// if it's not, it's even
|
||
|
||
// find the lowest set bit (eg. the max pow of 2 that divides $n)
|
||
for ($i = 0; $i < count($n->value); ++$i) {
|
||
if ( $n->value[$i] ) {
|
||
$temp = decbin($n->value[$i]);
|
||
$j = strlen($temp) - strrpos($temp, '1') - 1;
|
||
$j+= 26 * $i;
|
||
break;
|
||
}
|
||
}
|
||
// at this point, 2^$j * $n/(2^$j) == $n
|
||
|
||
$mod1 = $n->copy();
|
||
$mod1->_rshift($j);
|
||
$mod2 = new Math_BigInteger();
|
||
$mod2->value = array(1);
|
||
$mod2->_lshift($j);
|
||
|
||
$part1 = ( $mod1->value != array(1) ) ? $this->_slidingWindow($e, $mod1, MATH_BIGINTEGER_MONTGOMERY) : new Math_BigInteger();
|
||
$part2 = $this->_slidingWindow($e, $mod2, MATH_BIGINTEGER_POWEROF2);
|
||
|
||
$y1 = $mod2->modInverse($mod1);
|
||
$y2 = $mod1->modInverse($mod2);
|
||
|
||
$result = $part1->multiply($mod2);
|
||
$result = $result->multiply($y1);
|
||
|
||
$temp = $part2->multiply($mod1);
|
||
$temp = $temp->multiply($y2);
|
||
|
||
$result = $result->add($temp);
|
||
list(, $result) = $result->divide($n);
|
||
|
||
return $this->_normalize($result);
|
||
}
|
||
|
||
/**
|
||
* Performs modular exponentiation.
|
||
*
|
||
* Alias for Math_BigInteger::modPow()
|
||
*
|
||
* @param Math_BigInteger $e
|
||
* @param Math_BigInteger $n
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
*/
|
||
function powMod($e, $n)
|
||
{
|
||
return $this->modPow($e, $n);
|
||
}
|
||
|
||
/**
|
||
* Sliding Window k-ary Modular Exponentiation
|
||
*
|
||
* Based on {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} /
|
||
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}. In a departure from those algorithims,
|
||
* however, this function performs a modular reduction after every multiplication and squaring operation.
|
||
* As such, this function has the same preconditions that the reductions being used do.
|
||
*
|
||
* @param Math_BigInteger $e
|
||
* @param Math_BigInteger $n
|
||
* @param Integer $mode
|
||
* @return Math_BigInteger
|
||
* @access private
|
||
*/
|
||
function _slidingWindow($e, $n, $mode)
|
||
{
|
||
static $window_ranges = array(7, 25, 81, 241, 673, 1793); // from BigInteger.java's oddModPow function
|
||
//static $window_ranges = array(0, 7, 36, 140, 450, 1303, 3529); // from MPM 7.3.1
|
||
|
||
$e_value = $e->value;
|
||
$e_length = count($e_value) - 1;
|
||
$e_bits = decbin($e_value[$e_length]);
|
||
for ($i = $e_length - 1; $i >= 0; --$i) {
|
||
$e_bits.= str_pad(decbin($e_value[$i]), 26, '0', STR_PAD_LEFT);
|
||
}
|
||
|
||
$e_length = strlen($e_bits);
|
||
|
||
// calculate the appropriate window size.
|
||
// $window_size == 3 if $window_ranges is between 25 and 81, for example.
|
||
for ($i = 0, $window_size = 1; $e_length > $window_ranges[$i] && $i < count($window_ranges); ++$window_size, ++$i);
|
||
|
||
$n_value = $n->value;
|
||
|
||
// precompute $this^0 through $this^$window_size
|
||
$powers = array();
|
||
$powers[1] = $this->_prepareReduce($this->value, $n_value, $mode);
|
||
$powers[2] = $this->_squareReduce($powers[1], $n_value, $mode);
|
||
|
||
// we do every other number since substr($e_bits, $i, $j+1) (see below) is supposed to end
|
||
// in a 1. ie. it's supposed to be odd.
|
||
$temp = 1 << ($window_size - 1);
|
||
for ($i = 1; $i < $temp; ++$i) {
|
||
$i2 = $i << 1;
|
||
$powers[$i2 + 1] = $this->_multiplyReduce($powers[$i2 - 1], $powers[2], $n_value, $mode);
|
||
}
|
||
|
||
$result = array(1);
|
||
$result = $this->_prepareReduce($result, $n_value, $mode);
|
||
|
||
for ($i = 0; $i < $e_length; ) {
|
||
if ( !$e_bits[$i] ) {
|
||
$result = $this->_squareReduce($result, $n_value, $mode);
|
||
++$i;
|
||
} else {
|
||
for ($j = $window_size - 1; $j > 0; --$j) {
|
||
if ( !empty($e_bits[$i + $j]) ) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
for ($k = 0; $k <= $j; ++$k) {// eg. the length of substr($e_bits, $i, $j+1)
|
||
$result = $this->_squareReduce($result, $n_value, $mode);
|
||
}
|
||
|
||
$result = $this->_multiplyReduce($result, $powers[bindec(substr($e_bits, $i, $j + 1))], $n_value, $mode);
|
||
|
||
$i+=$j + 1;
|
||
}
|
||
}
|
||
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = $this->_reduce($result, $n_value, $mode);
|
||
|
||
return $temp;
|
||
}
|
||
|
||
/**
|
||
* Modular reduction
|
||
*
|
||
* For most $modes this will return the remainder.
|
||
*
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Array $x
|
||
* @param Array $n
|
||
* @param Integer $mode
|
||
* @return Array
|
||
*/
|
||
function _reduce($x, $n, $mode)
|
||
{
|
||
switch ($mode) {
|
||
case MATH_BIGINTEGER_MONTGOMERY:
|
||
return $this->_montgomery($x, $n);
|
||
case MATH_BIGINTEGER_BARRETT:
|
||
return $this->_barrett($x, $n);
|
||
case MATH_BIGINTEGER_POWEROF2:
|
||
$lhs = new Math_BigInteger();
|
||
$lhs->value = $x;
|
||
$rhs = new Math_BigInteger();
|
||
$rhs->value = $n;
|
||
return $x->_mod2($n);
|
||
case MATH_BIGINTEGER_CLASSIC:
|
||
$lhs = new Math_BigInteger();
|
||
$lhs->value = $x;
|
||
$rhs = new Math_BigInteger();
|
||
$rhs->value = $n;
|
||
list(, $temp) = $lhs->divide($rhs);
|
||
return $temp->value;
|
||
case MATH_BIGINTEGER_NONE:
|
||
return $x;
|
||
default:
|
||
// an invalid $mode was provided
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Modular reduction preperation
|
||
*
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Array $x
|
||
* @param Array $n
|
||
* @param Integer $mode
|
||
* @return Array
|
||
*/
|
||
function _prepareReduce($x, $n, $mode)
|
||
{
|
||
if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
|
||
return $this->_prepMontgomery($x, $n);
|
||
}
|
||
return $this->_reduce($x, $n, $mode);
|
||
}
|
||
|
||
/**
|
||
* Modular multiply
|
||
*
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Array $x
|
||
* @param Array $y
|
||
* @param Array $n
|
||
* @param Integer $mode
|
||
* @return Array
|
||
*/
|
||
function _multiplyReduce($x, $y, $n, $mode)
|
||
{
|
||
if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
|
||
return $this->_montgomeryMultiply($x, $y, $n);
|
||
}
|
||
$temp = $this->_multiply($x, false, $y, false);
|
||
return $this->_reduce($temp[MATH_BIGINTEGER_VALUE], $n, $mode);
|
||
}
|
||
|
||
/**
|
||
* Modular square
|
||
*
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Array $x
|
||
* @param Array $n
|
||
* @param Integer $mode
|
||
* @return Array
|
||
*/
|
||
function _squareReduce($x, $n, $mode)
|
||
{
|
||
if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
|
||
return $this->_montgomeryMultiply($x, $x, $n);
|
||
}
|
||
return $this->_reduce($this->_square($x), $n, $mode);
|
||
}
|
||
|
||
/**
|
||
* Modulos for Powers of Two
|
||
*
|
||
* Calculates $x%$n, where $n = 2**$e, for some $e. Since this is basically the same as doing $x & ($n-1),
|
||
* we'll just use this function as a wrapper for doing that.
|
||
*
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Math_BigInteger
|
||
* @return Math_BigInteger
|
||
*/
|
||
function _mod2($n)
|
||
{
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = array(1);
|
||
return $this->bitwise_and($n->subtract($temp));
|
||
}
|
||
|
||
/**
|
||
* Barrett Modular Reduction
|
||
*
|
||
* See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} /
|
||
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information. Modified slightly,
|
||
* so as not to require negative numbers (initially, this script didn't support negative numbers).
|
||
*
|
||
* Employs "folding", as described at
|
||
* {@link http://www.cosic.esat.kuleuven.be/publications/thesis-149.pdf#page=66 thesis-149.pdf#page=66}. To quote from
|
||
* it, "the idea [behind folding] is to find a value x' such that x (mod m) = x' (mod m), with x' being smaller than x."
|
||
*
|
||
* Unfortunately, the "Barrett Reduction with Folding" algorithm described in thesis-149.pdf is not, as written, all that
|
||
* usable on account of (1) its not using reasonable radix points as discussed in
|
||
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=162 MPM 6.2.2} and (2) the fact that, even with reasonable
|
||
* radix points, it only works when there are an even number of digits in the denominator. The reason for (2) is that
|
||
* (x >> 1) + (x >> 1) != x / 2 + x / 2. If x is even, they're the same, but if x is odd, they're not. See the in-line
|
||
* comments for details.
|
||
*
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Array $n
|
||
* @param Array $m
|
||
* @return Array
|
||
*/
|
||
function _barrett($n, $m)
|
||
{
|
||
static $cache = array(
|
||
MATH_BIGINTEGER_VARIABLE => array(),
|
||
MATH_BIGINTEGER_DATA => array()
|
||
);
|
||
|
||
$m_length = count($m);
|
||
|
||
// if ($this->_compare($n, $this->_square($m)) >= 0) {
|
||
if (count($n) > 2 * $m_length) {
|
||
$lhs = new Math_BigInteger();
|
||
$rhs = new Math_BigInteger();
|
||
$lhs->value = $n;
|
||
$rhs->value = $m;
|
||
list(, $temp) = $lhs->divide($rhs);
|
||
return $temp->value;
|
||
}
|
||
|
||
// if (m.length >> 1) + 2 <= m.length then m is too small and n can't be reduced
|
||
if ($m_length < 5) {
|
||
return $this->_regularBarrett($n, $m);
|
||
}
|
||
|
||
// n = 2 * m.length
|
||
|
||
if ( ($key = array_search($m, $cache[MATH_BIGINTEGER_VARIABLE])) === false ) {
|
||
$key = count($cache[MATH_BIGINTEGER_VARIABLE]);
|
||
$cache[MATH_BIGINTEGER_VARIABLE][] = $m;
|
||
|
||
$lhs = new Math_BigInteger();
|
||
$lhs_value = &$lhs->value;
|
||
$lhs_value = $this->_array_repeat(0, $m_length + ($m_length >> 1));
|
||
$lhs_value[] = 1;
|
||
$rhs = new Math_BigInteger();
|
||
$rhs->value = $m;
|
||
|
||
list($u, $m1) = $lhs->divide($rhs);
|
||
$u = $u->value;
|
||
$m1 = $m1->value;
|
||
|
||
$cache[MATH_BIGINTEGER_DATA][] = array(
|
||
'u' => $u, // m.length >> 1 (technically (m.length >> 1) + 1)
|
||
'm1'=> $m1 // m.length
|
||
);
|
||
} else {
|
||
extract($cache[MATH_BIGINTEGER_DATA][$key]);
|
||
}
|
||
|
||
$cutoff = $m_length + ($m_length >> 1);
|
||
$lsd = array_slice($n, 0, $cutoff); // m.length + (m.length >> 1)
|
||
$msd = array_slice($n, $cutoff); // m.length >> 1
|
||
$lsd = $this->_trim($lsd);
|
||
$temp = $this->_multiply($msd, false, $m1, false);
|
||
$n = $this->_add($lsd, false, $temp[MATH_BIGINTEGER_VALUE], false); // m.length + (m.length >> 1) + 1
|
||
|
||
if ($m_length & 1) {
|
||
return $this->_regularBarrett($n[MATH_BIGINTEGER_VALUE], $m);
|
||
}
|
||
|
||
// (m.length + (m.length >> 1) + 1) - (m.length - 1) == (m.length >> 1) + 2
|
||
$temp = array_slice($n[MATH_BIGINTEGER_VALUE], $m_length - 1);
|
||
// if even: ((m.length >> 1) + 2) + (m.length >> 1) == m.length + 2
|
||
// if odd: ((m.length >> 1) + 2) + (m.length >> 1) == (m.length - 1) + 2 == m.length + 1
|
||
$temp = $this->_multiply($temp, false, $u, false);
|
||
// if even: (m.length + 2) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) + 1
|
||
// if odd: (m.length + 1) - ((m.length >> 1) + 1) = m.length - (m.length >> 1)
|
||
$temp = array_slice($temp[MATH_BIGINTEGER_VALUE], ($m_length >> 1) + 1);
|
||
// if even: (m.length - (m.length >> 1) + 1) + m.length = 2 * m.length - (m.length >> 1) + 1
|
||
// if odd: (m.length - (m.length >> 1)) + m.length = 2 * m.length - (m.length >> 1)
|
||
$temp = $this->_multiply($temp, false, $m, false);
|
||
|
||
// at this point, if m had an odd number of digits, we'd be subtracting a 2 * m.length - (m.length >> 1) digit
|
||
// number from a m.length + (m.length >> 1) + 1 digit number. ie. there'd be an extra digit and the while loop
|
||
// following this comment would loop a lot (hence our calling _regularBarrett() in that situation).
|
||
|
||
$result = $this->_subtract($n[MATH_BIGINTEGER_VALUE], false, $temp[MATH_BIGINTEGER_VALUE], false);
|
||
|
||
while ($this->_compare($result[MATH_BIGINTEGER_VALUE], $result[MATH_BIGINTEGER_SIGN], $m, false) >= 0) {
|
||
$result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], $result[MATH_BIGINTEGER_SIGN], $m, false);
|
||
}
|
||
|
||
return $result[MATH_BIGINTEGER_VALUE];
|
||
}
|
||
|
||
/**
|
||
* (Regular) Barrett Modular Reduction
|
||
*
|
||
* For numbers with more than four digits Math_BigInteger::_barrett() is faster. The difference between that and this
|
||
* is that this function does not fold the denominator into a smaller form.
|
||
*
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Array $x
|
||
* @param Array $n
|
||
* @return Array
|
||
*/
|
||
function _regularBarrett($x, $n)
|
||
{
|
||
static $cache = array(
|
||
MATH_BIGINTEGER_VARIABLE => array(),
|
||
MATH_BIGINTEGER_DATA => array()
|
||
);
|
||
|
||
$n_length = count($n);
|
||
|
||
if (count($x) > 2 * $n_length) {
|
||
$lhs = new Math_BigInteger();
|
||
$rhs = new Math_BigInteger();
|
||
$lhs->value = $x;
|
||
$rhs->value = $n;
|
||
list(, $temp) = $lhs->divide($rhs);
|
||
return $temp->value;
|
||
}
|
||
|
||
if ( ($key = array_search($n, $cache[MATH_BIGINTEGER_VARIABLE])) === false ) {
|
||
$key = count($cache[MATH_BIGINTEGER_VARIABLE]);
|
||
$cache[MATH_BIGINTEGER_VARIABLE][] = $n;
|
||
$lhs = new Math_BigInteger();
|
||
$lhs_value = &$lhs->value;
|
||
$lhs_value = $this->_array_repeat(0, 2 * $n_length);
|
||
$lhs_value[] = 1;
|
||
$rhs = new Math_BigInteger();
|
||
$rhs->value = $n;
|
||
list($temp, ) = $lhs->divide($rhs); // m.length
|
||
$cache[MATH_BIGINTEGER_DATA][] = $temp->value;
|
||
}
|
||
|
||
// 2 * m.length - (m.length - 1) = m.length + 1
|
||
$temp = array_slice($x, $n_length - 1);
|
||
// (m.length + 1) + m.length = 2 * m.length + 1
|
||
$temp = $this->_multiply($temp, false, $cache[MATH_BIGINTEGER_DATA][$key], false);
|
||
// (2 * m.length + 1) - (m.length - 1) = m.length + 2
|
||
$temp = array_slice($temp[MATH_BIGINTEGER_VALUE], $n_length + 1);
|
||
|
||
// m.length + 1
|
||
$result = array_slice($x, 0, $n_length + 1);
|
||
// m.length + 1
|
||
$temp = $this->_multiplyLower($temp, false, $n, false, $n_length + 1);
|
||
// $temp == array_slice($temp->_multiply($temp, false, $n, false)->value, 0, $n_length + 1)
|
||
|
||
if ($this->_compare($result, false, $temp[MATH_BIGINTEGER_VALUE], $temp[MATH_BIGINTEGER_SIGN]) < 0) {
|
||
$corrector_value = $this->_array_repeat(0, $n_length + 1);
|
||
$corrector_value[] = 1;
|
||
$result = $this->_add($result, false, $corrector, false);
|
||
$result = $result[MATH_BIGINTEGER_VALUE];
|
||
}
|
||
|
||
// at this point, we're subtracting a number with m.length + 1 digits from another number with m.length + 1 digits
|
||
$result = $this->_subtract($result, false, $temp[MATH_BIGINTEGER_VALUE], $temp[MATH_BIGINTEGER_SIGN]);
|
||
while ($this->_compare($result[MATH_BIGINTEGER_VALUE], $result[MATH_BIGINTEGER_SIGN], $n, false) > 0) {
|
||
$result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], $result[MATH_BIGINTEGER_SIGN], $n, false);
|
||
}
|
||
|
||
return $result[MATH_BIGINTEGER_VALUE];
|
||
}
|
||
|
||
/**
|
||
* Performs long multiplication up to $stop digits
|
||
*
|
||
* If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved.
|
||
*
|
||
* @see _regularBarrett()
|
||
* @param Array $x_value
|
||
* @param Boolean $x_negative
|
||
* @param Array $y_value
|
||
* @param Boolean $y_negative
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _multiplyLower($x_value, $x_negative, $y_value, $y_negative, $stop)
|
||
{
|
||
$x_length = count($x_value);
|
||
$y_length = count($y_value);
|
||
|
||
if ( !$x_length || !$y_length ) { // a 0 is being multiplied
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => array(),
|
||
MATH_BIGINTEGER_SIGN => false
|
||
);
|
||
}
|
||
|
||
if ( $x_length < $y_length ) {
|
||
$temp = $x_value;
|
||
$x_value = $y_value;
|
||
$y_value = $temp;
|
||
|
||
$x_length = count($x_value);
|
||
$y_length = count($y_value);
|
||
}
|
||
|
||
$product_value = $this->_array_repeat(0, $x_length + $y_length);
|
||
|
||
// the following for loop could be removed if the for loop following it
|
||
// (the one with nested for loops) initially set $i to 0, but
|
||
// doing so would also make the result in one set of unnecessary adds,
|
||
// since on the outermost loops first pass, $product->value[$k] is going
|
||
// to always be 0
|
||
|
||
$carry = 0;
|
||
|
||
for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0, $k = $i
|
||
$temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0
|
||
$carry = (int) ($temp / 0x4000000);
|
||
$product_value[$j] = (int) ($temp - 0x4000000 * $carry);
|
||
}
|
||
|
||
if ($j < $stop) {
|
||
$product_value[$j] = $carry;
|
||
}
|
||
|
||
// the above for loop is what the previous comment was talking about. the
|
||
// following for loop is the "one with nested for loops"
|
||
|
||
for ($i = 1; $i < $y_length; ++$i) {
|
||
$carry = 0;
|
||
|
||
for ($j = 0, $k = $i; $j < $x_length && $k < $stop; ++$j, ++$k) {
|
||
$temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry;
|
||
$carry = (int) ($temp / 0x4000000);
|
||
$product_value[$k] = (int) ($temp - 0x4000000 * $carry);
|
||
}
|
||
|
||
if ($k < $stop) {
|
||
$product_value[$k] = $carry;
|
||
}
|
||
}
|
||
|
||
return array(
|
||
MATH_BIGINTEGER_VALUE => $this->_trim($product_value),
|
||
MATH_BIGINTEGER_SIGN => $x_negative != $y_negative
|
||
);
|
||
}
|
||
|
||
/**
|
||
* Montgomery Modular Reduction
|
||
*
|
||
* ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n.
|
||
* {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be
|
||
* improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function
|
||
* to work correctly.
|
||
*
|
||
* @see _prepMontgomery()
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Array $x
|
||
* @param Array $n
|
||
* @return Array
|
||
*/
|
||
function _montgomery($x, $n)
|
||
{
|
||
static $cache = array(
|
||
MATH_BIGINTEGER_VARIABLE => array(),
|
||
MATH_BIGINTEGER_DATA => array()
|
||
);
|
||
|
||
if ( ($key = array_search($n, $cache[MATH_BIGINTEGER_VARIABLE])) === false ) {
|
||
$key = count($cache[MATH_BIGINTEGER_VARIABLE]);
|
||
$cache[MATH_BIGINTEGER_VARIABLE][] = $x;
|
||
$cache[MATH_BIGINTEGER_DATA][] = $this->_modInverse67108864($n);
|
||
}
|
||
|
||
$k = count($n);
|
||
|
||
$result = array(MATH_BIGINTEGER_VALUE => $x);
|
||
|
||
for ($i = 0; $i < $k; ++$i) {
|
||
$temp = $result[MATH_BIGINTEGER_VALUE][$i] * $cache[MATH_BIGINTEGER_DATA][$key];
|
||
$temp = (int) ($temp - 0x4000000 * ((int) ($temp / 0x4000000)));
|
||
$temp = $this->_regularMultiply(array($temp), $n);
|
||
$temp = array_merge($this->_array_repeat(0, $i), $temp);
|
||
$result = $this->_add($result[MATH_BIGINTEGER_VALUE], false, $temp, false);
|
||
}
|
||
|
||
$result[MATH_BIGINTEGER_VALUE] = array_slice($result[MATH_BIGINTEGER_VALUE], $k);
|
||
|
||
if ($this->_compare($result, false, $n, false) >= 0) {
|
||
$result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], false, $n, false);
|
||
}
|
||
|
||
return $result[MATH_BIGINTEGER_VALUE];
|
||
}
|
||
|
||
/**
|
||
* Montgomery Multiply
|
||
*
|
||
* Interleaves the montgomery reduction and long multiplication algorithms together as described in
|
||
* {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=13 HAC 14.36}
|
||
*
|
||
* @see _prepMontgomery()
|
||
* @see _montgomery()
|
||
* @access private
|
||
* @param Array $x
|
||
* @param Array $y
|
||
* @param Array $m
|
||
* @return Array
|
||
*/
|
||
function _montgomeryMultiply($x, $y, $m)
|
||
{
|
||
$temp = $this->_multiply($x, false, $y, false);
|
||
return $this->_montgomery($temp[MATH_BIGINTEGER_VALUE], $m);
|
||
|
||
static $cache = array(
|
||
MATH_BIGINTEGER_VARIABLE => array(),
|
||
MATH_BIGINTEGER_DATA => array()
|
||
);
|
||
|
||
if ( ($key = array_search($m, $cache[MATH_BIGINTEGER_VARIABLE])) === false ) {
|
||
$key = count($cache[MATH_BIGINTEGER_VARIABLE]);
|
||
$cache[MATH_BIGINTEGER_VARIABLE][] = $m;
|
||
$cache[MATH_BIGINTEGER_DATA][] = $this->_modInverse67108864($m);
|
||
}
|
||
|
||
$n = max(count($x), count($y), count($m));
|
||
$x = array_pad($x, $n, 0);
|
||
$y = array_pad($y, $n, 0);
|
||
$m = array_pad($m, $n, 0);
|
||
$a = array(MATH_BIGINTEGER_VALUE => $this->_array_repeat(0, $n + 1));
|
||
for ($i = 0; $i < $n; ++$i) {
|
||
$temp = $a[MATH_BIGINTEGER_VALUE][0] + $x[$i] * $y[0];
|
||
$temp = (int) ($temp - 0x4000000 * ((int) ($temp / 0x4000000)));
|
||
$temp = $temp * $cache[MATH_BIGINTEGER_DATA][$key];
|
||
$temp = (int) ($temp - 0x4000000 * ((int) ($temp / 0x4000000)));
|
||
$temp = $this->_add($this->_regularMultiply(array($x[$i]), $y), false, $this->_regularMultiply(array($temp), $m), false);
|
||
$a = $this->_add($a[MATH_BIGINTEGER_VALUE], false, $temp[MATH_BIGINTEGER_VALUE], false);
|
||
$a[MATH_BIGINTEGER_VALUE] = array_slice($a[MATH_BIGINTEGER_VALUE], 1);
|
||
}
|
||
if ($this->_compare($a[MATH_BIGINTEGER_VALUE], false, $m, false) >= 0) {
|
||
$a = $this->_subtract($a[MATH_BIGINTEGER_VALUE], false, $m, false);
|
||
}
|
||
return $a[MATH_BIGINTEGER_VALUE];
|
||
}
|
||
|
||
/**
|
||
* Prepare a number for use in Montgomery Modular Reductions
|
||
*
|
||
* @see _montgomery()
|
||
* @see _slidingWindow()
|
||
* @access private
|
||
* @param Array $x
|
||
* @param Array $n
|
||
* @return Array
|
||
*/
|
||
function _prepMontgomery($x, $n)
|
||
{
|
||
$lhs = new Math_BigInteger();
|
||
$lhs->value = array_merge($this->_array_repeat(0, count($n)), $x);
|
||
$rhs = new Math_BigInteger();
|
||
$rhs->value = $n;
|
||
|
||
list(, $temp) = $lhs->divide($rhs);
|
||
return $temp->value;
|
||
}
|
||
|
||
/**
|
||
* Modular Inverse of a number mod 2**26 (eg. 67108864)
|
||
*
|
||
* Based off of the bnpInvDigit function implemented and justified in the following URL:
|
||
*
|
||
* {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js}
|
||
*
|
||
* The following URL provides more info:
|
||
*
|
||
* {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85}
|
||
*
|
||
* As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For
|
||
* instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields
|
||
* int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't
|
||
* auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that
|
||
* the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the
|
||
* maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to
|
||
* 40 bits, which only 64-bit floating points will support.
|
||
*
|
||
* Thanks to Pedro Gimeno Fortea for input!
|
||
*
|
||
* @see _montgomery()
|
||
* @access private
|
||
* @param Array $x
|
||
* @return Integer
|
||
*/
|
||
function _modInverse67108864($x) // 2**26 == 67108864
|
||
{
|
||
$x = -$x[0];
|
||
$result = $x & 0x3; // x**-1 mod 2**2
|
||
$result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4
|
||
$result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8
|
||
$result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16
|
||
$result = fmod($result * (2 - fmod($x * $result, 0x4000000)), 0x4000000); // x**-1 mod 2**26
|
||
return $result & 0x3FFFFFF;
|
||
}
|
||
|
||
/**
|
||
* Calculates modular inverses.
|
||
*
|
||
* Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger(30);
|
||
* $b = new Math_BigInteger(17);
|
||
*
|
||
* $c = $a->modInverse($b);
|
||
* echo $c->toString(); // outputs 4
|
||
*
|
||
* echo "\r\n";
|
||
*
|
||
* $d = $a->multiply($c);
|
||
* list(, $d) = $d->divide($b);
|
||
* echo $d; // outputs 1 (as per the definition of modular inverse)
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Math_BigInteger $n
|
||
* @return mixed false, if no modular inverse exists, Math_BigInteger, otherwise.
|
||
* @access public
|
||
* @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for more information.
|
||
*/
|
||
function modInverse($n)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_invert($this->value, $n->value);
|
||
|
||
return ( $temp->value === false ) ? false : $this->_normalize($temp);
|
||
}
|
||
|
||
static $zero, $one;
|
||
if (!isset($zero)) {
|
||
$zero = new Math_BigInteger();
|
||
$one = new Math_BigInteger(1);
|
||
}
|
||
|
||
// $x mod -$n == $x mod $n.
|
||
$n = $n->abs();
|
||
|
||
if ($this->compare($zero) < 0) {
|
||
$temp = $this->abs();
|
||
$temp = $temp->modInverse($n);
|
||
return $this->_normalize($n->subtract($temp));
|
||
}
|
||
|
||
extract($this->extendedGCD($n));
|
||
|
||
if (!$gcd->equals($one)) {
|
||
return false;
|
||
}
|
||
|
||
$x = $x->compare($zero) < 0 ? $x->add($n) : $x;
|
||
|
||
return $this->compare($zero) < 0 ? $this->_normalize($n->subtract($x)) : $this->_normalize($x);
|
||
}
|
||
|
||
/**
|
||
* Calculates the greatest common divisor and B<>zout's identity.
|
||
*
|
||
* Say you have 693 and 609. The GCD is 21. B<>zout's identity states that there exist integers x and y such that
|
||
* 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which
|
||
* combination is returned is dependant upon which mode is in use. See
|
||
* {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity B<>zout's identity - Wikipedia} for more information.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger(693);
|
||
* $b = new Math_BigInteger(609);
|
||
*
|
||
* extract($a->extendedGCD($b));
|
||
*
|
||
* echo $gcd->toString() . "\r\n"; // outputs 21
|
||
* echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); // outputs 21
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Math_BigInteger $n
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
* @internal Calculates the GCD using the binary xGCD algorithim described in
|
||
* {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes,
|
||
* the more traditional algorithim requires "relatively costly multiple-precision divisions".
|
||
*/
|
||
function extendedGCD($n)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
extract(gmp_gcdext($this->value, $n->value));
|
||
|
||
return array(
|
||
'gcd' => $this->_normalize(new Math_BigInteger($g)),
|
||
'x' => $this->_normalize(new Math_BigInteger($s)),
|
||
'y' => $this->_normalize(new Math_BigInteger($t))
|
||
);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
// it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works
|
||
// best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway. as is,
|
||
// the basic extended euclidean algorithim is what we're using.
|
||
|
||
$u = $this->value;
|
||
$v = $n->value;
|
||
|
||
$a = '1';
|
||
$b = '0';
|
||
$c = '0';
|
||
$d = '1';
|
||
|
||
while (bccomp($v, '0', 0) != 0) {
|
||
$q = bcdiv($u, $v, 0);
|
||
|
||
$temp = $u;
|
||
$u = $v;
|
||
$v = bcsub($temp, bcmul($v, $q, 0), 0);
|
||
|
||
$temp = $a;
|
||
$a = $c;
|
||
$c = bcsub($temp, bcmul($a, $q, 0), 0);
|
||
|
||
$temp = $b;
|
||
$b = $d;
|
||
$d = bcsub($temp, bcmul($b, $q, 0), 0);
|
||
}
|
||
|
||
return array(
|
||
'gcd' => $this->_normalize(new Math_BigInteger($u)),
|
||
'x' => $this->_normalize(new Math_BigInteger($a)),
|
||
'y' => $this->_normalize(new Math_BigInteger($b))
|
||
);
|
||
}
|
||
|
||
$y = $n->copy();
|
||
$x = $this->copy();
|
||
$g = new Math_BigInteger();
|
||
$g->value = array(1);
|
||
|
||
while ( !(($x->value[0] & 1)|| ($y->value[0] & 1)) ) {
|
||
$x->_rshift(1);
|
||
$y->_rshift(1);
|
||
$g->_lshift(1);
|
||
}
|
||
|
||
$u = $x->copy();
|
||
$v = $y->copy();
|
||
|
||
$a = new Math_BigInteger();
|
||
$b = new Math_BigInteger();
|
||
$c = new Math_BigInteger();
|
||
$d = new Math_BigInteger();
|
||
|
||
$a->value = $d->value = $g->value = array(1);
|
||
$b->value = $c->value = array();
|
||
|
||
while ( !empty($u->value) ) {
|
||
while ( !($u->value[0] & 1) ) {
|
||
$u->_rshift(1);
|
||
if ( (!empty($a->value) && ($a->value[0] & 1)) || (!empty($b->value) && ($b->value[0] & 1)) ) {
|
||
$a = $a->add($y);
|
||
$b = $b->subtract($x);
|
||
}
|
||
$a->_rshift(1);
|
||
$b->_rshift(1);
|
||
}
|
||
|
||
while ( !($v->value[0] & 1) ) {
|
||
$v->_rshift(1);
|
||
if ( (!empty($d->value) && ($d->value[0] & 1)) || (!empty($c->value) && ($c->value[0] & 1)) ) {
|
||
$c = $c->add($y);
|
||
$d = $d->subtract($x);
|
||
}
|
||
$c->_rshift(1);
|
||
$d->_rshift(1);
|
||
}
|
||
|
||
if ($u->compare($v) >= 0) {
|
||
$u = $u->subtract($v);
|
||
$a = $a->subtract($c);
|
||
$b = $b->subtract($d);
|
||
} else {
|
||
$v = $v->subtract($u);
|
||
$c = $c->subtract($a);
|
||
$d = $d->subtract($b);
|
||
}
|
||
}
|
||
|
||
return array(
|
||
'gcd' => $this->_normalize($g->multiply($v)),
|
||
'x' => $this->_normalize($c),
|
||
'y' => $this->_normalize($d)
|
||
);
|
||
}
|
||
|
||
/**
|
||
* Calculates the greatest common divisor
|
||
*
|
||
* Say you have 693 and 609. The GCD is 21.
|
||
*
|
||
* Here's an example:
|
||
* <code>
|
||
* <?php
|
||
* include('Math/BigInteger.php');
|
||
*
|
||
* $a = new Math_BigInteger(693);
|
||
* $b = new Math_BigInteger(609);
|
||
*
|
||
* $gcd = a->extendedGCD($b);
|
||
*
|
||
* echo $gcd->toString() . "\r\n"; // outputs 21
|
||
* ?>
|
||
* </code>
|
||
*
|
||
* @param Math_BigInteger $n
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
*/
|
||
function gcd($n)
|
||
{
|
||
extract($this->extendedGCD($n));
|
||
return $gcd;
|
||
}
|
||
|
||
/**
|
||
* Absolute value.
|
||
*
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
*/
|
||
function abs()
|
||
{
|
||
$temp = new Math_BigInteger();
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp->value = gmp_abs($this->value);
|
||
break;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$temp->value = (bccomp($this->value, '0', 0) < 0) ? substr($this->value, 1) : $this->value;
|
||
break;
|
||
default:
|
||
$temp->value = $this->value;
|
||
}
|
||
|
||
return $temp;
|
||
}
|
||
|
||
/**
|
||
* Compares two numbers.
|
||
*
|
||
* Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is
|
||
* demonstrated thusly:
|
||
*
|
||
* $x > $y: $x->compare($y) > 0
|
||
* $x < $y: $x->compare($y) < 0
|
||
* $x == $y: $x->compare($y) == 0
|
||
*
|
||
* Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y).
|
||
*
|
||
* @param Math_BigInteger $x
|
||
* @return Integer < 0 if $this is less than $x; > 0 if $this is greater than $x, and 0 if they are equal.
|
||
* @access public
|
||
* @see equals()
|
||
* @internal Could return $this->subtract($x), but that's not as fast as what we do do.
|
||
*/
|
||
function compare($y)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
return gmp_cmp($this->value, $y->value);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
return bccomp($this->value, $y->value, 0);
|
||
}
|
||
|
||
return $this->_compare($this->value, $this->is_negative, $y->value, $y->is_negative);
|
||
}
|
||
|
||
/**
|
||
* Compares two numbers.
|
||
*
|
||
* @param Array $x_value
|
||
* @param Boolean $x_negative
|
||
* @param Array $y_value
|
||
* @param Boolean $y_negative
|
||
* @return Integer
|
||
* @see compare()
|
||
* @access private
|
||
*/
|
||
function _compare($x_value, $x_negative, $y_value, $y_negative)
|
||
{
|
||
if ( $x_negative != $y_negative ) {
|
||
return ( !$x_negative && $y_negative ) ? 1 : -1;
|
||
}
|
||
|
||
$result = $x_negative ? -1 : 1;
|
||
|
||
if ( count($x_value) != count($y_value) ) {
|
||
return ( count($x_value) > count($y_value) ) ? $result : -$result;
|
||
}
|
||
$size = max(count($x_value), count($y_value));
|
||
|
||
$x_value = array_pad($x_value, $size, 0);
|
||
$y_value = array_pad($y_value, $size, 0);
|
||
|
||
for ($i = count($x_value) - 1; $i >= 0; --$i) {
|
||
if ($x_value[$i] != $y_value[$i]) {
|
||
return ( $x_value[$i] > $y_value[$i] ) ? $result : -$result;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* Tests the equality of two numbers.
|
||
*
|
||
* If you need to see if one number is greater than or less than another number, use Math_BigInteger::compare()
|
||
*
|
||
* @param Math_BigInteger $x
|
||
* @return Boolean
|
||
* @access public
|
||
* @see compare()
|
||
*/
|
||
function equals($x)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
return gmp_cmp($this->value, $x->value) == 0;
|
||
default:
|
||
return $this->value === $x->value && $this->is_negative == $x->is_negative;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Set Precision
|
||
*
|
||
* Some bitwise operations give different results depending on the precision being used. Examples include left
|
||
* shift, not, and rotates.
|
||
*
|
||
* @param Math_BigInteger $x
|
||
* @access public
|
||
* @return Math_BigInteger
|
||
*/
|
||
function setPrecision($bits)
|
||
{
|
||
$this->precision = $bits;
|
||
if ( MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_BCMATH ) {
|
||
$this->bitmask = new Math_BigInteger(chr((1 << ($bits & 0x7)) - 1) . str_repeat(chr(0xFF), $bits >> 3), 256);
|
||
} else {
|
||
$this->bitmask = new Math_BigInteger(bcpow('2', $bits, 0));
|
||
}
|
||
|
||
$temp = $this->_normalize($this);
|
||
$this->value = $temp->value;
|
||
}
|
||
|
||
/**
|
||
* Logical And
|
||
*
|
||
* @param Math_BigInteger $x
|
||
* @access public
|
||
* @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
|
||
* @return Math_BigInteger
|
||
*/
|
||
function bitwise_and($x)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_and($this->value, $x->value);
|
||
|
||
return $this->_normalize($temp);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$left = $this->toBytes();
|
||
$right = $x->toBytes();
|
||
|
||
$length = max(strlen($left), strlen($right));
|
||
|
||
$left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
|
||
$right = str_pad($right, $length, chr(0), STR_PAD_LEFT);
|
||
|
||
return $this->_normalize(new Math_BigInteger($left & $right, 256));
|
||
}
|
||
|
||
$result = $this->copy();
|
||
|
||
$length = min(count($x->value), count($this->value));
|
||
|
||
$result->value = array_slice($result->value, 0, $length);
|
||
|
||
for ($i = 0; $i < $length; ++$i) {
|
||
$result->value[$i] = $result->value[$i] & $x->value[$i];
|
||
}
|
||
|
||
return $this->_normalize($result);
|
||
}
|
||
|
||
/**
|
||
* Logical Or
|
||
*
|
||
* @param Math_BigInteger $x
|
||
* @access public
|
||
* @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
|
||
* @return Math_BigInteger
|
||
*/
|
||
function bitwise_or($x)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_or($this->value, $x->value);
|
||
|
||
return $this->_normalize($temp);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$left = $this->toBytes();
|
||
$right = $x->toBytes();
|
||
|
||
$length = max(strlen($left), strlen($right));
|
||
|
||
$left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
|
||
$right = str_pad($right, $length, chr(0), STR_PAD_LEFT);
|
||
|
||
return $this->_normalize(new Math_BigInteger($left | $right, 256));
|
||
}
|
||
|
||
$length = max(count($this->value), count($x->value));
|
||
$result = $this->copy();
|
||
$result->value = array_pad($result->value, 0, $length);
|
||
$x->value = array_pad($x->value, 0, $length);
|
||
|
||
for ($i = 0; $i < $length; ++$i) {
|
||
$result->value[$i] = $this->value[$i] | $x->value[$i];
|
||
}
|
||
|
||
return $this->_normalize($result);
|
||
}
|
||
|
||
/**
|
||
* Logical Exclusive-Or
|
||
*
|
||
* @param Math_BigInteger $x
|
||
* @access public
|
||
* @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
|
||
* @return Math_BigInteger
|
||
*/
|
||
function bitwise_xor($x)
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
$temp = new Math_BigInteger();
|
||
$temp->value = gmp_xor($this->value, $x->value);
|
||
|
||
return $this->_normalize($temp);
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$left = $this->toBytes();
|
||
$right = $x->toBytes();
|
||
|
||
$length = max(strlen($left), strlen($right));
|
||
|
||
$left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
|
||
$right = str_pad($right, $length, chr(0), STR_PAD_LEFT);
|
||
|
||
return $this->_normalize(new Math_BigInteger($left ^ $right, 256));
|
||
}
|
||
|
||
$length = max(count($this->value), count($x->value));
|
||
$result = $this->copy();
|
||
$result->value = array_pad($result->value, 0, $length);
|
||
$x->value = array_pad($x->value, 0, $length);
|
||
|
||
for ($i = 0; $i < $length; ++$i) {
|
||
$result->value[$i] = $this->value[$i] ^ $x->value[$i];
|
||
}
|
||
|
||
return $this->_normalize($result);
|
||
}
|
||
|
||
/**
|
||
* Logical Not
|
||
*
|
||
* @access public
|
||
* @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
|
||
* @return Math_BigInteger
|
||
*/
|
||
function bitwise_not()
|
||
{
|
||
// calculuate "not" without regard to $this->precision
|
||
// (will always result in a smaller number. ie. ~1 isn't 1111 1110 - it's 0)
|
||
$temp = $this->toBytes();
|
||
$pre_msb = decbin(ord($temp[0]));
|
||
$temp = ~$temp;
|
||
$msb = decbin(ord($temp[0]));
|
||
if (strlen($msb) == 8) {
|
||
$msb = substr($msb, strpos($msb, '0'));
|
||
}
|
||
$temp[0] = chr(bindec($msb));
|
||
|
||
// see if we need to add extra leading 1's
|
||
$current_bits = strlen($pre_msb) + 8 * strlen($temp) - 8;
|
||
$new_bits = $this->precision - $current_bits;
|
||
if ($new_bits <= 0) {
|
||
return $this->_normalize(new Math_BigInteger($temp, 256));
|
||
}
|
||
|
||
// generate as many leading 1's as we need to.
|
||
$leading_ones = chr((1 << ($new_bits & 0x7)) - 1) . str_repeat(chr(0xFF), $new_bits >> 3);
|
||
$this->_base256_lshift($leading_ones, $current_bits);
|
||
|
||
$temp = str_pad($temp, ceil($this->bits / 8), chr(0), STR_PAD_LEFT);
|
||
|
||
return $this->_normalize(new Math_BigInteger($leading_ones | $temp, 256));
|
||
}
|
||
|
||
/**
|
||
* Logical Right Shift
|
||
*
|
||
* Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
|
||
*
|
||
* @param Integer $shift
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
* @internal The only version that yields any speed increases is the internal version.
|
||
*/
|
||
function bitwise_rightShift($shift)
|
||
{
|
||
$temp = new Math_BigInteger();
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
static $two;
|
||
|
||
if (!isset($two)) {
|
||
$two = gmp_init('2');
|
||
}
|
||
|
||
$temp->value = gmp_div_q($this->value, gmp_pow($two, $shift));
|
||
|
||
break;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$temp->value = bcdiv($this->value, bcpow('2', $shift, 0), 0);
|
||
|
||
break;
|
||
default: // could just replace _lshift with this, but then all _lshift() calls would need to be rewritten
|
||
// and I don't want to do that...
|
||
$temp->value = $this->value;
|
||
$temp->_rshift($shift);
|
||
}
|
||
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
/**
|
||
* Logical Left Shift
|
||
*
|
||
* Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
|
||
*
|
||
* @param Integer $shift
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
* @internal The only version that yields any speed increases is the internal version.
|
||
*/
|
||
function bitwise_leftShift($shift)
|
||
{
|
||
$temp = new Math_BigInteger();
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
static $two;
|
||
|
||
if (!isset($two)) {
|
||
$two = gmp_init('2');
|
||
}
|
||
|
||
$temp->value = gmp_mul($this->value, gmp_pow($two, $shift));
|
||
|
||
break;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
$temp->value = bcmul($this->value, bcpow('2', $shift, 0), 0);
|
||
|
||
break;
|
||
default: // could just replace _rshift with this, but then all _lshift() calls would need to be rewritten
|
||
// and I don't want to do that...
|
||
$temp->value = $this->value;
|
||
$temp->_lshift($shift);
|
||
}
|
||
|
||
return $this->_normalize($temp);
|
||
}
|
||
|
||
/**
|
||
* Logical Left Rotate
|
||
*
|
||
* Instead of the top x bits being dropped they're appended to the shifted bit string.
|
||
*
|
||
* @param Integer $shift
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
*/
|
||
function bitwise_leftRotate($shift)
|
||
{
|
||
$bits = $this->toBytes();
|
||
|
||
if ($this->precision > 0) {
|
||
$precision = $this->precision;
|
||
if ( MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_BCMATH ) {
|
||
$mask = $this->bitmask->subtract(new Math_BigInteger(1));
|
||
$mask = $mask->toBytes();
|
||
} else {
|
||
$mask = $this->bitmask->toBytes();
|
||
}
|
||
} else {
|
||
$temp = ord($bits[0]);
|
||
for ($i = 0; $temp >> $i; ++$i);
|
||
$precision = 8 * strlen($bits) - 8 + $i;
|
||
$mask = chr((1 << ($precision & 0x7)) - 1) . str_repeat(chr(0xFF), $precision >> 3);
|
||
}
|
||
|
||
if ($shift < 0) {
|
||
$shift+= $precision;
|
||
}
|
||
$shift%= $precision;
|
||
|
||
if (!$shift) {
|
||
return $this->copy();
|
||
}
|
||
|
||
$left = $this->bitwise_leftShift($shift);
|
||
$left = $left->bitwise_and(new Math_BigInteger($mask, 256));
|
||
$right = $this->bitwise_rightShift($precision - $shift);
|
||
$result = MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_BCMATH ? $left->bitwise_or($right) : $left->add($right);
|
||
return $this->_normalize($result);
|
||
}
|
||
|
||
/**
|
||
* Logical Right Rotate
|
||
*
|
||
* Instead of the bottom x bits being dropped they're prepended to the shifted bit string.
|
||
*
|
||
* @param Integer $shift
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
*/
|
||
function bitwise_rightRotate($shift)
|
||
{
|
||
return $this->bitwise_leftRotate(-$shift);
|
||
}
|
||
|
||
/**
|
||
* Set random number generator function
|
||
*
|
||
* $generator should be the name of a random generating function whose first parameter is the minimum
|
||
* value and whose second parameter is the maximum value. If this function needs to be seeded, it should
|
||
* be seeded prior to calling Math_BigInteger::random() or Math_BigInteger::randomPrime()
|
||
*
|
||
* If the random generating function is not explicitly set, it'll be assumed to be mt_rand().
|
||
*
|
||
* @see random()
|
||
* @see randomPrime()
|
||
* @param optional String $generator
|
||
* @access public
|
||
*/
|
||
function setRandomGenerator($generator)
|
||
{
|
||
$this->generator = $generator;
|
||
}
|
||
|
||
/**
|
||
* Generate a random number
|
||
*
|
||
* @param optional Integer $min
|
||
* @param optional Integer $max
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
*/
|
||
function random($min = false, $max = false)
|
||
{
|
||
if ($min === false) {
|
||
$min = new Math_BigInteger(0);
|
||
}
|
||
|
||
if ($max === false) {
|
||
$max = new Math_BigInteger(0x7FFFFFFF);
|
||
}
|
||
|
||
$compare = $max->compare($min);
|
||
|
||
if (!$compare) {
|
||
return $this->_normalize($min);
|
||
} else if ($compare < 0) {
|
||
// if $min is bigger then $max, swap $min and $max
|
||
$temp = $max;
|
||
$max = $min;
|
||
$min = $temp;
|
||
}
|
||
|
||
$generator = $this->generator;
|
||
|
||
$max = $max->subtract($min);
|
||
$max = ltrim($max->toBytes(), chr(0));
|
||
$size = strlen($max) - 1;
|
||
$random = '';
|
||
|
||
$bytes = $size & 1;
|
||
for ($i = 0; $i < $bytes; ++$i) {
|
||
$random.= chr($generator(0, 255));
|
||
}
|
||
|
||
$blocks = $size >> 1;
|
||
for ($i = 0; $i < $blocks; ++$i) {
|
||
// mt_rand(-2147483648, 0x7FFFFFFF) always produces -2147483648 on some systems
|
||
$random.= pack('n', $generator(0, 0xFFFF));
|
||
}
|
||
|
||
$temp = new Math_BigInteger($random, 256);
|
||
if ($temp->compare(new Math_BigInteger(substr($max, 1), 256)) > 0) {
|
||
$random = chr($generator(0, ord($max[0]) - 1)) . $random;
|
||
} else {
|
||
$random = chr($generator(0, ord($max[0]) )) . $random;
|
||
}
|
||
|
||
$random = new Math_BigInteger($random, 256);
|
||
|
||
return $this->_normalize($random->add($min));
|
||
}
|
||
|
||
/**
|
||
* Generate a random prime number.
|
||
*
|
||
* If there's not a prime within the given range, false will be returned. If more than $timeout seconds have elapsed,
|
||
* give up and return false.
|
||
*
|
||
* @param optional Integer $min
|
||
* @param optional Integer $max
|
||
* @param optional Integer $timeout
|
||
* @return Math_BigInteger
|
||
* @access public
|
||
* @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=15 HAC 4.44}.
|
||
*/
|
||
function randomPrime($min = false, $max = false, $timeout = false)
|
||
{
|
||
$compare = $max->compare($min);
|
||
|
||
if (!$compare) {
|
||
return $min;
|
||
} else if ($compare < 0) {
|
||
// if $min is bigger then $max, swap $min and $max
|
||
$temp = $max;
|
||
$max = $min;
|
||
$min = $temp;
|
||
}
|
||
|
||
// gmp_nextprime() requires PHP 5 >= 5.2.0 per <http://php.net/gmp-nextprime>.
|
||
if ( MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_GMP && function_exists('gmp_nextprime') ) {
|
||
// we don't rely on Math_BigInteger::random()'s min / max when gmp_nextprime() is being used since this function
|
||
// does its own checks on $max / $min when gmp_nextprime() is used. When gmp_nextprime() is not used, however,
|
||
// the same $max / $min checks are not performed.
|
||
if ($min === false) {
|
||
$min = new Math_BigInteger(0);
|
||
}
|
||
|
||
if ($max === false) {
|
||
$max = new Math_BigInteger(0x7FFFFFFF);
|
||
}
|
||
|
||
$x = $this->random($min, $max);
|
||
|
||
$x->value = gmp_nextprime($x->value);
|
||
|
||
if ($x->compare($max) <= 0) {
|
||
return $x;
|
||
}
|
||
|
||
$x->value = gmp_nextprime($min->value);
|
||
|
||
if ($x->compare($max) <= 0) {
|
||
return $x;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static $one, $two;
|
||
if (!isset($one)) {
|
||
$one = new Math_BigInteger(1);
|
||
$two = new Math_BigInteger(2);
|
||
}
|
||
|
||
$start = time();
|
||
|
||
$x = $this->random($min, $max);
|
||
if ($x->equals($two)) {
|
||
return $x;
|
||
}
|
||
|
||
$x->_make_odd();
|
||
if ($x->compare($max) > 0) {
|
||
// if $x > $max then $max is even and if $min == $max then no prime number exists between the specified range
|
||
if ($min->equals($max)) {
|
||
return false;
|
||
}
|
||
$x = $min->copy();
|
||
$x->_make_odd();
|
||
}
|
||
|
||
$initial_x = $x->copy();
|
||
|
||
while (true) {
|
||
if ($timeout !== false && time() - $start > $timeout) {
|
||
return false;
|
||
}
|
||
|
||
if ($x->isPrime()) {
|
||
return $x;
|
||
}
|
||
|
||
$x = $x->add($two);
|
||
|
||
if ($x->compare($max) > 0) {
|
||
$x = $min->copy();
|
||
if ($x->equals($two)) {
|
||
return $x;
|
||
}
|
||
$x->_make_odd();
|
||
}
|
||
|
||
if ($x->equals($initial_x)) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Make the current number odd
|
||
*
|
||
* If the current number is odd it'll be unchanged. If it's even, one will be added to it.
|
||
*
|
||
* @see randomPrime()
|
||
* @access private
|
||
*/
|
||
function _make_odd()
|
||
{
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
gmp_setbit($this->value, 0);
|
||
break;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
if ($this->value[strlen($this->value) - 1] % 2 == 0) {
|
||
$this->value = bcadd($this->value, '1');
|
||
}
|
||
break;
|
||
default:
|
||
$this->value[0] |= 1;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Checks a numer to see if it's prime
|
||
*
|
||
* Assuming the $t parameter is not set, this function has an error rate of 2**-80. The main motivation for the
|
||
* $t parameter is distributability. Math_BigInteger::randomPrime() can be distributed accross multiple pageloads
|
||
* on a website instead of just one.
|
||
*
|
||
* @param optional Integer $t
|
||
* @return Boolean
|
||
* @access public
|
||
* @internal Uses the
|
||
* {@link http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test Miller-Rabin primality test}. See
|
||
* {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=8 HAC 4.24}.
|
||
*/
|
||
function isPrime($t = false)
|
||
{
|
||
$length = strlen($this->toBytes());
|
||
|
||
if (!$t) {
|
||
// see HAC 4.49 "Note (controlling the error probability)"
|
||
if ($length >= 163) { $t = 2; } // floor(1300 / 8)
|
||
else if ($length >= 106) { $t = 3; } // floor( 850 / 8)
|
||
else if ($length >= 81 ) { $t = 4; } // floor( 650 / 8)
|
||
else if ($length >= 68 ) { $t = 5; } // floor( 550 / 8)
|
||
else if ($length >= 56 ) { $t = 6; } // floor( 450 / 8)
|
||
else if ($length >= 50 ) { $t = 7; } // floor( 400 / 8)
|
||
else if ($length >= 43 ) { $t = 8; } // floor( 350 / 8)
|
||
else if ($length >= 37 ) { $t = 9; } // floor( 300 / 8)
|
||
else if ($length >= 31 ) { $t = 12; } // floor( 250 / 8)
|
||
else if ($length >= 25 ) { $t = 15; } // floor( 200 / 8)
|
||
else if ($length >= 18 ) { $t = 18; } // floor( 150 / 8)
|
||
else { $t = 27; }
|
||
}
|
||
|
||
// ie. gmp_testbit($this, 0)
|
||
// ie. isEven() or !isOdd()
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
return gmp_prob_prime($this->value, $t) != 0;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
if ($this->value === '2') {
|
||
return true;
|
||
}
|
||
if ($this->value[strlen($this->value) - 1] % 2 == 0) {
|
||
return false;
|
||
}
|
||
break;
|
||
default:
|
||
if ($this->value == array(2)) {
|
||
return true;
|
||
}
|
||
if (~$this->value[0] & 1) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static $primes, $zero, $one, $two;
|
||
|
||
if (!isset($primes)) {
|
||
$primes = array(
|
||
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
|
||
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
|
||
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
|
||
229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
|
||
317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
|
||
421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
|
||
521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617,
|
||
619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727,
|
||
733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
|
||
839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947,
|
||
953, 967, 971, 977, 983, 991, 997
|
||
);
|
||
|
||
if ( MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL ) {
|
||
for ($i = 0; $i < count($primes); ++$i) {
|
||
$primes[$i] = new Math_BigInteger($primes[$i]);
|
||
}
|
||
}
|
||
|
||
$zero = new Math_BigInteger();
|
||
$one = new Math_BigInteger(1);
|
||
$two = new Math_BigInteger(2);
|
||
}
|
||
|
||
if ($this->equals($one)) {
|
||
return false;
|
||
}
|
||
|
||
// see HAC 4.4.1 "Random search for probable primes"
|
||
if ( MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL ) {
|
||
foreach ($primes as $prime) {
|
||
list(, $r) = $this->divide($prime);
|
||
if ($r->equals($zero)) {
|
||
return $this->equals($prime);
|
||
}
|
||
}
|
||
} else {
|
||
$value = $this->value;
|
||
foreach ($primes as $prime) {
|
||
list(, $r) = $this->_divide_digit($value, $prime);
|
||
if (!$r) {
|
||
return count($value) == 1 && $value[0] == $prime;
|
||
}
|
||
}
|
||
}
|
||
|
||
$n = $this->copy();
|
||
$n_1 = $n->subtract($one);
|
||
$n_2 = $n->subtract($two);
|
||
|
||
$r = $n_1->copy();
|
||
$r_value = $r->value;
|
||
// ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s));
|
||
if ( MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_BCMATH ) {
|
||
$s = 0;
|
||
// if $n was 1, $r would be 0 and this would be an infinite loop, hence our $this->equals($one) check earlier
|
||
while ($r->value[strlen($r->value) - 1] % 2 == 0) {
|
||
$r->value = bcdiv($r->value, '2', 0);
|
||
++$s;
|
||
}
|
||
} else {
|
||
for ($i = 0, $r_length = count($r_value); $i < $r_length; ++$i) {
|
||
$temp = ~$r_value[$i] & 0xFFFFFF;
|
||
for ($j = 1; ($temp >> $j) & 1; ++$j);
|
||
if ($j != 25) {
|
||
break;
|
||
}
|
||
}
|
||
$s = 26 * $i + $j - 1;
|
||
$r->_rshift($s);
|
||
}
|
||
|
||
for ($i = 0; $i < $t; ++$i) {
|
||
$a = $this->random($two, $n_2);
|
||
$y = $a->modPow($r, $n);
|
||
|
||
if (!$y->equals($one) && !$y->equals($n_1)) {
|
||
for ($j = 1; $j < $s && !$y->equals($n_1); ++$j) {
|
||
$y = $y->modPow($two, $n);
|
||
if ($y->equals($one)) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!$y->equals($n_1)) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* Logical Left Shift
|
||
*
|
||
* Shifts BigInteger's by $shift bits.
|
||
*
|
||
* @param Integer $shift
|
||
* @access private
|
||
*/
|
||
function _lshift($shift)
|
||
{
|
||
if ( $shift == 0 ) {
|
||
return;
|
||
}
|
||
|
||
$num_digits = (int) ($shift / 26);
|
||
$shift %= 26;
|
||
$shift = 1 << $shift;
|
||
|
||
$carry = 0;
|
||
|
||
for ($i = 0; $i < count($this->value); ++$i) {
|
||
$temp = $this->value[$i] * $shift + $carry;
|
||
$carry = (int) ($temp / 0x4000000);
|
||
$this->value[$i] = (int) ($temp - $carry * 0x4000000);
|
||
}
|
||
|
||
if ( $carry ) {
|
||
$this->value[] = $carry;
|
||
}
|
||
|
||
while ($num_digits--) {
|
||
array_unshift($this->value, 0);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Logical Right Shift
|
||
*
|
||
* Shifts BigInteger's by $shift bits.
|
||
*
|
||
* @param Integer $shift
|
||
* @access private
|
||
*/
|
||
function _rshift($shift)
|
||
{
|
||
if ($shift == 0) {
|
||
return;
|
||
}
|
||
|
||
$num_digits = (int) ($shift / 26);
|
||
$shift %= 26;
|
||
$carry_shift = 26 - $shift;
|
||
$carry_mask = (1 << $shift) - 1;
|
||
|
||
if ( $num_digits ) {
|
||
$this->value = array_slice($this->value, $num_digits);
|
||
}
|
||
|
||
$carry = 0;
|
||
|
||
for ($i = count($this->value) - 1; $i >= 0; --$i) {
|
||
$temp = $this->value[$i] >> $shift | $carry;
|
||
$carry = ($this->value[$i] & $carry_mask) << $carry_shift;
|
||
$this->value[$i] = $temp;
|
||
}
|
||
|
||
$this->value = $this->_trim($this->value);
|
||
}
|
||
|
||
/**
|
||
* Normalize
|
||
*
|
||
* Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
|
||
*
|
||
* @param Math_BigInteger
|
||
* @return Math_BigInteger
|
||
* @see _trim()
|
||
* @access private
|
||
*/
|
||
function _normalize($result)
|
||
{
|
||
$result->precision = $this->precision;
|
||
$result->bitmask = $this->bitmask;
|
||
|
||
switch ( MATH_BIGINTEGER_MODE ) {
|
||
case MATH_BIGINTEGER_MODE_GMP:
|
||
if (!empty($result->bitmask->value)) {
|
||
$result->value = gmp_and($result->value, $result->bitmask->value);
|
||
}
|
||
|
||
return $result;
|
||
case MATH_BIGINTEGER_MODE_BCMATH:
|
||
if (!empty($result->bitmask->value)) {
|
||
$result->value = bcmod($result->value, $result->bitmask->value);
|
||
}
|
||
|
||
return $result;
|
||
}
|
||
|
||
$value = &$result->value;
|
||
|
||
if ( !count($value) ) {
|
||
return $result;
|
||
}
|
||
|
||
$value = $this->_trim($value);
|
||
|
||
if (!empty($result->bitmask->value)) {
|
||
$length = min(count($value), count($this->bitmask->value));
|
||
$value = array_slice($value, 0, $length);
|
||
|
||
for ($i = 0; $i < $length; ++$i) {
|
||
$value[$i] = $value[$i] & $this->bitmask->value[$i];
|
||
}
|
||
}
|
||
|
||
return $result;
|
||
}
|
||
|
||
/**
|
||
* Trim
|
||
*
|
||
* Removes leading zeros
|
||
*
|
||
* @return Math_BigInteger
|
||
* @access private
|
||
*/
|
||
function _trim($value)
|
||
{
|
||
for ($i = count($value) - 1; $i >= 0; --$i) {
|
||
if ( $value[$i] ) {
|
||
break;
|
||
}
|
||
unset($value[$i]);
|
||
}
|
||
|
||
return $value;
|
||
}
|
||
|
||
/**
|
||
* Array Repeat
|
||
*
|
||
* @param $input Array
|
||
* @param $multiplier mixed
|
||
* @return Array
|
||
* @access private
|
||
*/
|
||
function _array_repeat($input, $multiplier)
|
||
{
|
||
return ($multiplier) ? array_fill(0, $multiplier, $input) : array();
|
||
}
|
||
|
||
/**
|
||
* Logical Left Shift
|
||
*
|
||
* Shifts binary strings $shift bits, essentially multiplying by 2**$shift.
|
||
*
|
||
* @param $x String
|
||
* @param $shift Integer
|
||
* @return String
|
||
* @access private
|
||
*/
|
||
function _base256_lshift(&$x, $shift)
|
||
{
|
||
if ($shift == 0) {
|
||
return;
|
||
}
|
||
|
||
$num_bytes = $shift >> 3; // eg. floor($shift/8)
|
||
$shift &= 7; // eg. $shift % 8
|
||
|
||
$carry = 0;
|
||
for ($i = strlen($x) - 1; $i >= 0; --$i) {
|
||
$temp = ord($x[$i]) << $shift | $carry;
|
||
$x[$i] = chr($temp);
|
||
$carry = $temp >> 8;
|
||
}
|
||
$carry = ($carry != 0) ? chr($carry) : '';
|
||
$x = $carry . $x . str_repeat(chr(0), $num_bytes);
|
||
}
|
||
|
||
/**
|
||
* Logical Right Shift
|
||
*
|
||
* Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder.
|
||
*
|
||
* @param $x String
|
||
* @param $shift Integer
|
||
* @return String
|
||
* @access private
|
||
*/
|
||
function _base256_rshift(&$x, $shift)
|
||
{
|
||
if ($shift == 0) {
|
||
$x = ltrim($x, chr(0));
|
||
return '';
|
||
}
|
||
|
||
$num_bytes = $shift >> 3; // eg. floor($shift/8)
|
||
$shift &= 7; // eg. $shift % 8
|
||
|
||
$remainder = '';
|
||
if ($num_bytes) {
|
||
$start = $num_bytes > strlen($x) ? -strlen($x) : -$num_bytes;
|
||
$remainder = substr($x, $start);
|
||
$x = substr($x, 0, -$num_bytes);
|
||
}
|
||
|
||
$carry = 0;
|
||
$carry_shift = 8 - $shift;
|
||
for ($i = 0; $i < strlen($x); ++$i) {
|
||
$temp = (ord($x[$i]) >> $shift) | $carry;
|
||
$carry = (ord($x[$i]) << $carry_shift) & 0xFF;
|
||
$x[$i] = chr($temp);
|
||
}
|
||
$x = ltrim($x, chr(0));
|
||
|
||
$remainder = chr($carry >> $carry_shift) . $remainder;
|
||
|
||
return ltrim($remainder, chr(0));
|
||
}
|
||
|
||
// one quirk about how the following functions are implemented is that PHP defines N to be an unsigned long
|
||
// at 32-bits, while java's longs are 64-bits.
|
||
|
||
/**
|
||
* Converts 32-bit integers to bytes.
|
||
*
|
||
* @param Integer $x
|
||
* @return String
|
||
* @access private
|
||
*/
|
||
function _int2bytes($x)
|
||
{
|
||
return ltrim(pack('N', $x), chr(0));
|
||
}
|
||
|
||
/**
|
||
* Converts bytes to 32-bit integers
|
||
*
|
||
* @param String $x
|
||
* @return Integer
|
||
* @access private
|
||
*/
|
||
function _bytes2int($x)
|
||
{
|
||
$temp = unpack('Nint', str_pad($x, 4, chr(0), STR_PAD_LEFT));
|
||
return $temp['int'];
|
||
}
|
||
|
||
/**
|
||
* DER-encode an integer
|
||
*
|
||
* The ability to DER-encode integers is needed to create RSA public keys for use with OpenSSL
|
||
*
|
||
* @see modPow()
|
||
* @access private
|
||
* @param Integer $length
|
||
* @return String
|
||
*/
|
||
function _encodeASN1Length($length)
|
||
{
|
||
if ($length <= 0x7F) {
|
||
return chr($length);
|
||
}
|
||
|
||
$temp = ltrim(pack('N', $length), chr(0));
|
||
return pack('Ca*', 0x80 | strlen($temp), $temp);
|
||
}
|
||
} |